Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.011
Filtrar
1.
PeerJ ; 12: e17427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827289

RESUMO

Background: Survivors of sepsis may encounter cognitive impairment following their recovery from critical condition. At present, there is no standardized treatment for addressing sepsis-associated encephalopathy. Lactobacillus rhamnosus GG (LGG) is a prevalent bacterium found in the gut microbiota and is an active component of probiotic supplements. LGG has demonstrated to be associated with cognitive improvement. This study explored whether LGG administration prior to and following induced sepsis could ameliorate cognitive deficits, and explored potential mechanisms. Methods: Female C57BL/6 mice were randomly divided into three groups: sham surgery, cecal ligation and puncture (CLP), and CLP+LGG. Cognitive behavior was assessed longitudinally at 7-9d, 14-16d, and 21-23d after surgery using an open field test and novel object recognition test. The impact of LGG treatment on pathological changes, the expression level of brain-derived neurotrophic factor (BDNF), and the phosphorylation level of the TrkB receptor (p-TrkB) in the hippocampus of mice at two weeks post-CLP (16d) were evaluated using histological, immunofluorescence, immunohistochemistry, and western blot analyses. Results: The CLP surgery induced and sustained cognitive impairment in mice with sepsis for a minimum of three weeks following the surgery. Compared to mice subjected to CLP alone, the administration of LGG improved the survival of mice with sepsis and notably enhanced their cognitive functioning. Moreover, LGG supplementation significantly alleviated the decrease in hippocampal BDNF expression and p-TrkB phosphorylation levels caused by sepsis, preserving neuronal survival and mitigating the pathological changes within the hippocampus of mice with sepsis. LGG supplementation mitigates sepsis-related cognitive impairment in mice and preserves BDNF expression and p-TrkB levels in the hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Hipocampo , Lacticaseibacillus rhamnosus , Camundongos Endogâmicos C57BL , Probióticos , Sepse , Animais , Sepse/complicações , Sepse/terapia , Sepse/microbiologia , Sepse/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Camundongos , Hipocampo/metabolismo , Probióticos/farmacologia , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Modelos Animais de Doenças , Receptor trkB/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Encefalopatia Associada a Sepse/dietoterapia , Fosforilação
2.
Microbiome ; 12(1): 103, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845049

RESUMO

BACKGROUND: The metabolic disturbances of obesity can be mitigated by strategies modulating the gut microbiota. In this study, we sought to identify whether innate or adaptive immunity mediates the beneficial metabolic effects of the human intestinal bacterium Bacteroides uniformis CECT 7771 in obesity. METHODS: We evaluated the effects of orally administered B. uniformis on energy homeostasis, intestinal immunity, hormone levels, and gut microbiota in wild-type and Rag1-deficient mice with diet-induced obesity. We also assessed whether B. uniformis needed to be viable to exert its beneficial effects in obesity and to directly induce immunoregulatory effects. RESULTS: The administration of B. uniformis to obese mice improved glucose tolerance and insulin secretion, restored the caloric intake suppression after an oral glucose challenge, and reduced hyperglycemia. The pre- and post-prandial glucose-related benefits were associated with restoration of the anti-inflammatory tone mediated by type 2 macrophages and regulatory T cells (Tregs) in the lamina propria of the small intestine. Contrastingly, B. uniformis administration failed to improve glucose tolerance in obese Rag1-/- mice, but prevented the increased body weight gain and adiposity. Overall, the beneficial effects seemed to be independent of enteroendocrine effects and of major changes in gut microbiota composition. B. uniformis directly induced Tregs generation from naïve CD4+ T cells in vitro and was not required to be viable to improve glucose homeostasis but its viability was necessary to prevent body weight gain in diet-induced obese wild-type mice. CONCLUSIONS: Here we demonstrate that B. uniformis modulates the energy homeostasis in diet-induced obese mice through different mechanisms. The bacterium improves oral glucose tolerance by adaptive immunity-dependent mechanisms that do not require cell viability and prevents body weight gain by adaptive immunity-independent mechanisms which require cell viability. Video Abstract.


Assuntos
Imunidade Adaptativa , Bacteroides , Microbioma Gastrointestinal , Obesidade , Aumento de Peso , Animais , Camundongos , Obesidade/imunologia , Obesidade/microbiologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Linfócitos T Reguladores/imunologia , Camundongos Endogâmicos C57BL , Masculino , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Probióticos/administração & dosagem , Camundongos Knockout , Glucose/metabolismo
3.
Front Immunol ; 15: 1410928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903520

RESUMO

In recent years, with the deepening understanding of the gut microbiota, it has been recognized to play a significant role in the development and progression of diseases. Particularly in gastrointestinal tumors, the gut microbiota influences tumor growth by dysbiosis, release of bacterial toxins, and modulation of host signaling pathways and immune status. Immune checkpoint inhibitors (ICIs) have greatly improved cancer treatment efficacy by enhancing immune cell responses. Current clinical and preclinical studies have demonstrated that the gut microbiota and its metabolites can enhance the effectiveness of immunotherapy. Furthermore, certain gut microbiota can serve as biomarkers for predicting immunotherapy responses. Interventions targeting the gut microbiota for the treatment of gastrointestinal diseases, especially colorectal cancer (CRC), include fecal microbiota transplantation, probiotics, prebiotics, engineered bacteria, and dietary interventions. These approaches not only improve the efficacy of ICIs but also hold promise for enhancing immunotherapy outcomes. In this review, we primarily discuss the role of the gut microbiota and its metabolites in tumors, host immunity, and immunotherapy.


Assuntos
Microbioma Gastrointestinal , Imunoterapia , Humanos , Microbioma Gastrointestinal/imunologia , Imunoterapia/métodos , Animais , Disbiose/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/microbiologia , Probióticos/uso terapêutico , Transplante de Microbiota Fecal , Inibidores de Checkpoint Imunológico/uso terapêutico , Prebióticos/administração & dosagem
4.
Arch Microbiol ; 206(7): 315, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904672

RESUMO

Exploring probiotics for their crosstalk with the host microbiome through the fermentation of non-digestible dietary fibers (prebiotics) for their potential metabolic end-products, particularly short-chain fatty acids (SCFAs), is important for understanding the endogenous host-gut microbe interaction. This study was aimed at a systematic comparison of commercially available probiotics to understand their synergistic role with specific prebiotics in SCFAs production both in vitro and in the ex vivo gut microcosm model. Probiotic strains isolated from pharmacy products including Lactobacillus sporogenes (strain not labeled), Lactobacillus rhamnosus GG (ATCC53103), Streptococcus faecalis (T-110 JPC), Bacillus mesentericus (TO-AJPC), Bacillus clausii (SIN) and Saccharomyces boulardii (CNCM I-745) were assessed for their probiotic traits including survival, antibiotic susceptibility, and antibacterial activity against pathogenic strains. Our results showed that the microorganisms under study had strain-specific abilities to persist in human gastrointestinal conditions and varied anti-infective efficacy and antibiotic susceptibility. The probiotic strains displayed variation in the utilization of six different prebiotic substrates for their growth under aerobic and anaerobic conditions. Their prebiotic scores (PS) revealed which were the most suitable prebiotic carbohydrates for the growth of each strain and suggested xylooligosaccharide (XOS) was the poorest utilized among all. HPLC analysis revealed a versatile pattern of SCFAs produced as end-products of prebiotic fermentation by the strains which was influenced by growth conditions. Selected synbiotic (prebiotic and probiotic) combinations showing high PS and high total SCFAs production were tested in an ex vivo human gut microcosm model. Interestingly, significantly higher butyrate and propionate production was found only when synbiotics were applied as against when individual probiotic or prebiotics were applied alone. qRT-PCR analysis with specific primers showed that there was a significant increase in the abundance of lactobacilli and bifidobacteria with synbiotic blends compared to pre-, or probiotics alone. In conclusion, this work presents findings to suggest prebiotic combinations with different well-established probiotic strains that may be useful for developing effective synbiotic blends.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Prebióticos , Probióticos , Simbióticos , Humanos , Probióticos/administração & dosagem , Ácidos Graxos Voláteis/metabolismo , Antibacterianos/farmacologia , Fermentação , Trato Gastrointestinal/microbiologia , Lactobacillus/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Saccharomyces boulardii/metabolismo
5.
Ital J Pediatr ; 50(1): 120, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902804

RESUMO

BACKGROUND: Researches have found that alteration of intestinal flora may be closely related to the development of autism spectrum disorder (ASD). However, whether probiotics supplementation has a protective effect on ASD remains controversial. This meta-analysis aimed to analyze the outcome of probiotics in the treatment of ASD children. METHODS: The Pubmed, Cochrane Library, Web of Science and Embase were searched until Sep 2022. Randomized controlled trials (RCTs) relevant to the probiotics and placebo treatment on ASD children were screened. Quality assessment of the included RCTs was evaluated by the Cochrane collaboration's tool. The primary outcomes were ASD assessment scales, including ABC (aberrant behavior checklist) and CBCL (child behavior checklist) for evaluating the behavior improvement, SRS (social responsiveness scale) for social assessment, DQ (developmental quotient) for physical and mental development and CGI-I (clinical global impression improvement) for overall improvement. The secondary outcome was total 6-GSI (gastrointestinal severity index). RESULTS: In total, 6 RCTs from 6 studies with 302 children were included in the systemic review. Total 6-GSI (MD=-0.59, 95%CI [-1.02,-0.17], P < 0.05) decreased significantly after oral administration of probiotics. Whereas, there was no statistical difference in ABC, CBCL, SRS, DQ and CGI-I between probiotics and placebo groups in ASD children. CONCLUSION: Probiotics treatment could improve gastrointestinal symptoms, but there was no significant improvement in ASD.


Assuntos
Transtorno do Espectro Autista , Probióticos , Humanos , Probióticos/uso terapêutico , Transtorno do Espectro Autista/terapia , Criança , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Microbioma Gastrointestinal
6.
PLoS One ; 19(6): e0303091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905169

RESUMO

The primary objective of this investigation was to assess the viability of free and encapsulated Lactobacillus plantarum probiotics in mango juice and under simulated gastrointestinal conditions. Specifically, the probiotics were encapsulated using sodium alginate and alginate-soy protein isolate through the internal gelation method, and the obtained probiotics were characterized for various attributes. Both free and encapsulated probiotics were exposed to challenging conditions, including thermal stress, low temperature, and simulated gastrointestinal conditions. Additionally, both types of probiotics were incorporated into mango juice, and their survival was monitored over a 28-day storage period. Following viability under simulated gastrointestinal conditions, the count of free and encapsulated probiotic cells decreased from initial levels of 9.57 log CFU/mL, 9.55 log CFU/mL, and 9.53 log CFU/mL, 9.56 log CFU/mL to final levels of 6.14 log CFU/mL, 8.31 log CFU/mL, and 6.24 log CFU/mL, 8.62 log CFU/mL, respectively. Notably, encapsulated probiotics exhibited a decrease of 1.24 log CFU and 0.94 log CFU, while free cells experienced a reduction of 3.43 log CFU and 6.24 log CFU in mango juice over the storage period. Encapsulated probiotics demonstrated higher viability in mango juice compared to free probiotics throughout the 28-day storage period. These findings suggest that mango juice can be enriched with probiotics to create a health-promoting beverage.


Assuntos
Alginatos , Lactobacillus plantarum , Viabilidade Microbiana , Probióticos , Lactobacillus plantarum/fisiologia , Alginatos/química , Trato Gastrointestinal/microbiologia , Mangifera/microbiologia , Géis/química , Sucos de Frutas e Vegetais/microbiologia , Proteínas de Soja/química
7.
Arch Microbiol ; 206(7): 322, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907754

RESUMO

Limosilactobacillus reuteri DSM17938 is one of the most pivotal probiotics, whose general beneficial effects on the intestinal microbiota are well recognized. Enhancing their growth and metabolic activity can effectively regulate the equilibrium of intestinal microbiota, leading to improved physical health. A common method to promote the growth of Lactobacillus is the addition of prebiotics. Current research suggests that proteins and their hydrolysates from different sources with potential prebiotic activity can also promote the growth of probiotics. In this study, soybean proteins and peptides were effective in promoting the growth, organic acid secretion, and adhesive properties of Limosilactobacillus reuteri DSM17938 to Caco-2 cells. These results illustrate the feasibility of soybean proteins and peptides as prebiotics, providing theoretical and practical advantages for their application.


Assuntos
Aderência Bacteriana , Limosilactobacillus reuteri , Peptídeos , Probióticos , Proteínas de Soja , Limosilactobacillus reuteri/crescimento & desenvolvimento , Limosilactobacillus reuteri/metabolismo , Proteínas de Soja/farmacologia , Proteínas de Soja/metabolismo , Proteínas de Soja/química , Humanos , Células CACO-2 , Aderência Bacteriana/efeitos dos fármacos , Peptídeos/farmacologia , Prebióticos , Microbioma Gastrointestinal/efeitos dos fármacos , Glycine max/microbiologia
9.
Adv Nutr ; 15(6): 100233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38908894

RESUMO

Microbiota in early life is closely associated with the health of infants, especially premature ones. Probiotics are important drivers of gut microbiota development in preterm infants; however, there is no consensus regarding the characteristics of specific microbiota in preterm infants receiving probiotics. In this study, we performed a meta-analysis of 5 microbiome data sets (1816 stool samples from 706 preterm infants) to compare the gut microbiota of preterm infants exposed to probiotics with that of preterm infants not exposed to probiotics across populations. Despite study-specific variations, we found consistent differences in gut microbial composition and predicted functional pathways between the control and probiotic groups across different cohorts of preterm infants. The enrichment of Acinetobacter, Bifidobacterium, and Lactobacillus spp and the depletion of the potentially pathogenic bacteria Finegoldia, Veillonella, and Klebsiella spp. were the most consistent changes in the gut microbiota of preterm infants supplemented with probiotics. Probiotics drove microbiome transition into multiple preterm gut community types, and notably, preterm gut community type 3 had the highest α-diversity, with enrichment of Bifidobacterium and Bacteroides spp. At the functional level, the major predicted microbial pathways involved in peptidoglycan biosynthesis consistently increased in preterm infants supplemented with probiotics; in contrast, the crucial pathways associated with heme biosynthesis consistently decreased. Interestingly, Bifidobacterium sp. rather than Lactobacillus sp. gradually became dominant in gut microbiota of preterm infants using mixed probiotics, although both probiotic strains were administered at the same dosage. Taken together, our meta-analysis suggests that probiotics contribute to reshaping the microbial ecosystem of preterm infants at both the taxonomic and functional levels of the bacterial community. More standardized and relevant studies may contribute to better understanding the crosstalk among probiotics, the gut microbiota, and subsequent disease risk, which could help to give timely nutritional feeding guidance to preterm infants. This systematic review and meta-analysis was registered at PROSPERO (https://www.crd.york.ac.uk/PROSPERO/) as CRD42023447901.


Assuntos
Microbioma Gastrointestinal , Recém-Nascido Prematuro , Probióticos , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Recém-Nascido , Bifidobacterium , Fezes/microbiologia , Bactérias/classificação , Lactobacillus , Feminino
10.
Adv Genet ; 111: 237-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38908901

RESUMO

Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Probióticos , Humanos , Probióticos/administração & dosagem , Prebióticos/administração & dosagem , Medicina de Precisão/métodos
11.
Ecotoxicol Environ Saf ; 280: 116574, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875822

RESUMO

Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.


Assuntos
Aflatoxina B1 , Gansos , Ligilactobacillus salivarius , Fígado , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Aflatoxina B1/toxicidade , Mitofagia/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ligilactobacillus salivarius/fisiologia , Fígado/efeitos dos fármacos , Fígado/patologia , Proteínas Quinases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Estresse Oxidativo/efeitos dos fármacos , Probióticos/farmacologia
12.
Clin Nutr ; 43(7): 1832-1849, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878554

RESUMO

BACKGROUND AND AIMS: Microbiota plays an essential role in maintaining body health, through positive influences on metabolic, defensive, and trophic processes and on intercellular communication. Imbalance in intestinal flora, with the proliferation of harmful bacterial species (dysbiosis) is consistently reported in chronic illnesses, including neurodegenerative diseases (ND). Correcting dysbiosis can have a beneficial impact on the symptoms and evolution of ND. This review examines the effects of microbiota modulation through administration of probiotics, prebiotics, symbiotics, or prebiotics' metabolites (postbiotics) in patients with ND like multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). METHODS: PubMed, Web of Science, Medline databases and ClinicalTrials.gov registry searches were performed using pre-/pro-/postbiotics and ND-related terms. Further references were obtained by checking relevant articles. RESULTS: Although few compared to animal studies, the human studies generally show positive effects on disease-specific symptoms, overall health, metabolic parameters, on oxidative stress and immunological markers. Therapy with probiotics in various forms (mixtures of bacterial strains, fecal microbiota transplant, diets rich in fermented foods) exert favorable effects on patients' mental health, cognition, and quality of life, targeting pathogenetic ND mechanisms and inducing reparatory mechanisms at the cellular level. More encouraging results have been observed in prebiotic/postbiotic therapy in some ND. CONCLUSIONS: The effects of probiotic-related interventions depend on the patients' ND stage and pre-existing allopathic medication. Further studies on larger cohorts and long term comprehensive neuropsychiatric, metabolic, biochemical testing, and neuroimaging monitoring are necessary to optimize therapeutic protocols in ND.


Assuntos
Disbiose , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Prebióticos , Probióticos , Humanos , Microbioma Gastrointestinal/fisiologia , Doenças Neurodegenerativas/microbiologia , Doenças Neurodegenerativas/terapia , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Prebióticos/administração & dosagem , Disbiose/terapia , Disbiose/microbiologia , Animais , Transplante de Microbiota Fecal
13.
Microbiome ; 12(1): 110, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907268

RESUMO

BACKGROUND: Bacterial vaginosis (BV) increases HIV acquisition risk, potentially by eliciting genital inflammation. After BV treatment, the vaginal administration of LACTIN-V, a live biotherapeutic containing the Lactobacillus crispatus strain CTV-05, reduced BV recurrence and vaginal inflammation; however, 3 months after product cessation, CTV-05 colonization was only sustained in 48% of participants. RESULTS: This nested sub-study in 32 participants receiving LACTIN-V finds that 72% (23/32) demonstrate clinically relevant colonization (CTV-05 absolute abundance > 106 CFU/mL) during at least one visit while 28% (9/32) of women demonstrate colonization resistance, even during product administration. Immediately prior to LACTIN-V administration, the colonization-resistant group exhibited elevated vaginal microbiota diversity. During LACTIN-V administration, colonization resistance was associated with elevated vaginal markers of epithelial disruption and reduced chemokines, possibly due to elevated absolute abundance of BV-associated species and reduced L. crispatus. Colonization permissive women were stratified into sustained and transient colonization groups (31% and 41% of participants, respectively) based on CTV-05 colonization after cessation of product administration. These groups also exhibited distinct genital immune profiles during LACTIN-V administration. CONCLUSIONS: The genital immune impact of LACTIN-V may be contingent on the CTV-05 colonization phenotype, which is in turn partially dependent on the success of BV clearance prior to LACTIN-V administration.


Assuntos
Lactobacillus crispatus , Vagina , Vaginose Bacteriana , Humanos , Feminino , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/imunologia , Vagina/microbiologia , Adulto , Probióticos/administração & dosagem , Administração Intravaginal , Microbiota , Adulto Jovem , Fenótipo
14.
Microbiome ; 12(1): 113, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907315

RESUMO

BACKGROUND: Although the microbiota has been extensively associated with HIV pathogenesis, the majority of studies, particularly those using omics techniques, are largely correlative and serve primarily as a basis for hypothesis generation. Furthermore, most have focused on characterizing the taxonomic composition of the bacterial component, often overlooking other levels of the microbiome. The intricate mechanisms by which the microbiota influences immune responses to HIV are still poorly understood. Interventional studies on gut microbiota provide a powerful tool to test the hypothesis of whether we can harness the microbiota to improve health outcomes in people with HIV. RESULTS: Here, we review the multifaceted role of the gut microbiome in HIV/SIV disease progression and its potential as a therapeutic target. We explore the complex interplay between gut microbial dysbiosis and systemic inflammation, highlighting the potential for microbiome-based therapeutics to open new avenues in HIV management. These include exploring the efficacy of probiotics, prebiotics, fecal microbiota transplantation, and targeted dietary modifications. We also address the challenges inherent in this research area, such as the difficulty in inducing long-lasting microbiome alterations and the complexities of study designs, including variations in probiotic strains, donor selection for FMT, antibiotic conditioning regimens, and the hurdles in translating findings into clinical practice. Finally, we speculate on future directions for this rapidly evolving field, emphasizing the need for a more granular understanding of microbiome-immune interactions, the development of personalized microbiome-based therapies, and the application of novel technologies to identify potential therapeutic agents. CONCLUSIONS: Our review underscores the importance of the gut microbiome in HIV/SIV disease and its potential as a target for innovative therapeutic strategies.


Assuntos
Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Infecções por HIV , Probióticos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Disbiose/terapia , Disbiose/microbiologia , Humanos , Infecções por HIV/microbiologia , Infecções por HIV/terapia , Infecções por HIV/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Probióticos/uso terapêutico , Animais , Prebióticos/administração & dosagem , HIV/fisiologia
15.
Animal ; 18(6): 101180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823282

RESUMO

In recent years, the significant impact of ruminants on methane emissions has garnered international attention. While dietary strategies have been implemented to solve this issue, probiotics gained the attention of researchers due to their sustainability. However, it is challenging to ascertain their effectiveness as an extensive range of strains and doses have been reported in the literature. Hence, the objective of this experiment was to perform a meta-analysis of probiotic interventions aiming to reduce ruminal methane emissions from cattle. From 362 articles retrieved from scientific databases, 85 articles were assessed independently by two reviewers, and 20 articles representing 49 comparisons were found eligible for meta-analysis. In each study, data such as mean, SD, and sample sizes of both the control and probiotic intervention groups were extracted. The outcomes of interest were methane emission, methane yield, and methane intensity. For the meta-analysis, effect sizes were pooled using a fixed effect or a random effect model depending on the heterogeneity. Afterward, sensitivity analyses were conducted to confirm the robustness of the findings. Overall pooled standardized mean differences (SMDs) with their confidence intervals (CIs) did not detect significant differences in methane emission (SMD = -0.04; 95% CI = -0.18-0.11; P = 0.632), methane yield (SMD = -0.08; 95% CI = -0.24-0.07; P = 0.291), and methane intensity (SMD = -0.22; 95% CI = -0.50-0.07; P = 0.129) between cattle supplemented with probiotics and the control group. However, subgroup analyses revealed that multiple-strain bacterial probiotics (SMD = -0.36; 95% CI = -0.62 to -0.11; P = 0.005), specifically the combination of bacteria involved in reductive acetogenesis and propionate production (SMD = -0.71; 95% CI = -1.04 to -0.36; P = 0.001), emerged as better interventions. Likewise, crossbreeds (SMD = -0.48; 95% CI = -0.78 to -0.18; P = 0.001) exhibited a more favorable response to the treatments. Furthermore, meta-regression demonstrated that longer periods of supplementation led to significant reductions in methane emissions (P = 0.001), yield (P = 0.032), and intensity (P = 0.012) effect sizes. Overall, the results of the current study suggest that cattle responses to probiotic interventions are highly dependent on the probiotic category. Therefore, extended trials performed with probiotics containing multiple bacterial strains are showing the most promising results. Ideally, further trials focusing on the use of probiotics to reduce ruminal methane in cattle should be conducted to complete the available literature.


Assuntos
Metano , Probióticos , Rúmen , Animais , Metano/metabolismo , Bovinos , Probióticos/administração & dosagem , Probióticos/farmacologia , Rúmen/metabolismo , Ração Animal/análise , Dieta/veterinária , Criação de Animais Domésticos/métodos
16.
Life Sci ; 350: 122784, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848939

RESUMO

Calcium is a secondary messenger that interacts with several cellular proteins, regulates various physiological processes, and plays a role in diseases such as viral infections. Next-generation probiotics and live biotherapeutic products are linked to the regulation of intracellular calcium levels. Some viruses can manipulate calcium channels, pumps, and membrane receptors to alter calcium influx and promote virion production and release. In this study, we examined the use of bacteria for the prevention and treatment of viral diseases, such as coronavirus of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination programs have helped reduce disease severity; however, there is still a lack of well-recognized drug regimens for the clinical management of COVID-19. SARS-CoV-2 interacts with the host cell calcium (Ca2+), manipulates proteins, and disrupts Ca2+ homeostasis. This article explores how viruses exploit, create, or exacerbate calcium imbalances, and the potential role of probiotics in mitigating viral infections by modulating calcium signaling. Pharmacological strategies have been developed to prevent viral replication and block the calcium channels that serve as viral receptors. Alternatively, probiotics may interact with cellular calcium influx, such as Lactobacillus spp. The interaction between Akkermansia muciniphila and cellular calcium homeostasis is evident. A scientific basis for using probiotics to manipulate calcium channel activity needs to be established for the treatment and prevention of viral diseases while maintaining calcium homeostasis. In this review article, we discuss how intracellular calcium signaling can affect viral replication and explore the potential therapeutic benefits of probiotics.


Assuntos
COVID-19 , Cálcio , Probióticos , SARS-CoV-2 , Probióticos/uso terapêutico , Probióticos/farmacologia , Humanos , COVID-19/metabolismo , COVID-19/virologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
17.
Arch Microbiol ; 206(7): 306, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878076

RESUMO

In an age of cutting-edge sequencing methods and worldwide endeavors such as The Human Microbiome Project and MetaHIT, the human microbiome stands as a complex and diverse community of microorganisms. A central theme in current scientific inquiry revolves around reinstating a balanced microbial composition, referred to as "eubiosis," as a targeted approach for treating vast array of diseases. Vaginal Microbiota Transplantation (VMT), inspired by the success of fecal microbiota transplantation, emerges as an innovative therapy addressing vaginal dysbacteriosis by transferring the complete microbiota from a healthy donor. Antibiotics, while effective, pose challenges with adverse effects, high recurrence rates, and potential harm to beneficial Lactobacillus strains. Continued antibiotic usage also sparks worries regarding the development of resistant strains. Probiotics, though showing promise, exhibit inconsistency in treating multifactorial diseases, and concerns linger about their suitability for diverse genetic backgrounds. Given the recurrent challenges associated with antibiotic and probiotic treatments, VMT emerges as an imperative alternative, offering a unique and promising avenue for efficiently and reliably managing vaginal dysbiosis among a majority of women. This review critically evaluates findings from both animal and human studies, offering nuanced insights into the efficacy and challenges of VMT. An extensive analysis of clinical trials, provides a current overview of ongoing and completed trials, shedding light on the evolving clinical landscape and therapeutic potential of VMT. Delving into the origins, mechanisms, and optimized protocols of VMT, the review underscores the imperative for sustained research efforts to advance this groundbreaking gynecological therapy.


Assuntos
Disbiose , Microbiota , Probióticos , Vagina , Animais , Feminino , Humanos , Antibacterianos/uso terapêutico , Disbiose/microbiologia , Disbiose/terapia , Lactobacillus , Probióticos/administração & dosagem , Vagina/microbiologia
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 867-875, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38862444

RESUMO

OBJECTIVE: To prepare a postbiotic using soybean fermentation product of Lactobacillus paracasei TK1501 and evaluate its inhibitory effect against Helicobacter pylori (Hp) infection in mice. METHODS: L. paracasei TK1501 was cultured for 32 h at 37 ℃ in an anaerobic condition for solid substrate fermentation with a solid to water ratio of 1:1.5 in the substrate and an inoculation density of 5×107 CFU/mL. The postbiotic was isolated and purified using macroporous resin XAD-16N adsorption, cation exchange chromatography and HPLC, and its stability and antibacterial activity were assessed. The inhibitory effect of this postbiotic against Hp infection was evaluated in a mouse model with gastric mucosal Hp infection, which were treated with the postbiotic via gavage for 4 weeks at the dose of 0.02 or 0.1 mL. Serum levels of TNF-α and IL-1ß of the mice were analyzed after the treatments, and gastric tissues of the mice were collected for HE staining. RESULTS: L. paracasei TK1501 postbiotic could be easily degraded by protease and had good thermal stability and tolerance to exposures to acid, base, and organic solvents. In the in vitro experiment, the postbiotic showed strong inhibitory effects in bacterial cultures of Staphylococcus aureus, Hp and other common pathogenic bacteria without obviously affecting the resident bacteria in the digestive tract. In the mouse models, treatment with the postbiotic at the dose of 0.1 mL significantly alleviated Hp infection and lowered the serum levels of TNF-α and IL-1ß of the mice. CONCLUSION: L. paracasei TK1501 postbiotic has strong inhibitory effects on Hp and Staphylococcus aureus but not on normal intestinal flora in mice.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Lacticaseibacillus paracasei , Animais , Camundongos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Probióticos , Fermentação , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Mucosa Gástrica/microbiologia , Glycine max/química , Glycine max/microbiologia , Antibacterianos/farmacologia , Modelos Animais de Doenças
19.
BMC Microbiol ; 24(1): 208, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862894

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a serious worldwide public health concern that needs immediate action. Probiotics could be a promising alternative for fighting antibiotic resistance, displaying beneficial effects to the host by combating diseases, improving growth, and stimulating the host immune responses against infection. This study was conducted to evaluate the probiotic, antibacterial, and antibiofilm potential of Streptomyces levis strain HFM-2 isolated from the healthy human gut. RESULTS: In vitro antibacterial activity in the cell-free supernatant of S. levis strain HFM-2 was evaluated against different pathogens viz. K. pneumoniae sub sp. pneumoniae, S. aureus, B. subtilis, VRE, S. typhi, S. epidermidis, MRSA, V. cholerae, M. smegmatis, E. coli, P. aeruginosa and E. aerogenes. Further, the ethyl acetate extract from S. levis strain HFM-2 showed strong biofilm inhibition against S. typhi, K. pneumoniae sub sp. pneumoniae, P. aeruginosa and E. coli. Fluorescence microscopy was used to detect biofilm inhibition properties. MIC and MBC values of EtOAc extract were determined at 500 and 1000 µg/mL, respectively. Further, strain HFM-2 showed high tolerance in gastric juice, pancreatin, bile, and at low pH. It exhibited efficient adhesion properties, displaying auto-aggregation (97.0%), hydrophobicity (95.71%, 88.96%, and 81.15% for ethyl acetate, chloroform and xylene, respectively), and showed 89.75%, 86.53%, 83.06% and 76.13% co-aggregation with S. typhi, MRSA, S. pyogenes and E. coli, respectively after 60 min of incubation. The S. levis strain HFM-2 was susceptible to different antibiotics such as tetracycline, streptomycin, kanamycin, ciprofloxacin, erythromycin, linezolid, meropenem, amikacin, gentamycin, clindamycin, moxifloxacin and vancomycin, but resistant to ampicillin and penicillin G. CONCLUSION: The study shows that S. levis strain HFM-2 has significant probiotic properties such as good viability in bile, gastric juice, pancreatin environment, and at low pH; proficient adhesion properties, and antibiotic susceptibility. Further, the EtOAc extract of Streptomyces levis strain HFM-2 has a potent antibiofilm and antibacterial activity against antibacterial-resistant clinical pathogens.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Probióticos , Streptomyces , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Probióticos/farmacologia , Streptomyces/fisiologia , Streptomyces/classificação , Streptomyces/isolamento & purificação , Streptomyces/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/classificação , Trato Gastrointestinal/microbiologia
20.
Front Cell Infect Microbiol ; 14: 1384939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863829

RESUMO

The novel coronavirus disease 2019 (COVID-19) pandemic outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has garnered unprecedented global attention. It caused over 2.47 million deaths through various syndromes such as acute respiratory distress, hypercoagulability, and multiple organ failure. The viral invasion proceeds through the ACE2 receptor, expressed in multiple cell types, and in some patients caused serious damage to tissues, organs, immune cells, and the microbes that colonize the gastrointestinal tract (GIT). Some patients who survived the SARS-CoV-2 infection have developed months of persistent long-COVID-19 symptoms or post-acute sequelae of COVID-19 (PASC). Diagnosis of these patients has revealed multiple biological effects, none of which are mutually exclusive. However, the severity of COVID-19 also depends on numerous comorbidities such as obesity, age, diabetes, and hypertension and care must be taken with respect to other multiple morbidities, such as host immunity. Gut microbiota in relation to SARS-CoV-2 immunopathology is considered to evolve COVID-19 progression via mechanisms of biochemical metabolism, exacerbation of inflammation, intestinal mucosal secretion, cytokine storm, and immunity regulation. Therefore, modulation of gut microbiome equilibrium through food supplements and probiotics remains a hot topic of current research and debate. In this review, we discuss the biological complications of the physio-pathological effects of COVID-19 infection, GIT immune response, and therapeutic pharmacological strategies. We also summarize the therapeutic targets of probiotics, their limitations, and the efficacy of preclinical and clinical drugs to effectively inhibit the spread of SARS-CoV-2.


Assuntos
COVID-19 , Disbiose , Microbioma Gastrointestinal , SARS-CoV-2 , COVID-19/imunologia , COVID-19/complicações , COVID-19/terapia , Humanos , SARS-CoV-2/imunologia , Síndrome de COVID-19 Pós-Aguda , Probióticos/uso terapêutico , Trato Gastrointestinal/microbiologia , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...