Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.708
Filtrar
1.
Biotechnol J ; 19(7): e2400021, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987219

RESUMO

Enzyme-mediated polyethylene terephthalate (PET) depolymerization has recently emerged as a sustainable solution for PET recycling. Towards an industrial-scale implementation of this technology, various strategies are being explored to enhance PET depolymerization (PETase) activity and improve enzyme stability, expression, and purification processes. Recently, rational engineering of a known PET hydrolase (LCC-leaf compost cutinase) has resulted in the isolation of a variant harboring four-point mutations (LCC-ICCG), presenting increased PETase activity and thermal stability. Here, we revealed the enzyme's natural extracellular expression and used it to efficiently screen error-prone genetic libraries based on LCC-ICCG for enhanced activity toward consumer-grade PET. Following multiple rounds of mutagenesis and screening, we successfully isolated variants that exhibited up to a 60% increase in PETase activity. Among other mutations, the improved variants showed a histidine to tyrosine substitution at position 218, a residue known to be involved in substrate binding and stabilization. Introducing H218Y mutation on the background of LCC-ICCG (named here LCC-ICCG/H218Y) resulted in a similar level of activity improvement. Analysis of the solved structure of LCC-ICCG/H218Y compared to other known PETases featuring different amino acids at the equivalent position suggests that H218Y substitution promotes enhanced PETase activity. The expression and screening processes developed in this study can be further used to optimize additional enzymatic parameters crucial for efficient enzymatic degradation of consumer-grade PET.


Assuntos
Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Estabilidade Enzimática , Biblioteca Gênica , Burkholderiales
2.
Waste Manag ; 186: 293-306, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954921

RESUMO

The compositions of Dutch lightweight packaging waste (LWP) and sorted products named "PET (Polyethylene terephthalate) trays" have been determined on object level. Additionally, the PET trays from both waste types were sorted in 16 categories representing their packaging use and material build-up. The material composition of at least 10 representative trays from each category was determined with chemical and thermal analysis, based on which the average material composition per category was established. Based on this data the average material composition of sorted PET tray products was approximated. The recyclability of the various categories of PET trays was assessed based on their material build-up. The most ubiquitous PET trays in Dutch LWP and sorted products were only found to be suitable to produce opaque recycled PET with mechanical recycling processes. Whereas only some more uncommon PET trays can be used to produce transparent recycled PET with mechanical recycling processes. Depolymerisation is deemed to be a more appropriate recycling process that will allow the production of transparent food-grade recycled PET.


Assuntos
Polietilenotereftalatos , Embalagem de Produtos , Reciclagem , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , Países Baixos , Resíduos , Eliminação de Resíduos/métodos
3.
Appl Environ Microbiol ; 90(7): e0093324, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38953372

RESUMO

Starch utilization system (Sus)D-homologs are well known for their carbohydrate-binding capabilities and are part of the sus operon in microorganisms affiliated with the phylum Bacteroidota. Until now, SusD-like proteins have been characterized regarding their affinity toward natural polymers. In this study, three metagenomic SusD homologs (designated SusD1, SusD38489, and SusD70111) were identified and tested with respect to binding to natural and non-natural polymers. SusD1 and SusD38489 are cellulose-binding modules, while SusD70111 preferentially binds chitin. Employing translational fusion proteins with superfolder GFP (sfGFP), pull-down assays, and surface plasmon resonance (SPR) has provided evidence for binding to polyethylene terephthalate (PET) and other synthetic polymers. Structural analysis suggested that a Trp triad might be involved in protein adsorption. Mutation of these residues to Ala resulted in an impaired adsorption to microcrystalline cellulose (MC), but not so to PET and other synthetic polymers. We believe that the characterized SusDs, alongside the methods and considerations presented in this work, will aid further research regarding bioremediation of plastics. IMPORTANCE: SusD1 and SusD38489 can be considered for further applications regarding their putative adsorption toward fossil-fuel based polymers. This is the first time that SusD homologs from the polysaccharide utilization loci (PUL), largely described for the phylum Bacteroidota, are characterized as synthetic polymer-binding proteins.


