Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.481
Filtrar
1.
Sci Rep ; 14(1): 21763, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294193

RESUMO

Metal and metal oxide nanocomposites have unique properties and are promising for antibacterial and anticancer applications. In this work, we aimed to highlight the relationship between the biosynthesis ways of silver and gold-doped zinc oxide nanocomposites and their functions as anticancer on cell lines (MCF-7 and HepG2). The propolis was used to biosynthesize four different nanoparticles with the same components, including zinc, gold and silver. The nanocomposites were characterized using various techniques, including ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive X-ray analysis (EDX) and cytotoxicity assays. The result of this study showed that formed nanocomposites have a similar level of Zn, Au, and Ag, ranging from 23-34%, 2-6%, and 2-3%, respectively. In addition, adding the components simultaneously produces the fastest color change, and the fabricated nanoparticles have spherical shapes with different layers. In addition, the prepared nanoparticles influenced the cell viability of the cancer cell lines, with the most effective one when Zn, Au, and Ag were added spontaneously to form a nanocomposite called (All) with IC50 of 24.5 µg/mL for MCF7 cells and 29.1 µg/mL for HepG2 cells. Thus, the study illustrates that the preparation of nanocomposite generated through green synthesis with different methods significantly affects the structure and function and may improve the synthesis of nanocomposite to be developed into an efficacious therapeutic agent for cancers. In addition, this study opens the door toward a novel track in the field of nanocomposites as it links the synthesis with structure and function. Further anti-cancer properties, as well as animal testing are needed for those nanocomposites.


Assuntos
Antineoplásicos , Ouro , Química Verde , Nanocompostos , Própole , Prata , Óxido de Zinco , Humanos , Própole/química , Própole/farmacologia , Ouro/química , Nanocompostos/química , Prata/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Células Hep G2 , Células MCF-7 , Nanopartículas Metálicas/química , Sobrevivência Celular/efeitos dos fármacos
2.
Sci Rep ; 14(1): 21766, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294418

RESUMO

Stresses caused by ionizing radiation can also damage tissues and organs through the circulatory system. In this study, we aimed to determine the radioprotective effect of propolis, a natural and powerful antioxidant product, against oxidative liver damage caused by cranial irradiation. Thirty-two male albino Sprague-Dawley rats, divided into four groups, were designed as sham group, irradiation (IR) group, propolis plus IR, control group of propolis. Biochemical parameters were measured in liver tissue of rats. While Total enzymatic superoxide scavenging activity (TSSA) and non-enzymatic superoxide scavenging activity (NSSA), glutathione peroxidase (GSH-Px) activities of all groups were statistically significantly higher than rats receiving only-irradiation, Glutathione-S-transferase (GST) activity in the IR group was significantly lower than in the sham control group and IR + propolis group. Superoxide dismutase (SOD) activity in the IR group was found to be significantly higher than both the sham control group and the propolis control group, but lower than the IR + propolis group. Malondialdehyde level and xanthine oxidase activity were higher in the IR group than in the other groups. Compared to the sham control group, in the group treated with propolis, a significant elevation in antioxidant parameters, specifically TSSA, NSSA, SOD, and GST activities, was noted, with corresponding increases of 32.3%, 23.2%, 47.6%, and 22.6%, respectively. Our findings show that propolis can be a radioprotective agent against ionized radiation damage by increasing antioxidant activity and reducing oxidant stress in liver tissue.


Assuntos
Antioxidantes , Fígado , Estresse Oxidativo , Própole , Protetores contra Radiação , Ratos Sprague-Dawley , Animais , Própole/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/efeitos da radiação , Masculino , Ratos , Protetores contra Radiação/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Malondialdeído/metabolismo , Glutationa Transferase/metabolismo , Xantina Oxidase/metabolismo
3.
Nutrients ; 16(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39275315

RESUMO

This study investigated the efficacy and safety of a propolis-mangosteen extract complex (PMEC) on gingival health in patients with gingivitis and incipient periodontitis. A multicentered, randomized, double-blind, placebo-controlled trial involving 104 subjects receiving either PMEC or placebo for eight weeks was conducted. The primary focus was on the changes in inflammatory biomarkers from gingival crevicular fluid (GCF), with clinical parameters as secondary outcomes. The results revealed that the PMEC group showed a significantly reduced expression of all measured GCF biomarkers compared to the placebo group (p < 0.0001) at 8 weeks, including substantial reductions in IL-1ß, PGE2, MMP-8, and MMP-9 levels compared to the baseline. While clinical parameters trended towards improvement in both groups, the intergroup differences were not statistically significant. No significant adverse events were reported, indicating a favorable safety profile. These findings suggest that PMEC consumption can attenuate gingival inflammation and mitigate periodontal tissue destruction by modulating key inflammatory mediators in gingival tissue. Although PMEC shows promise as a potential adjunctive therapy for supporting gingival health, the discrepancy between biomarker improvements and clinical outcomes warrants further investigation to fully elucidate its therapeutic potential in periodontal health management.


Assuntos
Biomarcadores , Líquido do Sulco Gengival , Gengivite , Extratos Vegetais , Própole , Humanos , Gengivite/tratamento farmacológico , Método Duplo-Cego , Própole/farmacologia , Masculino , Feminino , Adulto , Extratos Vegetais/farmacologia , Líquido do Sulco Gengival/metabolismo , Pessoa de Meia-Idade , Metaloproteinase 9 da Matriz/metabolismo , Garcinia mangostana/química , Metaloproteinase 8 da Matriz/metabolismo , Interleucina-1beta/metabolismo , Periodontite/tratamento farmacológico , Resultado do Tratamento , Dinoprostona/metabolismo , Adulto Jovem , Gengiva/efeitos dos fármacos , Gengiva/metabolismo , Mediadores da Inflamação/metabolismo
4.
Trop Anim Health Prod ; 56(8): 259, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292350

RESUMO

The purpose of the study was to investigate the effect of Ethanolic Extract of Propolis (EEP) administration on immune parameters, faecal consistency scores, growth performance, and feed efficiency of Holstein Friesian calves. A total of 24 calves were divided into two different groups, control (n = 12) and EEP (n = 12). Both groups consisted of 6 male and 6 female calves. The calves were fed milk amounting to 10% of their birth weight each day until they reached 60 days of age. Additionally, they were given starter feed and dry hay once a day. Calves assigned to the EEP group received 4 ml of EEP daily. Use of EEP increased (P < 0.05) the serum IgG and IgM levels at 2 months of age compared to the control group. EEP also showed efficacy (P < 0.01) in reducing faecal consistency in calves throughout the study. The levels of IL-1ß, IL-6, TNF-α and NF-κB expression in calves treated with EEP were lower (P < 0.05) throughout the EEP application period. On the other hand, IGF-1 mRNA transcript levels were (P < 0.01) higher in EEP group calves than in the control group. Furthermore, EEP-fed calves consumed less dry matter for 1 kg of live weight gain during the weaning-4 months (P < 0.01) and birth-4 months (P < 0.05) periods. These results indicate that EEP supplementation, through its immunostimulatory effects, plays a crucial role in the control of neonatal calf diarrhoea. Growth and development as well as IGF-1, which stimulates growth in almost all somatic cells, was also significantly increased by EEP supplementation. The combined effect of the rich bioactive compounds found in EEP appears to have a significant impact on health and well-being, resulting in improved early life performance in dairy calves.


Assuntos
Fezes , Própole , Animais , Própole/farmacologia , Própole/administração & dosagem , Própole/química , Bovinos/crescimento & desenvolvimento , Fezes/química , Masculino , Feminino , Ração Animal/análise , Citocinas/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária
5.
Sci Rep ; 14(1): 21295, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266600

RESUMO

Recently, the growth of consumer demand for functional foods with potential nutritional and health benefits led to rapid growth of analytical tools for profiling of bioactive metabolites and assure quality. Bee propolis is one of the most important bee products owing to its myriad health value. As a gummy exudate produced in beehives after harvesting from different plant species, bee propolis contains bioactive secondary metabolites. The current study aims to profiling the chemical composition of propolis samples from Nigeria using HPLC-UV-ELSD and with the aid of NMR-based analysis for assignment of metabolites classes abundant in Nigerian propolis. Red Nigerian propolis samples were subjected to phytochemical analysis using HPLC-UV-ELSD and NMR. Further chromatographic separation of promising fractions was performed by column chromatography and size exclusion chromatography. Screening of the antitrypanosomal and cytotoxic activities against Trypanosoma brucei and human leukemia cell lines (U937), respectively, was performed. The performance of LC-MS permitted identification of the different components from which 13 compound were identified and allowed combination of fractions to afford 9 fractions from which two isoflavonoids were isolated and identified using 1D and 2D NMR analysis with MS as isosativan and Medicarpin. Red Nigerian propolis crude extract showed the highest inhibitory activity at 6.5 µg/ml compared to moderate activity for the isolated compounds with MIC of 7.6 µg/ml and 12.1 µg/ml for medicarpin and isosativan, respectively. Moreover, the fraction RN-6 from the total extract showed the potent cytotoxic effect with IC50 = 26.5 µg/ml compared to standard diminazen which showed IC50 = 29.5 µg/ml.


Assuntos
Antiprotozoários , Flavonoides , Compostos Fitoquímicos , Própole , Trypanosoma brucei brucei , Própole/química , Própole/farmacologia , Antiprotozoários/farmacologia , Antiprotozoários/química , Humanos , Trypanosoma brucei brucei/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Nigéria , Animais , Cromatografia Líquida de Alta Pressão , Linhagem Celular Tumoral , Espectroscopia de Ressonância Magnética , Abelhas
6.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274885

RESUMO

The chemical compounds found in propolis vary according to plant sources, species, and geographical regions. To date, Indonesian propolis has not yet become standardized in terms of its chemical constituents. Thus, this study aimed to identify the presence of marker compounds and determine whether different classes of Indonesian propolis exist. In this study, yields, total polyphenol content (TPC), total flavonoid content (TFC), and antioxidants were measured. Identification of chemical compounds was carried out with Fourier-transform infrared (FTIR) spectroscopy and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Metaboanalyst 6.0 was employed in conducting principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) using the results of the FTIR and LC-MS/MS. The propolis with the highest TFC, TPC, and antioxidant activity was Geniotrigona thoracica from North Sumatra. The results of propolis compound mapping based on region with discriminant analysis revealed that types of propolis from Java have similar characteristics. Then, based on species, the types of propolis from Tetragonula laeviceps and Heterotrigona itama have special characteristics; the samples from these species can be grouped according to similar characteristics. In conclusion, 10 potential marker compounds were identified in Indonesian propolis, enabling regional and species-specific varieties of Indonesian propolis to be classified based on chemical composition mapping.


Assuntos
Antioxidantes , Metabolômica , Própole , Própole/química , Abelhas , Indonésia , Metabolômica/métodos , Antioxidantes/química , Animais , Polifenóis/química , Polifenóis/análise , Espectrometria de Massas em Tandem , Análise de Componente Principal , Flavonoides/química , Flavonoides/análise , Cromatografia Líquida , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Discriminante , Análise dos Mínimos Quadrados
7.
Sci Rep ; 14(1): 20894, 2024 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245771

RESUMO

This study proposes an innovative approach to combat the escalating threat of antibiotic resistance in bacteria by introducing a novel ZnO-propolis nanocomposite (ZnO-P NCs). The overuse of antibiotics, particularly during events like the COVID-19 pandemic, has intensified bacterial resistance, necessitating innovative solutions. The study employs a cost-effective and controllable biosynthesis method to produce ZnO nanoparticles (ZnO-NPs), with propolis extract crucially contributing to the reduction and stabilization of Zn2+ ions. A biodegradable nano-propolis matrix is then created by incorporating ZnO-NPs, forming the ZnO-P NCs. Structural stability is confirmed through FT-IR and Zeta potential analysis, while nanoscale properties are validated via TEM, SEM, and XRD analyses. The antimicrobial efficacy of various substances, including propolis, nano propolis, ethanolic propolis extract, ZnO-NPs, and ZnO-P NCs, is assessed against Gram-negative and Gram-positive bacteria, alongside a comparison with 28 antibiotics. Among the bacteria tested, Pseudomonas aeruginosa PAO1 ATCC15692 was more sensitive (40 mm) to the biosynthesized nanocomposite ZnO-P NCs than to ZnO-NPs (38 mm) and nanopropolis (32 mm), while Escherichia coli was resistant to nanopropolis (0 mm) than to ZnO-NPs (31 mm), and ZnO-P NCs (34 mm). The study reveals a synergy effect when combining propolis with green-synthesized ZnO-NPs in the form of ZnO-P NCs, significantly improving their efficiency against all tested bacteria, including antibiotic-resistant strains like E. coli. The nanocomposite outperforms other materials and antibiotics, demonstrating remarkable antibacterial effectiveness. SEM imaging confirms the disruption of bacterial cell membranes by ZnO-NPs and ZnO-P NCs. The study emphasizes the potential applications of ZnO-NPs integrated into biodegradable materials and underscores the significance of the zinc oxide-propolis nanocomposite in countering antimicrobial resistance. Overall, this research offers a comprehensive solution to combat multidrug-resistant bacteria, opening avenues for novel approaches in infection control.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Nanocompostos , Própole , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Própole/química , Própole/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química
8.
J Ovarian Res ; 17(1): 181, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244585

RESUMO

Ovarian cancer is the second most common and lethal gynecologic malignancy. Among natural product-based therapy, the honeybee products, particularly propolis, serve a valuable source contributing directly to human nutrition and health.In the present study, we determined the chemical composition of different types of propolis originating from Egypt, Germany and France using liquid chromatography-tandem mass spectrometry. The compounds identified belong to different metabolite classes, including flavonoids, cinnamic acid, chalcones, terpenoids, phenolic lipids, stilbenes, phenolic compounds, carbohydrates, vitamins, coumarins, polyprenylated benzophenone, benzoic acids, fatty acid methyl ester, and coumaric acid, and their derivatives. The most active extract is from France then Egypt and Germany.Afterwards, we treated the human ovarian cancer cells, OVCAR4, with different concentrations (1-400 µg/mL) of variable propolis types supplemented or not with vitamin D (0.0015-0.15 µg/mL) in order to evaluate the efficacy and the cytotoxic activities of our local P as compared to other types collected from different geographic regions. Importantly, the combinatorial treatment of OVCAR4 cancer cells with propolis and vitamin D in the same concentration ranges resulted in enhanced cell viability inhibition. Furthermore, such co-supplementation with vitamin D inhibits predominately the proliferative activity of cell population with the French propolis type as manifested by Ki67 expression, while it reduces considerably its expression, particularly with the German type, followed by the Egyptian one.Nowadays, scientists are interested by natural products which have risen to the forefront of drug discovery. Chemically characterized propolis showing cell viability inhibition and antiproliferative potential seems a valuable extract for further consideration as anti-carcinogenic agent.


Assuntos
Neoplasias Ovarianas , Própole , Vitamina D , Própole/farmacologia , Própole/química , Humanos , Feminino , Vitamina D/farmacologia , Vitamina D/análogos & derivados , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Egito , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos
9.
Rev Bras Enferm ; 77(4): e20230418, 2024.
Artigo em Inglês, Português | MEDLINE | ID: mdl-39258606

RESUMO

OBJECTIVE: to assess the effectiveness of 5% Brazilian green propolis (ointment) in individuals with chronic ulcers. METHODS: a randomized clinical trial, developed with 40 patients randomized equally to control group (treated with essential fatty acid) and experimental group (treated with 5% green propolis) for 30 days. The outcomes of interest were sociodemographic, clinical and laboratory characteristics, lesion characteristics, such as type of tissue in the bed, presence of exudate, edge characteristics, microbial content and pain. RESULTS: regarding sociodemographic, clinical and laboratory characteristics, the two groups did not show statistically significant differences. After assessment in 30 days, an effect was observed for both treated groups, but for the experimental group, greater effectiveness in terms of the type of tissue in the bed, type of exudate, edge characteristics, microbial content and pain. CONCLUSION: propolis-based ointment showed a healing effect, presenting itself as a potential tool in healing chronic ulcers.


Assuntos
Própole , Humanos , Própole/uso terapêutico , Própole/farmacologia , Feminino , Masculino , Pessoa de Meia-Idade , Brasil , Idoso , Doença Crônica/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Resultado do Tratamento , Adulto
10.
Food Chem ; 461: 140827, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146684

RESUMO

This study reports a combined approach to assess the antioxidant activity of Zuccagnia-type propolis. Fractions exhibiting the highest antioxidant activities evidenced by DPPH, a ß-carotene bleaching and superoxide radical scavenging activity-non-enzymatic assays, were processed by LC-HRMS/MS to characterize the relevant chemical compounds. A computational protocol based on the DFT calculations was used to rationalize the main outcomes. Among the 28 identified flavonoids, caffeic acids derivatives were in the fraction exhibiting the highest antioxidant activity, with 1-methyl-3-(4'-hydroxyphenyl)-propyl caffeic acid ester and 1-methyl-3-(3',4'-dihydroxyphenyl)-propyl caffeic acid ester as major components. Results clearly showed roles of specific chemical motifs, which can be supported by the computational analysis. This is the first report ascribing the antioxidant ability of Zuccagnia-type propolis to its content in specific caffeic acid derivatives, a potential source of radical scavenging phytochemicals. The proposed protocol can be extended to the study of other plant-products to address the most interesting bioactive compounds.


Assuntos
Antioxidantes , Própole , Espectrometria de Massas em Tandem , Própole/química , Antioxidantes/química , Ácidos Cafeicos/química , Ácidos Cafeicos/análise , Flavonoides/química , Flavonoides/análise , Estrutura Molecular , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão
11.
Environ Sci Pollut Res Int ; 31(40): 53052-53073, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39172338

RESUMO

Bee-derived pharmaceutical products, including propolis (PRO) and royal jelly (ROJ), possess outstanding pharmacological properties. However, their efficiency in counteracting the deleterious influences of cadmium (Cd) in testes and the relevant mechanisms entail further investigations. Therefore, this study sheds light on the therapeutic efficacy of PRO and ROJ against testicular dysfunction and infertility induced by Cd. Toward this end, 30 mature male Wistar albino rats were randomly divided into six groups (5 animals/group), including (I) control, (II) Cd, (III) PRO, (IV) ROJ, (V) PRO + Cd, and (VI) ROJ + Cd groups. Furthermore, antioxidant factors, semen quality, hormonal levels, steroidogenic enzymes, and genotoxicity were assessed. Moreover, histopathological and ultrastructural attributes and offspring rates were investigated. The Cd-treated group revealed marked reductions in reduced glutathione (GSH), total antioxidant capacity (TAC), and superoxide dismutase (SOD) with an amplification of lipid peroxidation in testes, indicating disruption of the antioxidant defense system. Furthermore, myeloperoxidase (MPO) activity and DNA damage were significantly heightened, implying inflammation and genotoxicity, respectively. Moreover, steroidogenic enzymes, including 17ß-Hydroxy Steroid Dehydrogenase 3 (HSD17b3), 3ß-Hydroxy Steroid Dehydrogenase 2 (HSD3b2), 17α-hydroxylase/17,20-lyase (CYP17A1), and steroid 5α-reductase 2 (SRD5A2) were markedly diminished accompanied with disorders in luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone. Besides, spermatozoa quality was reduced, associated with a diminution in the diameter of seminiferous tubules. By contrast, PRO or ROJ significantly protected and/or counteracted the Cd-induced pathophysiological consequences, ameliorating antioxidant and inflammatory biomarkers, steroidogenic enzymes, hormonal levels, and sperm properties, along with lessening DNA impairments. Critically, histological and ultrastructural analyses manifested several anomalies in the testicular tissues of the Cd-administered group, including the Leydig and Sertoli cells and spermatozoa. Conversely, PRO or ROJ sustained testicular tissues' structure, enhancing spermatozoa integrity and productivity. Interestingly, treatment with PRO or ROJ improved fertility indices through offspring rates compared to the Cd-animal group. Our data suggest that PRO is a more effective countermeasure than ROJ against Cd toxicity for securing the delicate testicular microenvironment for spermatogenesis and steroidogenesis.


Assuntos
Cádmio , Ácidos Graxos , Própole , Ratos Wistar , Espermatogênese , Animais , Ratos , Própole/farmacologia , Cádmio/toxicidade , Masculino , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Antioxidantes/farmacologia
12.
Clin Ther ; 46(9): e6-e14, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39097520

RESUMO

PURPOSE: Even though various randomized controlled trials (RCTs) have assessed the effect of propolis on glycemic indices and liver enzyme concentrations in adults, results have been inconsistent, without conclusive evidence. This systematic review and meta-analysis of RCTs sought to evaluate the effects of propolis consumption on glycemic indices and liver enzymes, fasting blood glucose, insulin, homeostatic model assessment of insulin resistance, glycosylated hemoglobin, alanine transaminase, aspartate aminotransferase, and gamma-glutamyl transferase in adults. METHODS: Two independent researchers systematically searched PubMed, EMBASE, Scopus, Web of Science, and the Cochrane Library for English-language RCTs published up to April 2024. The results were generated through a random-effects model and presented as the weighted mean difference (WMD) with a 95% CI. The Cochrane Risk of Bias Tool for RCTs and Grading of Recommendations Assessment, Development, and Evaluation assessment were used to evaluate quality assessment and certainty of evidence. FINDINGS: A total of 21 RCTs were included. A pooled analysis of 24 trials reported that propolis consumption led to a significant reduction in fasting blood glucose (WMD, -9.75 mg/dL; 95% CI, -16.14 to -3.35), insulin (WMD, -1.64 µU/mL; 95% CI, -2.61 to -0.68), glycosylated hemoglobin (WMD, -0.46%; 95% CI, -0.71 to -0.21), homeostatic model assessment of insulin resistance (WMD, -0.54; 95% CI, -0.98 to -0.09), alanine transaminase (WMD, -2.60 IU/L; 95% CI, -4.58 to -0.61), and aspartate aminotransferase (WMD, -2.07 IU/L; 95% CI, -3.05 to -1.09). However, there were no significant effects on gamma-glutamyl transferase in comparison with the control group. IMPLICATIONS: This meta-analysis has shown that propolis supplementation may have beneficial effects on glycemic indices and liver enzymes. Future high-quality, long-term RCTs are needed to confirm our results. CLINICALTRIALS: gov identifiers: CRD42024524763. (Clin Ther. 2024;46:XXX-XXX) © 2024 Elsevier HS Journals, Inc.


Assuntos
Glicemia , Índice Glicêmico , Fígado , Própole , Humanos , Própole/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/enzimologia , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Adulto , Índice Glicêmico/efeitos dos fármacos , Resistência à Insulina , Aspartato Aminotransferases/sangue , Insulina , Ensaios Clínicos Controlados Aleatórios como Assunto , Alanina Transaminase/sangue , Hemoglobinas Glicadas/metabolismo , gama-Glutamiltransferase/sangue , Relação Dose-Resposta a Droga
13.
J Chromatogr A ; 1734: 465265, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39182454

RESUMO

Propolis is a natural resinous mixture produced by honeybees with numerous biological activities. Considering the recently reported potential of propolis as an adjuvant in COVID-19 treatment, a methodology for the fractionation of the hexane extract of Brazilian green propolis (HEGP) was developed for the obtention of prenylated biomarkers by countercurrent chromatography. The inhibition of the interaction between the receptor binding domain (RBD) of spike and ACE2 receptor was evaluated by the Lumitᵀᴹ immunoassay. Fractionation of HEGP was performed by both normal (CCC1 and CCC2, with extended elution) and reversed (CCC3) phase elution-extrusion modes with the solvent system hexane-ethanol-water 4:3:1. The normal elution mode of CCC1 (471 mg HEGP in a 80 mL column volume, 1.6 mm id) was scaled-up (CCC5, 1211 mg HEGP in a 112 mL column volume, 2.1 mm id), leading to the isolation of 89.9 mg of artepillin C, 1; 52.7 mg of baccharin, 2; and 26.6 mg of chromene, with purities of 93 %, 83 % and 88 %, respectively, by HPLC-PDA. Among the isolated compounds, artepillin C, 1, and baccharin, 2, presented the best results in the Lumitᵀᴹ immunoassay, showing 67% and 51% inhibition, respectively, at the concentration of 10 µM. This technique proved to be of low operational cost and excellent reproducibility.


Assuntos
Enzima de Conversão de Angiotensina 2 , Distribuição Contracorrente , Própole , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Própole/química , Distribuição Contracorrente/métodos , SARS-CoV-2/efeitos dos fármacos , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Biomarcadores/metabolismo , COVID-19 , Ligação Proteica , Tratamento Farmacológico da COVID-19 , Fenilpropionatos/química , Fenilpropionatos/isolamento & purificação
14.
Sci Total Environ ; 951: 175697, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39182785

RESUMO

Increasing the intake of dietary supplements containing antioxidant components can reduce the oral bioavailability of lead (Pb) and cadmium (Cd) and benefit human health. In this study, the effects of propolis and its extracts (kaempferol (KAE), quercetin (QR), and caffeic acid phenethyl ester (CAPE)) in conjunction with proanthocyanidins (PA) on Pb and Cd bioaccessibility (BAC) and the relative bioavailability (RBA) in brown and polished rice are investigated. The results of in vitro tests showed that propolis and its extracts were effective in reducing Pb BAC in both brown and polished rice. A medium dose of PA had a significant reduction effect on Cd BAC (76 %) and RBA in both brown and polished rice. Based on mouse bioassays, the supplementation of propolis and its extracts significantly (p < 0.05) reduced the Pb-RBA in brown rice, resulting in a decrease in Pb RBA from 25 % in the control group to 16.5-17.6 %. The results showed that the BAC and RBA of Pb in brown rice with dietary supplements decreased significantly, which may be related to the enhanced inhibitory effect of high Fe. It was also found that the Pb RBA was negatively correlated with the Fe content in mice kidneys. This result provided evidence that antioxidants better inhibit the bioavailability of heavy metals, highlighting that propolis and PA may be alternative dietary supplements for intervening in human Pb and Cd exposure.


Assuntos
Disponibilidade Biológica , Cádmio , Chumbo , Oryza , Própole , Oryza/química , Própole/química , Camundongos , Animais , Ferro , Antioxidantes , Suplementos Nutricionais
15.
Ultrastruct Pathol ; 48(5): 338-350, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39087752

RESUMO

Diabetes mellitus is a common metabolic disorder. It is associated with serious life-threatening complications if not properly managed. The current study aimed at investigating the possible protective role of propolis on streptozotocin-induced diabetic nephropathy. A diabetic rat model was induced by a single intraperitoneal injection of 55 mg/kg streptozotocin. After 4 days, the diabetic rats received oral propolis (300 mg/kg/day) via gastric gavage for 28 days. Biochemical, histopathological and ultrastructural evaluations were performed. The results showed that: streptozotocin-induced diabetes was associated with a marked decrease in the serum high-density lipoproteins and antioxidant enzymes. However, a significant elevation in the levels of serum creatinine, blood urea nitrogen, uric acid, cholesterol, triglycerides and low-density lipoproteins was detected. Furthermore, streptozotocin treatment induced histopathological alterations of the renal cortex; in the form of distorted glomerular capillaries, widened Bowman's space and signs of epithelial tubular degeneration. Ultra-structurally, thickening and irregularity of the glomerular basement membrane and podocytes foot processes effacement were observed. The tubular epithelial cells showed swollen vacuolated mitochondria, scarce basal infoldings and loss of microvilli. Conversely, propolis partially restored the normal lipid profile, antioxidant biomarkers and renal cortical morphology. Propolis exhibited a sort of renoprotection through hypoglycemic, anti-hyperlipidemic and antioxidant effects.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Própole , Animais , Própole/farmacologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/prevenção & controle , Diabetes Mellitus Experimental/complicações , Ratos , Masculino , Estreptozocina , Antioxidantes/farmacologia , Rim/patologia , Rim/efeitos dos fármacos , Rim/ultraestrutura , Ratos Wistar , Hipoglicemiantes/farmacologia
16.
J Health Popul Nutr ; 43(1): 119, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127756

RESUMO

BACKGROUND: New evidence suggested that propolis might reduce serum levels of inflammatory mediators; therefore, in this study we aimed to prove the potential effect of propolis on serum levels of interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α) through conducting a systematic review and meta-analysis. METHODS: Databases including PubMed, ClinicalTrials.gov, Scopus, Cochrane Library, and ISI Web of Science were searched until October 2023. In the present meta-analysis, we detected the overall effect sizes using extracted standard mean differences (SMD) and the standard deviations (SDs) from both study groups through DerSimonian and Laird method. Exploring the statistical heterogeneity was done through Cochran's Q test and I-squared statistic. RESULTS: In total, seventeen and sixteen studies were included in the systematic review and meta-analysis, respectively. The overall estimate indicated that the propolis significantly reduced serum levels of IL-6 (SMD = -3.47, 95% confidence interval (95%CI): -5.1, -1.84; p < 0.001), CRP (SMD= -1.73, 95%CI: -2.82, -0.65; p = 0.002), and TNF-α (SMD= -1.42, 95%CI= -2.15, -0.68; p < 0.001). These results also revealed geographical region and propolis dose were the critical points to get the beneficial effects. CONCLUSION: According to our result, propolis supplementation can decrease serum levels of IL-6, CRP, and TNF-α; therefore, it might be considered as complementary therapy for the treatment of certain chronic diseases.


Assuntos
Proteína C-Reativa , Suplementos Nutricionais , Interleucina-6 , Própole , Ensaios Clínicos Controlados Aleatórios como Assunto , Fator de Necrose Tumoral alfa , Própole/administração & dosagem , Humanos , Fator de Necrose Tumoral alfa/sangue , Interleucina-6/sangue , Proteína C-Reativa/análise , Relação Dose-Resposta a Droga , Feminino , Masculino , Adulto , Pessoa de Meia-Idade
17.
An Acad Bras Cienc ; 96(suppl 1): e20240100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166613

RESUMO

The use of platelet-rich plasma (PRP) and adipose-derived stromal cells (ADSC) have been investigated as a form of wound healing enhancement. The objective of this work was to evaluate the association of red propolis (RP) and PRP as inducers of ADSC for application in tissue regeneration. Adipose tissue post-collection and post-cryopreservation was isolated with type II collagenase, characterized by flow cytometry, and differentiated into osteogenic, chondrogenic and adipose cell. The viability of ADSC was evaluated when exposed to different concentrations of RP using the MTT and trypan blue assay. Acridine orange and ethidium bromide (AO/EB) was performed to evaluate cell death events. Horizontal migration methods were investigated in ADSC using autologous and homologous PRP associated with RP (PRP/RP). All assays were processed in triplicate. Flow cytometry and cellular differentiation showed that type II collagenase was effective for isolating ADSC post-collection and post-cryopreservation. RP extracts at concentrations of up to 50 µg.mL-1 presented no cytotoxic effects. Association of PRP and RP at 25 and 50 µg.ml-1 influenced ADSC migration, with total closure on the seventh day after exposition. The results here presented could stimulate proliferation of ADSC cells that may contribute directly or indirectly to the reconstructive process of tissue regeneration.


Assuntos
Plasma Rico em Plaquetas , Própole , Células Estromais , Própole/farmacologia , Humanos , Células Estromais/efeitos dos fármacos , Citometria de Fluxo , Diferenciação Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Regeneração/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tecido Adiposo/citologia , Sobrevivência Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Células Cultivadas
18.
Compr Rev Food Sci Food Saf ; 23(5): e13404, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39136999

RESUMO

These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.


Assuntos
Criação de Abelhas , Inocuidade dos Alimentos , Mel , Abelhas/efeitos dos fármacos , Mel/análise , Animais , Contaminação de Alimentos/análise , Própole/efeitos adversos , Própole/química , Ceras/efeitos adversos , Ceras/química , Ácidos Graxos
19.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125604

RESUMO

The growing activity in the textile industry has been demanding the search for new and innovative technologies to meet consumers' needs regarding more sustainable and ecological processes, with functionality receiving more attention. Bee products are known for their wide spectra of properties, including antioxidant and antibacterial activities. Propolis and honey are the most popular and used since ancient times for the most diverse applications due to their health benefits. With the increasing need for safer and more sustainable practices, the use of natural products for the functional finishing process can be a suitable alternative due to their safety and eco-friendly nature. For that, a biosolution, composed of a mixture of propolis and honey in water, was used to perform the functional finishing of cotton knits, both in the presence and in the absence of potassium alum as a chemical mordant. The fastness strength was also evaluated after three washing cycles. The antioxidant potential of the biosolution, assessed with the in vitro ABTS scavenging assay, provided textiles with the capacity to reduce more than 90% of the ABTS radical, regardless of the mordant presence and even after three washing cycles. Furthermore, biofunctional textiles decreased the growth of Bacillus subtilis, Propionibacterium acnes, Escherichia coli, and, particularly, Staphylococcus aureus cultures after 24 h of incubation with an increase in antibacterial activity when potassium alum was used. These findings show that bee products are promising and effective alternatives to be used in the textile industry to confer antioxidant and antibacterial properties to cotton textiles, thereby enhancing human health.


Assuntos
Antibacterianos , Antioxidantes , Mel , Própole , Própole/química , Própole/farmacologia , Mel/análise , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Têxteis , Fibra de Algodão/análise , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Compostos de Alúmen/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento
20.
Mol Biol Rep ; 51(1): 931, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177837

RESUMO

Propolis is a natural product used in cancer treatment, which is produced by bees via different sources. The chemical composition of Propolis is determined based on the climatic and geographical conditions, as well as harvesting time and method. This compound has been the subject of numerous investigational endeavors due to its expansive therapeutic capacity which includes antibacterial, anti-fungal, anti-inflammatory, anti-oxidant, anti-viral, and anti-cancer effects. The growing incidence rate of different cancers necessitates the need for developing novel preventive and therapeutic strategies. Chemotherapy, radiotherapy, and stem cell therapy have proved effective in cancer treatment, regardless of the adverse events associated with these modalities. Clinical application of natural compounds such as Propolis may confer promise as an adjuvant therapeutic intervention, particularly in certain subpopulations of patients that develop adverse events associated with anticancer regimens. The diverse biologically active compounds of propolis are believed to confer anti-cancer potential by modulation of critical signaling cascades such as caffeic acid phenethyl ester, Galangin, Artepillin C, Chrysin, Quercetin, Caffeic acid, Nymphaeols A and C, Frondoside A, Genistein, p-coumaric acid, and Propolin C. This review article aims to deliver a mechanistic account of anti-cancer effects of propolis and its components. Propolis can prevent angiogenesis by downregulating pathways involving Jun-N terminal kinase, ERK1/2, Akt and NF-ƘB, while counteracting metastatic progression of cancer by inhibiting Wtn2 and FAK, and MAPK and PI3K/AKT signaling pathways. Moreover, propolis or its main components show regulatory effects on cyclin D, CDK2/4/6, and their inhibitors. Additionally, propolis-induced up-regulation of p21 and p27 may result in cell cycle arrest at G2/M or G0/G1. The broad anti-apoptotic effects of propolis are mediated through upregulation of TRAIL, Bax, p53, and downregulation of the ERK1/2 signaling pathway. Considering the growing body of evidence regarding different anti-cancers effects of propolis and its active components, this natural compound could be considered an effective adjuvant therapy aimed at reducing related side effects associated with chemotherapy and radiotherapy.


Assuntos
Neoplasias , Própole , Transdução de Sinais , Própole/farmacologia , Própole/química , Própole/uso terapêutico , Humanos , Transdução de Sinais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Ácidos Cafeicos/química , Álcool Feniletílico/análogos & derivados , Fenilpropionatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA