Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.769
Filtrar
1.
Methods Mol Biol ; 2814: 97-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954200

RESUMO

Autophagy is an intracellular clearance and recycling pathway that delivers different types of cargos to lysosomes for degradation. In recent years, autophagy has attracted considerable medical interest, and many different techniques are being developed to study this process in experimental models such as Dictyostelium. Here we describe the use of different autophagic markers in confocal microscopy, in vivo and also in fixed cells. In particular, we describe the use of the GFP-Atg8-RFP-Atg8ΔG marker and the optimization of the GFP-PgkA cleavage assay to detect small differences in autophagy flux.


Assuntos
Autofagia , Dictyostelium , Microscopia Confocal , Dictyostelium/metabolismo , Dictyostelium/fisiologia , Autofagia/fisiologia , Microscopia Confocal/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Lisossomos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
2.
Methods Mol Biol ; 2814: 133-147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954203

RESUMO

Activation processes at the plasma membrane have been studied with life-cell imaging using GFP fused to a protein that binds to a component of the activation process. In this way, PIP3 formation has been monitored with CRAC-GFP, Ras-GTP with RBD-Raf-GFP, and Rap-GTP with Ral-GDS-GFP. The fluorescent sensors translocate from the cytoplasm to the plasma membrane upon activation of the process. Although this translocation assay can provide very impressive images and movies, the method is not very sensitive, and amount of GFP-sensor at the plasma membrane is not linear with the amount of activator. The fluorescence in pixels at the cell boundary is partly coming from the GFP-sensor that is bound to the activated membrane and partly from unbound GFP-sensor in the cytosolic volume of that boundary pixel. The variable and unknown amount of cytosol in boundary pixels causes the low sensitivity and nonlinearity of the GFP-translocation assay. Here we describe a method in which the GFP-sensor is co-expressed with cytosolic-RFP. For each boundary pixels, the RFP fluorescence is used to determine the amount of cytosol of that pixel and is subtracted from the GFP fluorescence of that pixel yielding the amount of GFP-sensor that is specifically associated with the plasma membrane in that pixel. This GRminusRD method using GFP-sensor/RFP is at least tenfold more sensitive, more reproducible, and linear with activator compared to GFP-sensor alone.


Assuntos
Membrana Celular , Proteínas de Fluorescência Verde , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Transporte Proteico , Microscopia de Fluorescência/métodos , Citosol/metabolismo , Animais
3.
Curr Genet ; 70(1): 9, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951203

RESUMO

The ability to regulate the expression of genes is a central tool for the characterization of fungal genes. This is of particular interest to study genes required for specific processes or the effect of genes expressed only under specific conditions. Saccharomycopsis species show a unique property of necrotrophic mycoparasitism that is activated upon starvation. Here we describe the use of the MET17 promoter of S. schoenii as a tool to regulate gene expression based on the availability of methionine. Conditional expression was tested using lacZ and GFP reporter genes. Gene expression could be strongly down-regulated by the addition of methionine or cysteine to the growth medium and upregulated by starvation for methionine. We used X-gal (5-bromo-4-chloro-3-indolyl-ß-d-galactopyranoside) to detect lacZ-expression in plate assays and ONPG (ortho-nitrophenyl-ß-galactopyranoside) as a substrate for ß-galactosidase in liquid-phase assays. For in vivo expression analyses we used fluorescence microscopy for the detection and localization of a MET17-driven histone H4-GFP reporter gene. With these assays we demonstrated the usefulness of the MET17 promoter to regulate expression of genes based on methionine availability. In silico analyses revealed similar promoter motifs as found in MET3 genes of Saccharomyces cerevisiae and Ashbya gossypii. This suggests a regulation of the MET17 promoter by CBF1 and MET31/MET32 in conjunction with the transcriptional activator MET4, which were also identified in the S. schoenii genome.


This article describes the characterization of the S. schoenii MET17 promoter for regulated gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Reporter , Metionina , Regiões Promotoras Genéticas , Metionina/metabolismo , Metionina/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
4.
Arch Microbiol ; 206(7): 336, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954047

RESUMO

Wild-type Lactococcus lactis strain LAC460 secretes prophage-encoded bacteriocin-like lysin LysL, which kills some Lactococcus strains, but has no lytic effect on the producer. LysL carries two N-terminal enzymatic active domains (EAD), and an unknown C-terminus without homology to known domains. This study aimed to determine whether the C-terminus of LysL carries a cell wall binding domain (CBD) for target specificity of LysL. The C-terminal putative CBD region of LysL was fused with His-tagged green fluorescent protein (HGFPuv). The HGFPuv_CBDlysL gene fusion was ligated into the pASG-IBA4 vector, and introduced into Escherichia coli. The fusion protein was produced and purified with affinity chromatography. To analyse the binding of HGFPuv_CBDLysL to Lactococcus cells, the protein was mixed with LysL-sensitive and LysL-resistant strains, including the LysL-producer LAC460, and the fluorescence of the cells was analysed. As seen in fluorescence microscope, HGFPuv_CBDLysL decorated the cell surface of LysL-sensitive L. cremoris MG1614 with green fluorescence, whereas the resistant L. lactis strains LM0230 and LAC460 remained unfluorescent. The fluorescence plate reader confirmed the microscopy results detecting fluorescence only from four tested LysL-sensitive strains but not from 11 tested LysL-resistant strains. Specific binding of HGFPuv_CBDLysL onto the LysL-sensitive cells but not onto the LysL-resistant strains indicates that the C-terminus of LysL contains specific CBD. In conclusion, this report presents experimental evidence of the presence of a CBD in a lactococcal phage lysin. Moreover, the inability of HGFPuv_CBDLysL to bind to the LysL producer LAC460 may partly explain the host's resistance to its own prophage lysin.


Assuntos
Bacteriocinas , Parede Celular , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Parede Celular/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/genética , Bacteriocinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Ligação Proteica
5.
Sci Rep ; 14(1): 15279, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961181

RESUMO

Advanced 3D high-resolution imaging techniques are essential for investigating biological challenges, such as neural circuit analysis and tumor microenvironment in intact tissues. However, the fluorescence signal emitted by endogenous fluorescent proteins in cleared or expanded biological samples gradually diminishes with repeated irradiation and prolonged imaging, compromising its ability to accurately depict the underlying scientific problem. We have developed a strategy to preserve fluorescence in cleared and expanded tissue samples during prolonged high-resolution three-dimensional imaging. We evaluated various compounds at different concentrations to determine their ability to enhance fluorescence intensity and resistance to photobleaching while maintaining the structural integrity of the tissue. Specifically, we investigated the impact of EDTP utilization on GFP, as it has been observed to significantly improve fluorescence intensity, resistance to photobleaching, and maintain fluorescence during extended room temperature storage. This breakthrough will facilitate extended hydrophilic and hydrogel-based clearing and expansion methods for achieving long-term high-resolution 3D imaging of cleared biological tissues by effectively safeguarding fluorescent proteins within the tissue.


Assuntos
Proteínas de Fluorescência Verde , Imageamento Tridimensional , Proteínas de Fluorescência Verde/metabolismo , Animais , Imageamento Tridimensional/métodos , Camundongos , Fotodegradação , Fluorescência
6.
Rapid Commun Mass Spectrom ; 38(18): e9867, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38973066

RESUMO

RATIONALE: mRNA technology has begun to play a significant role in the areas of therapeutic intervention and vaccine development. However, optimizing the mRNA sequence that influences protein expression levels is a resource-intensive and time-consuming process. This study introduces a new method to accelerate the selection of sequences of mRNA for optimal protein expression. METHODS: We designed the mRNA sequences in such a way that a unique peptide barcode, corresponding to each mRNA sequence, is attached to the expressed protein. These barcodes, cleaved off by a protease and simultaneously quantified by mass spectrometry, reflect the protein expression, enabling a parallel analysis. We validated this method using two mRNAs, each with different untranslated regions (UTRs) but encoding enhanced green fluorescence protein (eGFP), and investigated whether the peptide barcodes could analyze the differential eGFP expression levels. RESULTS: The fluorescence intensity of eGFP, a marker of its expression level, has shown noticeable changes between the two UTR sequences in mRNA-transfected cells when measured using flow cytometry. This suggests alterations in the expression level of eGFP due to the influence of different UTR sequences. Furthermore, the quantified amount of peptide barcodes that were released from eGFP showed consistent patterns with these changes. CONCLUSIONS: The experimental findings suggest that peptide barcodes serve as a valuable tool for assessing protein expression levels. The process of mRNA sequence selection, aimed at maximizing protein expression, can be enhanced by the parallel analysis of peptide barcodes using mass spectrometry.


Assuntos
Proteínas de Fluorescência Verde , Peptídeos , RNA Mensageiro , RNA Mensageiro/genética , RNA Mensageiro/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Peptídeos/química , Peptídeos/análise , Peptídeos/genética , Peptídeos/metabolismo , Humanos , Espectrometria de Massas/métodos , Perfilação da Expressão Gênica/métodos
7.
BMC Biotechnol ; 24(1): 44, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926833

RESUMO

BACKGROUND: Mammalian display is an appealing technology for therapeutic antibody development. Despite the advantages of mammalian display, such as full-length IgG display with mammalian glycosylation and its inherent ability to select antibodies with good biophysical properties, the restricted library size and large culture volumes remain challenges. Bxb1 serine integrase is commonly used for the stable genomic integration of antibody genes into mammalian cells, but presently lacks the efficiency required for the display of large mammalian display libraries. To increase the Bxb1 integrase-mediated stable integration efficiency, our study investigates factors that potentially affect the nuclear localization of Bxb1 integrase. METHODS: In an attempt to enhance Bxb1 serine integrase-mediated integration efficiency, we fused various nuclear localization signals (NLS) to the N- and C-termini of the integrase. Concurrently, we co-expressed multiple proteins associated with nuclear transport to assess their impact on the stable integration efficiency of green fluorescent protein (GFP)-encoding DNA and an antibody display cassette into the genome of Chinese hamster ovary (CHO) cells containing a landing pad for Bxb1 integrase-mediated integration. RESULTS: The nucleoplasmin NLS from Xenopus laevis, when fused to the C-terminus of Bxb1 integrase, demonstrated the highest enhancement in stable integration efficiency among the tested NLS fusions, exhibiting over a 6-fold improvement compared to Bxb1 integrase lacking an NLS fusion. Subsequent additions of extra NLS fusions to the Bxb1 integrase revealed an additional 131% enhancement in stable integration efficiency with the inclusion of two copies of C-terminal nucleoplasmin NLS fusions. Further improvement was achieved by co-expressing the Ran GTPase-activating protein (RanGAP). Finally, to validate the applicability of these findings to more complex proteins, the DNA encoding the membrane-bound clinical antibody abrilumab was stably integrated into the genome of CHO cells using Bxb1 integrase with two copies of C-terminal nucleoplasmin NLS fusions and co-expression of RanGAP. This approach demonstrated over 14-fold increase in integration efficiency compared to Bxb1 integrase lacking an NLS fusion. CONCLUSIONS: This study demonstrates that optimizing the NLS sequence fusion for Bxb1 integrase significantly enhances the stable genomic integration efficiency. These findings provide a practical approach for constructing larger libraries in mammalian cells through the stable integration of genes into a genomic landing pad.


Assuntos
Cricetulus , Integrases , Sinais de Localização Nuclear , Animais , Células CHO , Integrases/metabolismo , Integrases/genética , Sinais de Localização Nuclear/metabolismo , Sinais de Localização Nuclear/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Serina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Cricetinae , Xenopus laevis/metabolismo
8.
BMC Vet Res ; 20(1): 275, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918814

RESUMO

Transgene silencing provides a significant challenge in animal model production via gene engineering using viral vectors or transposons. Selecting an appropriate strategy, contingent upon the species is crucial to circumvent transgene silencing, necessitating long-term observation of in vivo gene expression. This study employed the PiggyBac transposon to create a GFP rat model to address transgene silencing in rats. Surprisingly, transgene silencing occurred while using the CAG promoter, contrary to conventional understanding, whereas the Ef1α promoter prevented silencing. GFP expression remained stable through over five generations, confirming efficacy of the Ef1α promoter for long-term protein expression in rats. Additionally, GFP expression was consistently maintained at the cellular level in various cellular sources produced from the GFP rats, thereby validating the in vitro GFP expression of GFP rats. Whole-genome sequencing identified a stable integration site in Akap1 between exons 1 and 2, mitigating sequence-independent mechanism-mediated transgene silencing. This study established an efficient method for producing transgenic rat models using PiggyBac transposon. Our GFP rats represent the first model to exhibit prolonged expression of foreign genes over five generations, with implications for future research in gene-engineered rat models.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Fluorescência Verde , Ratos Transgênicos , Animais , Elementos de DNA Transponíveis/genética , Proteínas de Fluorescência Verde/genética , Ratos , Técnicas de Transferência de Genes/veterinária , Transgenes , Masculino , Inativação Gênica , Feminino , Regiões Promotoras Genéticas
9.
Protein Eng Des Sel ; 372024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38836499

RESUMO

Protein developability is requisite for use in therapeutic, diagnostic, or industrial applications. Many developability assays are low throughput, which limits their utility to the later stages of protein discovery and evolution. Recent approaches enable experimental or computational assessment of many more variants, yet the breadth of applicability across protein families and developability metrics is uncertain. Here, three library-scale assays-on-yeast protease, split green fluorescent protein (GFP), and non-specific binding-were evaluated for their ability to predict two key developability outcomes (thermal stability and recombinant expression) for the small protein scaffolds affibody and fibronectin. The assays' predictive capabilities were assessed via both linear correlation and machine learning models trained on the library-scale assay data. The on-yeast protease assay is highly predictive of thermal stability for both scaffolds, and the split-GFP assay is informative of affibody thermal stability and expression. The library-scale data was used to map sequence-developability landscapes for affibody and fibronectin binding paratopes, which guides future design of variants and libraries.


Assuntos
Fibronectinas , Proteínas Recombinantes de Fusão , Fibronectinas/química , Fibronectinas/genética , Fibronectinas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Engenharia de Proteínas/métodos , Biblioteca de Peptídeos , Estabilidade Proteica , Ligação Proteica , Humanos
10.
ACS Synth Biol ; 13(6): 1663-1668, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38836603

RESUMO

The cell-free system offers potential advantages in biosensor applications, but its limited time for protein synthesis poses a challenge in creating enough fluorescent signals to detect low limits of the analyte while providing a robust sensing module at the beginning. In this study, we harnessed split versions of fluorescent proteins, particularly split superfolder green fluorescent protein and mNeonGreen, to increase the number of reporter units made before the reaction ceased and enhance the detection limit in the cell-free system. A comparative analysis of the expression of 1-10 and 11th segments of beta strands in both whole-cell and cell-free platforms revealed distinct fluorescence patterns. Moreover, the integration of SynZip peptide linkers substantially improved complementation. The split protein reporter system could enable higher reporter output when sensing low analyte levels in the cell-free system, broadening the toolbox of the cell-free biosensor repertoire.


Assuntos
Técnicas Biossensoriais , Sistema Livre de Células , Proteínas de Fluorescência Verde , Biossíntese de Proteínas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas Biossensoriais/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo
11.
Nano Lett ; 24(26): 7833-7842, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38887996

RESUMO

Tobacco mild green mosaic virus (TMGMV)-like nanocarriers were designed for gene delivery to plant cells. High aspect ratio TMGMVs were coated with a polycationic biopolymer, poly(allylamine) hydrochloride (PAH), to generate highly charged nanomaterials (TMGMV-PAH; 56.20 ± 4.7 mV) that efficiently load (1:6 TMGMV:DNA mass ratio) and deliver single-stranded and plasmid DNA to plant cells. The TMGMV-PAH were taken up through energy-independent mechanisms in Arabidopsis protoplasts. TMGMV-PAH delivered a plasmid DNA encoding a green fluorescent protein (GFP) to the protoplast nucleus (70% viability), as evidenced by GFP expression using confocal microscopy and Western blot analysis. TMGMV-PAH were inactivated (iTMGMV-PAH) using UV cross-linking to prevent systemic infection in intact plants. Inactivated iTMGMV-PAH-mediated pDNA delivery and gene expression of GFP in vivo was determined using confocal microscopy and RT-qPCR. Virus-like nanocarrier-mediated gene delivery can act as a facile and biocompatible tool for advancing genetic engineering in plants.


Assuntos
Arabidopsis , Proteínas de Fluorescência Verde , Arabidopsis/virologia , Arabidopsis/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas de Transferência de Genes , Plasmídeos/genética , Poliaminas/química , Protoplastos/metabolismo , Nanoestruturas/química , DNA/química , DNA/administração & dosagem
12.
Endocrinology ; 165(7)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38916490

RESUMO

The epithelial cell lining of the oviduct plays an important role in oocyte pickup, sperm migration, preimplantation embryo development, and embryo transport. The oviduct epithelial cell layer comprises ciliated and nonciliated secretory cells. The ciliary function has been shown to support gamete and embryo movement in the oviduct, yet secretory cell function has not been well characterized. Therefore, our goal was to generate a secretory cell-specific Cre recombinase mouse model to study the role of the oviductal secretory cells. A knock-in mouse model, Ovgp1Cre:eGFP, was created by expressing Cre from the endogenous Ovgp1 (oviductal glycoprotein 1) locus, with enhanced green fluorescent protein (eGFP) as a reporter. EGFP signals were strongly detected in the secretory epithelial cells of the oviducts at estrus in adult Ovgp1Cre:eGFP mice. Signals were also detected in the ovarian stroma, uterine stroma, vaginal epithelial cells, epididymal epithelial cells, and elongated spermatids. To validate recombinase activity, progesterone receptor (PGR) expression was ablated using the Ovgp1Cre:eGFP; Pgrf/f mouse model. Surprisingly, the deletion was restricted to the epithelial cells of the uterotubal junction (UTJ) region of Ovgp1Cre:eGFP; Pgrf/f oviducts. Deletion of Pgr in the epithelial cells of the UTJ region had no effect on female fecundity. In summary, we found that eGFP signals were likely specific to secretory epithelial cells in all regions of the oviduct. However, due to a potential target-specific Cre activity, validation of appropriate recombination and expression of the gene(s) of interest is absolutely required to confirm efficient deletion when generating conditional knockout mice using the Ovgp1Cre:eGFP line.


Assuntos
Células Epiteliais , Glicoproteínas , Integrases , Animais , Feminino , Camundongos , Células Epiteliais/metabolismo , Integrases/metabolismo , Integrases/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Masculino , Oviductos/metabolismo , Oviductos/citologia , Camundongos Transgênicos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Tubas Uterinas/metabolismo , Tubas Uterinas/citologia , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Modelos Animais
13.
Yi Chuan ; 46(6): 466-477, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38886150

RESUMO

Gene knock-in in mammalian cells usually uses homology-directed repair (HDR) mechanism to integrate exogenous DNA template into the target genome site. However, HDR efficiency is often low, and the co-localization of exogenous DNA template and target genome site is one of the key limiting factors. To improve the efficiency of HDR mediated by CRISPR/Cas9 system, our team and previous studies fused different adaptor proteins with SpCas9 protein and expressed them. By using their characteristics of binding to specific DNA sequences, many different CRISPR/SpCas9 donor adapter gene editing systems were constructed. In this study, we used them to knock-in eGFP gene at the 3'-end of the terminal exon of GAPDH and ACTB genes in HEK293T cells to facilitate a comparison and optimization of these systems. We utilized an optimized donor DNA template design method, validated the knock-in accuracy via PCR and Sanger sequencing, and assessed the efficiency using flow cytometry. The results showed that the fusion of yGal4BD, hGal4BD, hLacI, hTHAP11 as well as N57 and other adaptor proteins with the C-terminus of SpCas9 protein had no significant effect on its activity. At the GAPDH site, the donor adapter systems of SpCas9 fused with yGal4BD, hGal4BD, hLacI and hTHAP11 significantly improved the knock-in efficiency. At the ACTB site, SpCas9 fused with yGal4BD and hGal4BD significantly improved the knock-in efficiency. Furthermore, increasing the number of BS in the donor DNA template was beneficial to enhance the knock-in efficiency mediated by SpCas9-hTHAP11 system. In conclusion, this study compares and optimizes multiple CRISPR/Cas9 donor adapter gene editing systems, providing valuable insights for future gene editing applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Células HEK293 , Técnicas de Introdução de Genes/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
14.
Nat Commun ; 15(1): 4956, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858376

RESUMO

A crucial step in life processes is the transfer of accurate and correct genetic material to offspring. During the construction of autonomous artificial cells, a very important step is the inheritance of genetic information in divided artificial cells. The ParMRC system, as one of the most representative systems for DNA segregation in bacteria, can be purified and reconstituted into GUVs to form artificial cells. In this study, we demonstrate that the eGFP gene is segregated into two poles by a ParM filament with ParR as the intermediate linker to bind ParM and parC-eGFP DNA in artificial cells. After the ParM filament splits, the cells are externally induced to divide into two daughter cells that contain parC-eGFP DNA by osmotic pressure and laser irradiation. Using a PURE system, we translate eGFP DNA into enhanced green fluorescent proteins in daughter cells, and bacterial plasmid segregation and inheritance are successfully mimicked in artificial cells. Our results could lead to the construction of more sophisticated artificial cells that can reproduce with genetic information.


Assuntos
Células Artificiais , Proteínas de Fluorescência Verde , Plasmídeos , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Células Artificiais/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
15.
Microbiology (Reading) ; 170(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847798

RESUMO

Bacillus subtilis is a Gram-positive bacterium that is frequently used in the bioindustry for the production of various proteins, because of its superior protein secretion capacities. To determine optimal conditions for protein secretion by B. subtilis, a quick and sensitive method for measuring protein secretion is crucial. A fast and universal assay is most useful for detecting diverse proteins in a high-throughput manner. In this study, we introduce a split-luciferase-based method for measuring protein secretion by B. subtilis. The NanoBiT system was used to monitor secretion of four different proteins: xylanase A, amylase M, protein glutaminase A, and GFP nanobody. Our findings underscore the split-luciferase system as a quick, sensitive, and user-friendly method.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Luciferases/metabolismo , Luciferases/genética , Endo-1,4-beta-Xilanases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transporte Proteico , Amilases/metabolismo , Glutaminase/metabolismo
16.
Elife ; 132024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874379

RESUMO

Developmental signaling pathways associated with growth factors such as TGFb are commonly dysregulated in melanoma. Here we identified a human TGFb enhancer specifically activated in melanoma cells treated with TGFB1 ligand. We generated stable transgenic zebrafish with this TGFb Induced Enhancer driving green fluorescent protein (TIE:EGFP). TIE:EGFP was not expressed in normal melanocytes or early melanomas but was expressed in spatially distinct regions of advanced melanomas. Single-cell RNA-sequencing revealed that TIE:EGFP+ melanoma cells down-regulated interferon response while up-regulating a novel set of chronic TGFb target genes. ChIP-sequencing demonstrated that AP-1 factor binding is required for activation of chronic TGFb response. Overexpression of SATB2, a chromatin remodeler associated with tumor spreading, showed activation of TGFb signaling in early melanomas. Confocal imaging and flow cytometric analysis showed that macrophages localize to TIE:EGFP+ regions and preferentially phagocytose TIE:EGFP+ melanoma cells compared to TIE:EGFP- melanoma cells. This work identifies a TGFb induced immune response and demonstrates the need for the development of chronic TGFb biomarkers to predict patient response to TGFb inhibitors.


Assuntos
Animais Geneticamente Modificados , Melanoma , Transdução de Sinais , Peixe-Zebra , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/patologia , Animais , Humanos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular Tumoral , Genes Reporter , Fator de Crescimento Transformador beta/metabolismo , Regulação Neoplásica da Expressão Gênica
17.
Sci Rep ; 14(1): 13797, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877139

RESUMO

In filamentous fungi, microtubules are important for polar growth and morphological maintenance and serve as rails for intracellular trafficking. The molecular mechanisms associated with microtubules have been analyzed. However, little is known about when and where tubulin, a component of microtubules, is biosynthesized in multinuclear and multicellular filamentous fungi. In this study, we visualized microtubules based on the enhanced green fluorescence protein (EGFP)-labeled α-tubulin and ß-tubulin mRNA tagged by the EGFP-mediated MS2 system in living yellow Koji mold Aspergillus oryzae cells in order to understand the spatiotemporal production mechanism of tubulin. We found that mRNA of btuA, encoding for ß-tubulin, localized at dot-like structures through the apical, middle and basal regions of the hyphal cells. In addition, some btuA mRNA dots showed microtubule-dependent motor protein-like dynamics in the cells. Furthermore, it was found that btuA mRNA dots were decreased in the cytoplasm just before mitosis but increased immediately after mitosis, followed by a gradual decrease. In summary, the localization and abundance of ß-tubulin mRNA is spatiotemporally regulated in living A. oryzae hyphal cells.


Assuntos
Aspergillus oryzae , Microtúbulos , RNA Mensageiro , Tubulina (Proteína) , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Microtúbulos/metabolismo , Hifas/genética , Hifas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
18.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892274

RESUMO

Heavy metals are dangerous contaminants that constitute a threat to human health because they persist in soils and are easily transferred into the food chain, causing damage to human health. Among heavy metals, nickel appears to be one of the most dangerous, being responsible for different disorders. Public health protection requires nickel detection in the environment and food chains. Biosensors represent simple, rapid, and sensitive methods for detecting nickel contamination. In this paper, we report on the setting up a whole-cell-based system, in which protoplasts, obtained from Nicotiana tabacum leaves, were used as transducers to detect the presence of heavy metal ions and, in particular, nickel ions. Protoplasts were genetically modified with a plasmid containing the Green Fluorescent Protein reporter gene (GFP) under control of the promoter region of a sunflower gene coding for a small Heat Shock Protein (HSP). Using this device, the presence of heavy metal ions was detected. Thus, the possibility of using this whole-cell system as a novel tool to detect the presence of nickel ions in food matrices was assessed.


Assuntos
Técnicas Biossensoriais , Níquel , Nicotiana , Protoplastos , Níquel/análise , Protoplastos/metabolismo , Nicotiana/genética , Técnicas Biossensoriais/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Contaminação de Alimentos/análise , Metais Pesados/análise
19.
J Hazard Mater ; 474: 134850, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850947

RESUMO

Titanium dioxide nanoparticles (nTiO2) have been considered a possible carcinogen to humans, but most existing studies have overlooked the role of human enzymes in assessing the genotoxicity of nTiO2. Here, a toxicogenomics-based in vitro genotoxicity assay using a GFP-fused yeast reporter library was employed to elucidate the genotoxic potential and mechanisms of nTiO2. Moreover, two new GFP-fused yeast reporter libraries containing either human CYP1A1 or CYP1A2 genes were constructed by transformation to investigate the potential modulation of nTiO2 genotoxicity in the presence of human CYP enzymes. This study found a lack of appreciable nTiO2 genotoxicity as indicated by the yeast reporter library in the absence of CYP expression but a significantly elevated indication of genotoxicity in either CYP1A1- or CYP1A2-expressing yeast. The intracellular reactive oxygen species (ROS) measurement indicated significantly higher ROS in yeast expressing either enzyme. The detected mitochondrial DNA damage suggested mitochondria as one of the target sites for oxidative damage by nTiO2 in the presence of either one of the CYP enzymes. The results thus indicated that the genotoxicity of nTiO2 was enhanced by human CYP1A1 or CYP1A2 enzyme and was associated with elevated oxidative stress, which suggested that the similar mechanisms could occur in human cells.


Assuntos
Citocromo P-450 CYP1A1 , Dano ao DNA , Testes de Mutagenicidade , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae , Titânio , Humanos , Titânio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Genes Reporter , Nanopartículas/toxicidade , Nanopartículas Metálicas/toxicidade , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
20.
Sci Rep ; 14(1): 13314, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858413

RESUMO

Plants respond to biotic and abiotic stress by activating and interacting with multiple defense pathways, allowing for an efficient global defense response. RNA silencing is a conserved mechanism of regulation of gene expression directed by small RNAs important in acquired plant immunity and especially virus and transgene repression. Several RNA silencing pathways in plants are crucial to control developmental processes and provide protection against abiotic and biotic stresses as well as invasive nucleic acids such as viruses and transposable elements. Various notable studies have shed light on the genes, small RNAs, and mechanisms involved in plant RNA silencing. However, published research on the potential interactions between RNA silencing and other plant stress responses is limited. In the present study, we tested the hypothesis that spreading and maintenance of systemic post-transcriptional gene silencing (PTGS) of a GFP transgene are associated with transcriptional changes that pertain to non-RNA silencing-based stress responses. To this end, we analyzed the structure and function of the photosynthetic apparatus and conducted whole transcriptome analysis in a transgenic line of Nicotiana benthamiana that spontaneously initiates transgene silencing, at different stages of systemic GFP-PTGS. In vivo analysis of chlorophyll a fluorescence yield and expression levels of key photosynthetic genes indicates that photosynthetic activity remains unaffected by systemic GFP-PTGS. However, transcriptomic analysis reveals that spreading and maintenance of GFP-PTGS are associated with transcriptional reprogramming of genes that are involved in abiotic stress responses and pattern- or effector-triggered immunity-based stress responses. These findings suggest that systemic PTGS may affect non-RNA-silencing-based defense pathways in N. benthamiana, providing new insights into the complex interplay between different plant stress responses.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde , Nicotiana , Plantas Geneticamente Modificadas , Estresse Fisiológico , Transcriptoma , Transgenes , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Inativação Gênica , Interferência de RNA , Perfilação da Expressão Gênica , Fotossíntese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...