Assuntos
Proteínas de Bactérias , Bacteroidetes , Metagenoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Celulose/metabolismo , Polímeros/metabolismo , Quitina/metabolismo , Polietilenotereftalatos/metabolismo
4.
Environ Sci Technol ; 58(29): 13047-13055, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38977269

RESUMO

Quantification of microplastics in soil is needed to understand their impact and fate in agricultural areas. Often, low sample volume and removal of organic matter (OM) limit representative quantification. We present a method which allows simultaneous quantification of microplastics in homogenized, large environmental samples (>1 g) and tested polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) (200-400 µm) overestimation by fresh and diagenetically altered OM in agricultural soils using a new combination of large-volume pyrolysis adsorption with thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS/MS). Characteristic MS/MS profiles for PE, PET, and PS were derived from plastic pyrolysis and allowed for a new mass separation of PET. Volume-defined standard particles (125 × 125 × 20 µm3) were developed with the respective weight (PE: 0.48 ± 0.12, PET: 0.50 ± 0.10, PS: 0.31 ± 0.08 µg), which can be spiked into solid samples. Diagenetically altered OM contained compounds that could be incorrectly identified as PE and suggest a mathematical correction to account for OM contribution. With a standard addition method, we quantified PS, PET, and PEcorrected in two agricultural soils. This provides a base to simultaneously quantify a variety of microplastics in many environmental matrices and agricultural soil.


Assuntos
Agricultura , Cromatografia Gasosa-Espectrometria de Massas , Plásticos , Polietileno , Pirólise , Poluentes do Solo , Solo , Polietileno/química , Solo/química , Poluentes do Solo/análise , Espectrometria de Massas em Tandem , Microplásticos/análise , Polietilenotereftalatos/química , Monitoramento Ambiental/métodos
5.
Appl Microbiol Biotechnol ; 108(1): 404, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953996

RESUMO

Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling.


Assuntos
Hidrolases , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/química , Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Hidrólise , Engenharia de Proteínas/métodos , Biodegradação Ambiental , Reciclagem
6.
Dental Press J Orthod ; 29(2): e2423212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865514

RESUMO

OBJECTIVE: The purpose of this retrospective study was to compare accuracy of arch expansion using two different thermoplastic materials in Invisalign aligners: EX30® (Polyethylene Terephthalate Glycol, or PETG) and SmartTrack® (polyurethane). METHODS: The study sample comprised 65 adult patients consecutively treated with Invisalign from two private practices: group 1 - treated with EX30® (358 teeth) and group 2 - treated with SmartTrack® (888 teeth). Six hundred and twenty-three measurements were assessed in three digital models throughout treatment: model 1 - initial, model 2 - predicted tooth position, and model 3 - achieved position. Sixteen reference points per arch were marked and, after best alignment, 2 points per tooth were copied from one digital model to another. Linear values of both arches were measured for canines, premolars, and first molars: on lingual gingival margins and cusp tips of every tooth. Comparisons were performed by Wilcoxon and Mann-Whitney test. RESULTS: Both termoplastic materials presented significant differences between predicted and achieved values for all measurements, except for the lower molar cusp tip in the SmartTrack® group. There is no statistical difference in the accuracy of transverse expansion between these two materials. Overall accuracy for EX30® aligners in maxilla and mandible were found to be 37 and 38%, respectively; and Smarttrack® presented an overall accuracy of 56.62% in the maxilla and 68.72% in the mandible. CONCLUSIONS: It is not possible to affirm one material expands better than the other. Further controlled clinical studies should be conducted comparing SmartTrack® and EX30® under similar conditions.


Assuntos
Desenho de Aparelho Ortodôntico , Polietilenotereftalatos , Poliuretanos , Técnicas de Movimentação Dentária , Humanos , Estudos Retrospectivos , Adulto , Feminino , Técnicas de Movimentação Dentária/instrumentação , Masculino , Poliuretanos/uso terapêutico , Polietilenoglicóis , Arco Dental , Aparelhos Ortodônticos Removíveis , Adulto Jovem
7.
Biochemistry ; 63(13): 1663-1673, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885634

RESUMO

The mono(2-hydroxyethyl) terephthalate hydrolase (MHETase) from Ideonella sakaiensis carries out the second step in the enzymatic depolymerization of poly(ethylene terephthalate) (PET) plastic into the monomers terephthalic acid (TPA) and ethylene glycol (EG). Despite its potential industrial and environmental applications, poor recombinant expression of MHETase has been an obstacle to its industrial application. To overcome this barrier, we developed an assay allowing for the medium-throughput quantification of MHETase activity in cell lysates and whole-cell suspensions, which allowed us to screen a library of engineered variants. Using consensus design, we generated several improved variants that exhibit over 10-fold greater whole-cell activity than wild-type (WT) MHETase. This is revealed to be largely due to increased soluble expression, which biochemical and structural analysis indicates is due to improved protein folding.


Assuntos
Burkholderiales , Burkholderiales/enzimologia , Burkholderiales/genética , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/química , Solubilidade , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Engenharia de Proteínas/métodos , Dobramento de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Modelos Moleculares
8.
Biochemistry ; 63(13): 1599-1607, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38907702

RESUMO

Small-scale bioreactors that are affordable and accessible would be of major benefit to the research community. In previous work, an open-source, automated bioreactor system was designed to operate up to the 30 mL scale with online optical monitoring, stirring, and temperature control, and this system, dubbed Chi.Bio, is now commercially available at a cost that is typically 1-2 orders of magnitude less than commercial bioreactors. In this work, we further expand the capabilities of the Chi.Bio system by enabling continuous pH monitoring and control through hardware and software modifications. For hardware modifications, we sourced low-cost, commercial pH circuits and made straightforward modifications to the Chi.Bio head plate to enable continuous pH monitoring. For software integration, we introduced closed-loop feedback control of the pH measured inside the Chi.Bio reactors and integrated a pH-control module into the existing Chi.Bio user interface. We demonstrated the utility of pH control through the small-scale depolymerization of the synthetic polyester, poly(ethylene terephthalate) (PET), using a benchmark cutinase enzyme, and compared this to 250 mL bioreactor hydrolysis reactions. The results in terms of PET conversion and rate, measured both by base addition and product release profiles, are statistically equivalent, with the Chi.Bio system allowing for a 20-fold reduction of purified enzyme required relative to the 250 mL bioreactor setup. Through inexpensive modifications, the ability to conduct pH control in Chi.Bio reactors widens the potential slate of biochemical reactions and biological cultivations for study in this system, and may also be adapted for use in other bioreactor platforms.


Assuntos
Reatores Biológicos , Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Burkholderiales/enzimologia , Burkholderiales/metabolismo , Software
9.
Int J Biol Macromol ; 273(Pt 1): 133049, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857727

RESUMO

To enhance the enzymatic digestibility of polyethylene terephthalate (PET), which is highly oriented and crystallized, a polyethylene glycol (PEG) surfactant of varying molecular weights was utilized to improve the stability of mutant cutinase from Humicola insolens (HiC) and to increase the accessibility of the enzyme to the substrate. Leveraging the optimal conditions for HiC hydrolysis of PET, the introduction of 1 % w/v PEG significantly increased the yield of PET hydrolysis products. PEG600 was particularly effective, increasing the yield by 64.58 % compared to using HiC alone. Moreover, the mechanisms by which PEG600 and PEG6000 enhance enzyme digestion were extensively examined using circular dichroism and fluorescence spectroscopy. The results from CD and fluorescence analyses indicated that PEG alters the protein conformation, thereby affecting the catalytic effect of the enzyme. Moreover, PEG improved the affinity between HiC and PET by lowering the surface tension of the solution, substantially enhancing PET hydrolysis. This study suggests that PEG holds considerable promise as an enzyme protector, significantly aiding in the hydrophilic modification and degradation of PET in an environmentally friendly and sustainable manner.


Assuntos
Hidrolases de Éster Carboxílico , Polietilenoglicóis , Polietilenotereftalatos , Tensoativos , Polietilenotereftalatos/química , Polietilenoglicóis/química , Hidrólise , Tensoativos/química , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo
10.
Molecules ; 29(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38930935

RESUMO

Antimony (Sb) contamination poses significant environmental and health concerns due to its toxic nature and widespread presence, largely from anthropogenic activities. This study addresses the urgent need for an accurate speciation analysis of Sb, particularly in water sources, emphasizing its migration from polyethylene terephthalate (PET) plastic materials. Current methodologies primarily focus on total Sb content, leaving a critical knowledge gap for its speciation. Here, we present a novel analytical approach utilizing frontal chromatography coupled with inductively coupled plasma mass spectrometry (FC-ICP-MS) for the rapid speciation analysis of Sb(III) and Sb(V) in water. Systematic optimization of the FC-ICP-MS method was achieved through multivariate data analysis, resulting in a remarkably short analysis time of 150 s with a limit of detection below 1 ng kg-1. The optimized method was then applied to characterize PET leaching, revealing a marked effect of the plastic aging and manufacturing process not only on the total amount of Sb released but also on the nature of leached Sb species. This evidence demonstrates the effectiveness of the FC-ICP-MS approach in addressing such an environmental concern, benchmarking a new standard for Sb speciation analysis in consideration of its simplicity, cost effectiveness, greenness, and broad applicability in environmental and health monitoring.


Assuntos
Antimônio , Espectrometria de Massas , Polietilenotereftalatos , Antimônio/análise , Antimônio/química , Polietilenotereftalatos/química , Espectrometria de Massas/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos
11.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943017

RESUMO

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Assuntos
Bactérias , Biodegradação Ambiental , Microbiota , Microplásticos , Instalações de Eliminação de Resíduos , Microplásticos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poliésteres/metabolismo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Estuários , Polietileno/metabolismo , Polietilenotereftalatos/metabolismo
12.
J Hazard Mater ; 474: 134838, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850944

RESUMO

Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.


Assuntos
Carvão Vegetal , Hidrolases , Fósforo , Polietilenotereftalatos , Microbiologia do Solo , Poluentes do Solo , Hidrolases/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Fósforo/metabolismo , Fósforo/química , Microplásticos/toxicidade , Biodegradação Ambiental , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Microbiota/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
13.
J Environ Manage ; 363: 121360, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850902

RESUMO

Large-volume production of poly(ethylene terephthalate) (PET), especially in the form of bottles and food packaging containers, causes problems with polymer waste management. Waste PET could be recycled thermally, mechanically or chemically and the last method allows to obtain individual monomers, but most often it is carried out in the presence of homogeneous catalysts, that are difficult to separate and reuse. In view of this, this work reports for the first time, application of bimetallic MOF-74 - as heterogeneous catalyst - for depolymerization of PET with high monomer (bishydroxyethyl terephthalate, BHET) recovery. The effect of type and amount of second metal in the MOF-74 (Mg/M) was systematically investigated. The results showed increased activity of MOF-74 (Mg/M) containing Co2+, Zn2+ and Mn2+ as a second metal, while the opposite correlation was observed for Cu2+ and Ni2+. It was found that the highest catalytic activity was demonstrated by the introduction of Mg-Mn into MOF-74 with ratio molar 1:1, which resulted in complete depolymerization of PET and 91.8% BHET yield within 4 h. Furthermore, the obtained catalyst showed good stability in 5 reaction cycles and allowed to achieve high-purity BHET, which was confirmed by HPLC analysis. The as-prepared MOF-74 (Mg/Mn) was easy to separate from the post-reaction mixture, clean and reuse in the next depolymerization reaction.


Assuntos
Polietilenotereftalatos , Catálise , Polietilenotereftalatos/química , Polimerização , Gerenciamento de Resíduos/métodos , Reciclagem , Estruturas Metalorgânicas/química
14.
Commun Biol ; 7(1): 725, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867087

RESUMO

The rising use of plastic results in an appalling amount of waste which is scattered into the environment. One of these plastics is PET which is mainly used for bottles. We have identified and characterized an esterase from Streptomyces, annotated as LipA, which can efficiently degrade the PET-derived oligomer BHET. The Streptomyces coelicolor ScLipA enzyme exhibits varying sequence similarity to several BHETase/PETase enzymes, including IsPETase, TfCut2, LCC, PET40 and PET46. Of 96 Streptomyces strains, 18% were able to degrade BHET via one of three variants of LipA, named ScLipA, S2LipA and S92LipA. SclipA was deleted from S. coelicolor resulting in reduced BHET degradation. Overexpression of all LipA variants significantly enhanced BHET degradation. All variants were expressed in E. coli for purification and biochemical analysis. The optimum conditions were determined as pH 7 and 25 °C for all variants. The activity on BHET and amorphous PET film was investigated. S2LipA efficiently degraded BHET and caused roughening and indents on the surface of PET films, comparable to the activity of previously described TfCut2 under the same conditions. The abundance of the S2LipA variant in Streptomyces suggests an environmental advantage towards the degradation of more polar substrates including these polluting plastics.


Assuntos
Streptomyces , Streptomyces/enzimologia , Streptomyces/genética , Microbiologia do Solo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Biodegradação Ambiental , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/genética , Esterases/metabolismo , Esterases/genética , Esterases/química , Polietilenotereftalatos/metabolismo
15.
Ecotoxicol Environ Saf ; 281: 116635, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944007

RESUMO

Since we rely entirely on plastics or their products in our daily lives, plastics are the invention of the hour. Polyester plastics, such as Polyethylene Terephthalate (PET), are among the most often used types of plastics. PET plastics have a high ratio of aromatic components, which makes them very resistant to microbial attack and highly persistent. As a result, massive amounts of plastic trash accumulate in the environment, where they eventually transform into microplastic (<5 mm). Rather than macroplastics, microplastics are starting to pose a serious hazard to the environment. It is imperative that these polymer microplastics be broken down. Through the use of enrichment culture, the PET microplastic-degrading bacterium was isolated from solid waste management yards. Bacterial strain was identified as Gordonia sp. CN2K by 16 S rDNA sequence analysis and biochemical characterization. It is able to use polyethylene terephthalate as its only energy and carbon source. In 45 days, 40.43 % of the PET microplastic was degraded. By using mass spectral analysis and HPLC to characterize the metabolites produced during PET breakdown, the degradation of PET is verified. The metabolites identified in the spent medium included dimer compound, bis (2-hydroxyethyl) terephthalate (BHET), mono (2-hydroxyethyl) terephthalate (MHET), and terephthalate. Furthermore, the PET sheet exposed to the culture showed considerable surface alterations in the scanning electron microscope images. This illustrates how new the current work is.


Assuntos
Biodegradação Ambiental , Bactéria Gordonia , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/química , Bactéria Gordonia/metabolismo , Bactéria Gordonia/genética , Plásticos , Microplásticos , RNA Ribossômico 16S/genética
16.
Sci Rep ; 14(1): 14449, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914665

RESUMO

As genomic databases expand and artificial intelligence tools advance, there is a growing demand for efficient characterization of large numbers of proteins. To this end, here we describe a generalizable pipeline for high-throughput protein purification using small-scale expression in E. coli and an affordable liquid-handling robot. This low-cost platform enables the purification of 96 proteins in parallel with minimal waste and is scalable for processing hundreds of proteins weekly per user. We demonstrate the performance of this method with the expression and purification of the leading poly(ethylene terephthalate) hydrolases reported in the literature. Replicate experiments demonstrated reproducibility and enzyme purity and yields (up to 400 µg) sufficient for comprehensive analyses of both thermostability and activity, generating a standardized benchmark dataset for comparing these plastic-degrading enzymes. The cost-effectiveness and ease of implementation of this platform render it broadly applicable to diverse protein characterization challenges in the biological sciences.


Assuntos
Escherichia coli , Robótica , Robótica/métodos , Escherichia coli/genética , Engenharia de Proteínas/métodos , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/economia , Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Polietilenotereftalatos/química , Reprodutibilidade dos Testes
17.
World J Microbiol Biotechnol ; 40(8): 247, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904858

RESUMO

Phthalate isomers are key intermediates in the biodegradation of pollutants including waste polyethylene terephthalate (PET) plastics and plasticizers. So far, an increasing number of phthalate isomer-degrading strains have been isolated, and their degradation pathways show significant diversity. In this paper, we comprehensively review the current status of research on the degrading bacteria, degradation characteristics, aerobic and anaerobic degradation pathways, and degradation genes (clusters) of phthalate isomers, and discuss the current shortcomings and challenges. Moreover, the degradation process of phthalate isomers produces many important aromatic precursor molecules, which can be used to produce higher-value derivative chemicals, and the modification of their degradation pathways holds good prospects. Therefore, this review also highlights the current progress made in modifying the phthalate isomer degradation pathway and explores its potential for high-value applications.


Assuntos
Bactérias , Biodegradação Ambiental , Ácidos Ftálicos , Ácidos Ftálicos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Isomerismo , Plastificantes/metabolismo , Poluentes Ambientais/metabolismo , Redes e Vias Metabólicas , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/química
18.
Environ Sci Pollut Res Int ; 31(31): 43987-43995, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38914898

RESUMO

One of the most pressing global environmental issues is the widespread abundance and distribution of microplastics (MPs). MPs can act as vectors for other contaminants in the environment making these small plastic particles hazardous for ecosystems. The presence of MPs in aquatic environments may pose threats to aquatic organisms that ingest them. This study examined effects of abamectin (ABM) and polyethylene terephthalate (PET) MP fragments on histopathological and enzymatic biomarkers in zebrafish (Danio rerio). Zebrafish were exposed for 96 h to pristine PET-MPs at concentrations of 5 mg/L and 10 mg/L, ABM alone at 0.006 mg/L, and the same concentration of ABM in the presence of PET-MPs in aquaria. Histopathological analysis revealed tissue content changes in liver and kidney in the presence of ABM individually and in combination with MPs. Results of enzymatic analysis showed that MPs increased the bioavailability and toxicity of pesticides due to inhibition of catalase (CAT) and acid phosphatase (ACP) enzymes. However, MPs did not affect the toxicity of ABM for glutathione s-transferase (GST) enzyme. Despite the inhibition of acetylcholinesterase (AChE) in MPs or ABM treatments, and some neurotoxicity, no change in activity of this enzyme and neurotoxicity was observed in the combined MPs and ABM treatments, although toxicity effects of MPs and ABM on zebrafish require more detailed studies.


Assuntos
Ivermectina , Polietilenotereftalatos , Peixe-Zebra , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Glutationa Transferase/metabolismo , Acetilcolinesterase/metabolismo
19.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833982

RESUMO

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.


Assuntos
Biodegradação Ambiental , Burkholderiales , Escherichia coli , Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Burkholderiales/enzimologia , Escherichia coli/genética , Bacillus anthracis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Engenharia de Proteínas
20.
Bioresour Technol ; 406: 130929, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838832

RESUMO

Polyethylene terephthalate (PET) has caused significant pollution issues. Compared to chemical degradation with high energy consumption and cost, enzymatic degradation offers a sustainable solution for PET waste recycling. However, the hydrolytic activity of current PET hydrolases still requires improvement. In this study, a cross-correlation-based accumulated mutagenesis (CAM) strategy was developed to enhance the hydrolysis activity. By mitigating epistatic effect and combinational mutations, we achieved a highly active variant LCC-YGA (H183Y/L124G/S29A) with 2.1-fold hydrolytic activity on amorphous PET films of LCC-ICCG. Conformational analysis elucidated how the introduction of distal mutations enhanced activity. The dynamic correlation among different regions facilitated a synergistic effect, enhancing binding pocket flexibility through remote interactions. Totally, this work offers novel insights and methods for PET hydrolases engineering and provides an efficient enzyme for PET degradation and recycling.


Assuntos
Hidrolases , Mutagênese , Polietilenotereftalatos , Polietilenotereftalatos/química , Hidrolases/genética , Hidrolases/metabolismo , Hidrolases/química , Hidrólise , Mutação , Estabilidade Enzimática , Engenharia de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA