Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.118
Filtrar
1.
Eur J Med Res ; 29(1): 309, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831471

RESUMO

The long non-coding RNA (lncRNA) Small Nucleolar RNA Host Gene 4 (SNHG4) has been demonstrated to be significantly downregulated in various inflammatory conditions, yet its role in chronic obstructive pulmonary disease (COPD) remains elusive. This study aims to elucidate the biological function of SNHG4 in COPD and to unveil its potential molecular targets. Our findings reveal that both SNHG4 and Four and a Half LIM Domains 1 (FHL1) were markedly downregulated in COPD, whereas microRNA-409-3p (miR-409-3p) was upregulated. Importantly, SNHG4 exhibited a negative correlation with inflammatory markers in patients with COPD, but a positive correlation with forced expiratory volume in 1s percentage (FEV1%). SNHG4 distinguished COPD patients from non-smokers with high sensitivity, specificity, and accuracy. Overexpression of SNHG4 ameliorated cigarette smoke extract (CSE)-mediated inflammation, apoptosis, oxidative stress, and airway remodeling in 16HBE bronchial epithelial cells. These beneficial effects of SNHG4 overexpression were reversed by the overexpression of miR-409-3p or the silencing of FHL1. Mechanistically, SNHG4 competitively bound to miR-409-3p, mediating the expression of FHL1, and consequently improving inflammation, apoptosis, oxidative stress, and airway remodeling in 16HBE cells. Additionally, SNHG4 regulated the miR-409-3p/FHL1 axis to inhibit the activation of the mitogen-activated protein kinase (MAPK) pathway induced by CSE. In a murine model of COPD, knockdown of SNHG4 exacerbated CSE-induced pulmonary inflammation, apoptosis, and oxidative stress. In summary, our data affirm that SNHG4 mitigates pulmonary inflammation, apoptosis, and oxidative damage mediated by COPD through the regulation of the miR-409-3p/FHL1 axis.


Assuntos
Remodelação das Vias Aéreas , Apoptose , Proliferação de Células , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/genética , Remodelação das Vias Aéreas/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Proliferação de Células/genética , Animais , Camundongos , Masculino , Sistema de Sinalização das MAP Quinases/genética , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Inflamação/metabolismo , Inflamação/genética , Feminino , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Pessoa de Meia-Idade , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Endogâmicos C57BL
2.
J Exp Clin Cancer Res ; 43(1): 169, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880883

RESUMO

BACKGROUND: Cancer is characterized by dysregulated cellular metabolism. Thus, understanding the mechanisms underlying these metabolic alterations is important for developing targeted therapies. In this study, we investigated the pro-tumoral effect of PDZ and LIM domain 2 (PDLIM2) downregulation in lung cancer growth and its association with the accumulation of mitochondrial ROS, oncometabolites and the activation of hypoxia-inducible factor-1 (HIF-1) α in the process. METHODS: Databases and human cancer tissue samples were analyzed to investigate the roles of PDLIM2 and HIF-1α in cancer growth. DNA microarray and gene ontology enrichment analyses were performed to determine the cellular functions of PDLIM2. Seahorse assay, flow cytometric analysis, and confocal microscopic analysis were employed to study mitochondrial functions. Oncometabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). A Lewis lung carcinoma (LLC) mouse model was established to assess the in vivo function of PDLIM2 and HIF-1α. RESULTS: The expression of PDLIM2 was downregulated in lung cancer, and this downregulation correlated with poor prognosis in patients. PDLIM2 highly regulated genes associated with mitochondrial functions. Mechanistically, PDLIM2 downregulation resulted in NF-κB activation, impaired expression of tricarboxylic acid (TCA) cycle genes particularly the succinate dehydrogenase (SDH) genes, and mitochondrial dysfunction. This disturbance contributed to the accumulation of succinate and other oncometabolites, as well as the buildup of mitochondrial reactive oxygen species (mtROS), leading to the activation of hypoxia-inducible factor 1α (HIF-1α). Furthermore, the expression of HIF-1α was increased in all stages of lung cancer. The expression of PDLIM2 and HIF-1α was reversely correlated in lung cancer patients. In the animal study, the orally administered HIF-1α inhibitor, PX-478, significantly reduces PDLIM2 knockdown-promoted tumor growth. CONCLUSION: These findings shed light on the complex action of PDLIM2 on mitochondria and HIF-1α activities in lung cancer, emphasizing the role of HIF-1α in the tumor-promoting effect of PDLIM2 downregulation. Additionally, they provide new insights into a strategy for precise targeted treatment by suggesting that HIF-1α inhibitors may serve as therapy for lung cancer patients with PDLIM2 downregulation.


Assuntos
Regulação para Baixo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas com Domínio LIM , Mitocôndrias , Espécies Reativas de Oxigênio , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino
3.
Arch Dermatol Res ; 316(7): 401, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878083

RESUMO

BACKGROUND: The adhesive properties of vitiligo melanocytes have decreased under oxidative stress., cytoskeleton proteins can control cell adhesion. Paeoniflorin (PF) was proved to resist hydrogen peroxide (H2O2)-induced oxidative stress in melanocytes via nuclear factorE2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. OBJECTIVES: This study was to investigate whether PF exerts anti-oxidative effect through influencing cytoskeleton markers or potential signaling pathway. METHODS: Human Oxidative Stress Plus array was used to identify the differentially expressed genes between H2O2 + PF group and H2O2 only group, in PIG1 and PIG3V melanocyte cell lines respectively. Western blotting was used to verify the PCR array results and to test the protein expression levels of cytoskeleton markers including Ras homolog family member A (RhoA), Rho-associated kinase 1 (ROCK1) and antioxidative marker Nrf2. Small interfering RNA was used to knock down PDZ and LIM domain 1 (PDLIM1). RESULTS: PF increased the expressions of PDLIM1, RhoA and ROCK1 in H2O2-induced PIG1, in contrast, decreased the expressions of PDLIM1 and ROCK1 in H2O2-induced PIG3V. Knockdown of PDLIM1 increased the expressions of RhoA and Nrf2 in PF-pretreated H2O2-induced PIG1, and ROCK1 and Nrf2 in PF-pretreated H2O2-induced PIG3V. CONCLUSIONS: PF regulates RhoA/ROCK1 and Nrf2 pathways in PDLIM1-dependent or independent manners in H2O2-induced melanocytes. In PIG1, PF promotes PDLIM1 to inhibit RhoA/ROCK1 pathway or activates Nrf2/HO-1 pathway, separately. In PIG3V, PF directly downregulates ROCK1 in PDLIM1-independent manner or upregulates Nrf2 dependent of PDLIM1.


Assuntos
Glucosídeos , Peróxido de Hidrogênio , Proteínas com Domínio LIM , Melanócitos , Monoterpenos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Fator 2 Relacionado a NF-E2/metabolismo , Quinases Associadas a rho/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Humanos , Glucosídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Peróxido de Hidrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Monoterpenos/farmacologia , Linhagem Celular
4.
Nat Commun ; 15(1): 4945, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858386

RESUMO

Single administration of low-dose ketamine has both acute and sustained anti-depressant effects. Sustained effect is associated with restoration of glutamatergic synapses in medial prefrontal cortic (mFPC) neurons. Ketamine induced profound changes in a number of molecular pathways in a mouse model for chronic stress. Cell-cell communication analyses predicted that planar-cell-polarity (PCP) signaling was decreased after chronic administration of corticosterone but increased following ketamine administration in most of the excitatory neurons. Similar decrease of PCP signaling in excitatory neurons was predicted in dorsolateral prefrontal cortical (dl-PFC) neurons of patients with major depressive disorder (MDD). We showed that the basolateral amygdala (BLA)-projecting infralimbic prefrontal cortex (IL PFC) neurons regulate immobility time in the tail suspension test and food consumption. Conditionally knocking out Celsr2 and Celsr3 or Prickle2 in the BLA-projecting IL PFC neurons abolished ketamine-induced synapse restoration and behavioral remission. Therefore, PCP proteins in IL PFC-BLA neurons mediate synapse restoration induced by of low-dose ketamine.


Assuntos
Modelos Animais de Doenças , Ketamina , Neurônios , Córtex Pré-Frontal , Sinapses , Animais , Ketamina/farmacologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos , Masculino , Humanos , Polaridade Celular/efeitos dos fármacos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Camundongos Knockout , Estresse Psicológico , Corticosterona , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Ácido Glutâmico/metabolismo , Antidepressivos/farmacologia
5.
Proc Natl Acad Sci U S A ; 121(24): e2320867121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838015

RESUMO

O-GlcNAcase (OGA) is the only human enzyme that catalyzes the hydrolysis (deglycosylation) of O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation) from numerous protein substrates. OGA has broad implications in many challenging diseases including cancer. However, its role in cell malignancy remains mostly unclear. Here, we report that a cancer-derived point mutation on the OGA's noncatalytic stalk domain aberrantly modulates OGA interactome and substrate deglycosylation toward a specific set of proteins. Interestingly, our quantitative proteomic studies uncovered that the OGA stalk domain mutant preferentially deglycosylated protein substrates with +2 proline in the sequence relative to the O-GlcNAcylation site. One of the most dysregulated substrates is PDZ and LIM domain protein 7 (PDLIM7), which is associated with the tumor suppressor p53. We found that the aberrantly deglycosylated PDLIM7 suppressed p53 gene expression and accelerated p53 protein degradation by promoting the complex formation with E3 ubiquitin ligase MDM2. Moreover, deglycosylated PDLIM7 significantly up-regulated the actin-rich membrane protrusions on the cell surface, augmenting the cancer cell motility and aggressiveness. These findings revealed an important but previously unappreciated role of OGA's stalk domain in protein substrate recognition and functional modulation during malignant cell progression.


Assuntos
Citoesqueleto , Proteínas com Domínio LIM , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Citoesqueleto/metabolismo , Acetilglucosamina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Glicosilação , Hidrólise , Mutação , Movimento Celular , Antígenos de Neoplasias , Hialuronoglucosaminidase , Histona Acetiltransferases
6.
Mol Med Rep ; 29(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38695236

RESUMO

During hematopoiesis, megakaryocytic erythroid progenitors (MEPs) differentiate into megakaryocytic or erythroid lineages in response to specific transcriptional factors, yet the regulatory mechanism remains to be elucidated. Using the MEP­like cell line HEL western blotting, RT­qPCR, lentivirus­mediated downregulation, flow cytometry as well as chromatin immunoprecipitation (ChIp) assay demonstrated that the E26 transformation­specific (ETS) transcription factor friend leukemia integration factor 1 (Fli­1) inhibits erythroid differentiation. The present study using these methods showed that while FLI1­mediated downregulation of GATA binding protein 1 (GATA1) suppresses erythropoiesis, its direct transcriptional induction of GATA2 promotes megakaryocytic differentiation. GATA1 is also involved in megakaryocytic differentiation through regulation of GATA2. By contrast to FLI1, the ETS member erythroblast transformation­specific­related gene (ERG) negatively controls GATA2 and its overexpression through exogenous transfection blocks megakaryocytic differentiation. In addition, FLI1 regulates expression of LIM Domain Binding 1 (LDB1) during erythroid and megakaryocytic commitment, whereas shRNA­mediated depletion of LDB1 downregulates FLI1 and GATA2 but increases GATA1 expression. In agreement, LDB1 ablation using shRNA lentivirus expression blocks megakaryocytic differentiation and modestly suppresses erythroid maturation. These results suggested that a certain threshold level of LDB1 expression enables FLI1 to block erythroid differentiation. Overall, FLI1 controlled the commitment of MEP to either erythroid or megakaryocytic lineage through an intricate regulation of GATA1/GATA2, LDB1 and ERG, exposing multiple targets for cell fate commitment and therapeutic intervention.


Assuntos
Diferenciação Celular , Células Eritroides , Megacariócitos , Humanos , Diferenciação Celular/genética , Linhagem Celular , Células Eritroides/metabolismo , Células Eritroides/citologia , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Megacariócitos/metabolismo , Megacariócitos/citologia , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Regulador Transcricional ERG/metabolismo , Regulador Transcricional ERG/genética
7.
J Agric Food Chem ; 72(21): 12240-12250, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764183

RESUMO

LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.


Assuntos
Processamento Alternativo , Galinhas , Proteínas com Domínio LIM , Desenvolvimento Muscular , Músculo Esquelético , Animais , Galinhas/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Músculo Esquelético/crescimento & desenvolvimento , Desenvolvimento Muscular/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Mioblastos/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Proteínas Aviárias/química , Diferenciação Celular , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química
8.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G25-G35, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38713618

RESUMO

Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake, and excretion were studied in mice deficient for low-density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high-fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial CaCo-2 cells. When compared with diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdown human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared with Ldlr-/- mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.NEW & NOTEWORTHY We here uncovered LASP1 as a novel regulator of the shuttling of the sterol transporter NPC1L1 to the cell surface in enterocytes to control cholesterol absorption. Accordingly, LASP1-deficient mice displayed lowered serum cholesterol levels under dietary cholesterol supplementation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Colesterol , Proteínas do Citoesqueleto , Proteínas com Domínio LIM , Proteínas de Membrana Transportadoras , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Células CACO-2 , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Colesterol/metabolismo , Colesterol/sangue , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Receptores de LDL/metabolismo , Receptores de LDL/genética , Mucosa Intestinal/metabolismo , Enterócitos/metabolismo , Absorção Intestinal , Dieta Hiperlipídica , Proteínas de Homeodomínio
9.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719752

RESUMO

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Assuntos
Adesão Celular , Movimento Celular , Fibroblastos , Adesões Focais , Proteínas com Domínio LIM , Septinas , Humanos , Septinas/metabolismo , Septinas/genética , Movimento Celular/genética , Fibroblastos/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Adesões Focais/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Pseudópodes/metabolismo , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Actinas/metabolismo , Fibras de Estresse/metabolismo
10.
J Biol Chem ; 300(5): 107254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569934

RESUMO

Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.


Assuntos
Conectina , Proteínas com Domínio LIM , Proteínas Musculares , Miócitos Cardíacos , Proteínas do Tecido Nervoso , Proteínas Nucleares , Sarcômeros , Animais , Humanos , Camundongos , Ratos , Conectina/metabolismo , Conectina/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Sarcômeros/metabolismo , Fatores de Transcrição
11.
J Mol Cell Cardiol ; 191: 40-49, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604403

RESUMO

The heart has the ability to detect and respond to changes in mechanical load through a process called mechanotransduction. In this study, we focused on investigating the role of the cardiac-specific N2B element within the spring region of titin, which has been proposed to function as a mechanosensor. To assess its significance, we conducted experiments using N2B knockout (KO) mice and wildtype (WT) mice, subjecting them to three different conditions: 1) cardiac pressure overload induced by transverse aortic constriction (TAC), 2) volume overload caused by aortocaval fistula (ACF), and 3) exercise-induced hypertrophy through swimming. Under conditions of pressure overload (TAC), both genotypes exhibited similar hypertrophic responses. In contrast, WT mice displayed robust left ventricular hypertrophy after one week of volume overload (ACF), while the KO mice failed to undergo hypertrophy and experienced a high mortality rate. Similarly, swim exercise-induced hypertrophy was significantly reduced in the KO mice. RNA-Seq analysis revealed an abnormal ß-adrenergic response to volume overload in the KO mice, as well as a diminished response to isoproterenol-induced hypertrophy. Because it is known that the N2B element interacts with the four-and-a-half LIM domains 1 and 2 (FHL1 and FHL2) proteins, both of which have been associated with mechanotransduction, we evaluated these proteins. Interestingly, while volume-overload resulted in FHL1 protein expression levels that were comparable between KO and WT mice, FHL2 protein levels were reduced by over 90% in the KO mice compared to WT. This suggests that in response to volume overload, FHL2 might act as a signaling mediator between the N2B element and downstream signaling pathways. Overall, our study highlights the importance of the N2B element in mechanosensing during volume overload, both in physiological and pathological settings.


Assuntos
Conectina , Mecanotransdução Celular , Camundongos Knockout , Animais , Camundongos , Conectina/metabolismo , Conectina/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Condicionamento Físico Animal , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Modelos Animais de Doenças , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas Quinases , Peptídeos e Proteínas de Sinalização Intracelular
12.
Cells ; 13(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38667334

RESUMO

Meat yield, determined by muscle growth and development, is an important economic trait for the swine industry and a focus of research in animal genetics and breeding. PDZ and LIM domain 5 (PDLIM5) are cytoskeleton-related proteins that play key roles in various tissues and cells. These proteins have multiple isoforms, primarily categorized as short (PDLIM5-short) and long (PDLIM5-long) types, distinguished by the absence and presence of an LIM domain, respectively. However, the expression patterns of swine PDLIM5 isoforms and their regulation during porcine skeletal muscle development remain largely unexplored. We observed that PDLIM5-long was expressed at very low levels in pig muscles and that PDLIM5-short and total PDLIM5 were highly expressed in the muscles of slow-growing pigs, suggesting that PDLIM5-short, the dominant transcript in pigs, is associated with a slow rate of muscle growth. PDLIM5-short suppressed myoblast proliferation and myogenic differentiation in vitro. We also identified two single nucleotide polymorphisms (-258 A > T and -191 T > G) in the 5' flanking region of PDLIM5, which influenced the activity of the promoter and were associated with muscle growth rate in pigs. In summary, we demonstrated that PDLIM5-short negatively regulates myoblast proliferation and differentiation, providing a theoretical basis for improving pig breeding programs.


Assuntos
Proteínas com Domínio LIM , Desenvolvimento Muscular , Animais , Desenvolvimento Muscular/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Suínos , Proliferação de Células/genética , Diferenciação Celular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Mioblastos/metabolismo , Mioblastos/citologia , Regiões Promotoras Genéticas/genética
13.
Cell Signal ; 119: 111155, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565413

RESUMO

BACKGROUND: Esophageal cancer (EC) is highly ranked among all cancers in terms of its incidence and mortality rates. MicroRNAs (miRNAs) are considered to play key regulatory parts in EC. Multiple research studies have indicated the involvement of miR-3682-3p and four and a half LIM domain protein 1 (FHL1) in the achievement of tumors. The aim of this research was to clarify the significance of these genes and their possible molecular mechanism in EC. METHODS: Data from a database and the tissue microarray were made to analyze the expression and clinical significance of miR-3682-3p or FHL1 in EC. Reverse transcription quantitative PCR and Western blotting were used to detect the expression levels of miR-3682-3p and FHL1 in EC cells. CCK8, EdU, wound healing, Transwell, flow cytometry, and Western blotting assays were performed to ascertain the biological roles of miR-3682-3p and FHL1 in EC cells. To confirm the impact of miR-3682-3p in vivo, a subcutaneous tumor model was created in nude mice. The direct interaction between miR-3682-3p and FHL1 was demonstrated through a luciferase assay, and the western blotting technique was employed to assess the levels of crucial proteins within the Wnt/ß-catenin pathway. RESULTS: The noticeable increase in the expression of miR-3682-3p and the decrease in the expression of FHL1 were observed, which correlated with a negative impact on the patients' overall survival. Upregulation of miR-3682-3p expression promoted the growth and metastasis of EC, while overexpression of FHL1 partially reversed these effects. Finally, miR-3682-3p motivates the Wnt/ß-catenin signal transduction by directly targeting FHL1. CONCLUSION: MiR-3682-3p along the FHL1 axis activated the Wnt/ß-catenin signaling pathway and thus promoted EC malignancy.


Assuntos
Proliferação de Células , Neoplasias Esofágicas , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Camundongos Nus , MicroRNAs , Proteínas Musculares , Via de Sinalização Wnt , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linhagem Celular Tumoral , Camundongos , Masculino , Feminino , Progressão da Doença , Pessoa de Meia-Idade , beta Catenina/metabolismo , Camundongos Endogâmicos BALB C , Movimento Celular/genética
14.
Invest Ophthalmol Vis Sci ; 65(4): 43, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683564

RESUMO

Purpose: Complement dysregulation is a key component in the pathogenesis of age-related macular degeneration (AMD) and related diseases such as early-onset macular drusen (EOMD). Although genetic variants of complement factor H (CFH) are associated with AMD risk, the impact of CFH and factor H-like protein 1 (FHL-1) expression on local complement activity in human retinal pigment epithelium (RPE) remains unclear. Methods: We identified a novel CFH variant in a family with EOMD and generated patient induced pluripotent stem cell (iPSC)-derived RPE cells. We assessed CFH and FHL-1 co-factor activity through C3b breakdown assays and measured complement activation by immunostaining for membrane attack complex (MAC) formation. Expression of CFH, FHL-1, local alternative pathway (AP) components, and regulators of complement activation (RCA) in EOMD RPE cells was determined by quantitative PCR, western blot, and immunostaining. Isogenic EOMD (cEOMD) RPE was generated using CRISPR/Cas9 gene editing. Results: The CFH variant (c.351-2A>G) resulted in loss of CFH and FHL-1 expression and significantly reduced CFH and FHL-1 protein expression (∼50%) in EOMD iPSC RPE cells. These cells exhibited increased MAC deposition upon exposure to normal human serum. Under inflammatory or oxidative stress conditions, CFH and FHL-1 expression in EOMD RPE cells paralleled that of controls, whereas RCA expression, including MAC formation inhibitors, was elevated. CRISPR/Cas9 correction restored CFH/FHL-1 expression and mitigated alternative pathway complement activity in cEOMD RPE cells. Conclusions: Identification of a novel CFH variant in patients with EOMD resulting in reduced CFH and FHL-1 and increased local complement activity in EOMD iPSC RPE supports the involvement of CFH haploinsufficiency in EOMD pathogenesis.


Assuntos
Fator H do Complemento , Haploinsuficiência , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Degeneração Macular , Proteínas Musculares , Epitélio Pigmentado da Retina , Humanos , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Inativadoras do Complemento C3b/genética , Proteínas Inativadoras do Complemento C3b/metabolismo , Ativação do Complemento/genética , Linhagem , Western Blotting , Proteínas do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/genética , Drusas Retinianas/genética , Drusas Retinianas/metabolismo , Pessoa de Meia-Idade
15.
Leukemia ; 38(5): 951-962, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553571

RESUMO

Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1/LMO mouse models, double negative-3 (DN3; CD4-CD8-CD25+CD44-) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle-restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL/LMO patient samples revealed a similar pattern in CD7+CD1a- thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO-induced T-ALL and its clinical implications in therapy failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas com Domínio LIM , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Timo/metabolismo , Timo/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
16.
Viruses ; 16(3)2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38543725

RESUMO

Coronavirus disease 2019 (COVID-19) is an infection caused by SARS-CoV-2. Genome-wide association studies (GWASs) have suggested a strong association of genetic factors with the severity of the disease. However, many of these studies have been completed in European populations, and little is known about the genetic variability of indigenous peoples' underlying infection by SARS-CoV-2. The objective of the study is to investigate genetic variants present in the genes AQP3, ARHGAP27, ELF5L, IFNAR2, LIMD1, OAS1 and UPK1A, selected due to their association with the severity of COVID-19, in a sample of indigenous people from the Brazilian Amazon in order to describe potential new and already studied variants. We performed the complete sequencing of the exome of 64 healthy indigenous people from the Brazilian Amazon. The allele frequency data of the population were compared with data from other continental populations. A total of 66 variants present in the seven genes studied were identified, including a variant with a high impact on the ARHGAP27 gene (rs201721078) and three new variants located in the Amazon Indigenous populations (INDG) present in the AQP3, IFNAR2 and LIMD1 genes, with low, moderate and modifier impact, respectively.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/genética , SARS-CoV-2/genética , Estudo de Associação Genômica Ampla , Frequência do Gene , Povos Indígenas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM
19.
Cancer Immunol Immunother ; 73(4): 69, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430268

RESUMO

BACKGROUND: Investigations elucidating the complex immunological mechanisms involved in colorectal cancer (CRC) and accurately predicting patient outcomes via bulk RNA-Seq analysis have been notably limited. This study aimed to identify the immune status of CRC patients, construct a prognostic model, and identify prognostic signatures via bulk RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq). METHODS: The scRNA-seq data of CRC were downloaded from Gene Expression Omnibus (GEO). The UCSC Xena database was used to obtain bulk RNA-seq data. Differentially expressed gene (DEG), functional enrichment, and random forest analyses were conducted in order to identify core genes associated with colorectal cancer (CRC) that were relevant to prognosis. A molecular immune prediction model was developed using logistic regression after screening features using the least absolute shrinkage and selection operator (LASSO). The differences in immune cell infiltration, mutation, chemotherapeutic drug sensitivity, cellular senescence, and communication between patients who were at high and low risk of CRC according to the predictive model were investigated. The prognostic genes that were closely associated with CRC were identified by random survival forest (RSF) analysis. The expression levels and clinical significance of the hub genes were analyzed in vitro. The LoVo cell line was employed to ascertain the biological role of thyroid hormone receptor-interacting protein 6 (TRIP6). RESULTS: A total of seven main cell subtypes were identified by scRNA-seq analysis. A molecular immune predictive model was constructed based on the risk scores. The risk score was significantly associated with OS, stage, mutation burden, immune cell infiltration, response to immunotherapy, key pathways, and cell-cell communication. The functions of the six hub genes were determined and further utilized to establish a regulatory network. Our findings unequivocally confirmed that TRIP6 upregulation was verified in the CRC samples. After knocking down TRIP6, cell proliferation, migration, and invasion of LoVo cells were inhibited, and apoptosis was promoted. CONCLUSIONS: The molecular predictive model reliably distinguished the immune status of CRC patients. We further revealed that TRIP6 may act as an oncogene in CRC, making it a promising candidate for targeted therapy and as a prognostic marker for CRC.


Assuntos
Neoplasias Colorretais , Imunoterapia , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/terapia , Proteínas com Domínio LIM , Prognóstico , RNA-Seq , Análise de Sequência de RNA , Fatores de Transcrição
20.
Cell Mol Life Sci ; 81(1): 158, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556571

RESUMO

Mutations in cysteine and glycine-rich protein 3 (CSRP3)/muscle LIM protein (MLP), a key regulator of striated muscle function, have been linked to hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) in patients. However, the roles of CSRP3 in heart development and regeneration are not completely understood. In this study, we characterized a novel zebrafish gene-trap line, gSAIzGFFM218A, which harbors an insertion in the csrp3 genomic locus, heterozygous fish served as a csrp3 expression reporter line and homozygous fish served as a csrp3 mutant line. We discovered that csrp3 is specifically expressed in larval ventricular cardiomyocytes (CMs) and that csrp3 deficiency leads to excessive trabeculation, a common feature of CSRP3-related HCM and DCM. We further revealed that csrp3 expression increased in response to different cardiac injuries and was regulated by several signaling pathways vital for heart regeneration. Csrp3 deficiency impeded zebrafish heart regeneration by impairing CM dedifferentiation, hindering sarcomere reassembly, and reducing CM proliferation while aggravating apoptosis. Csrp3 overexpression promoted CM proliferation after injury and ameliorated the impairment of ventricle regeneration caused by pharmacological inhibition of multiple signaling pathways. Our study highlights the critical role of Csrp3 in both zebrafish heart development and regeneration, and provides a valuable animal model for further functional exploration that will shed light on the molecular pathogenesis of CSRP3-related human cardiac diseases.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas com Domínio LIM , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Cisteína/genética , Cisteína/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...