Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.171
Filtrar
1.
Stem Cell Res Ther ; 15(1): 198, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971766

RESUMO

BACKGROUND: Trans-sutural distraction osteogenesis (TSDO) involves the application of distraction force to facial sutures to stimulate osteogenesis. Gli1+ cells in the cranial sutures play an important role in bone growth. However, whether Gli1+ cells in facial sutures differentiate into bone under distraction force is unknown. METHODS: 4-week-old Gli1ER/Td and C57BL/6 mice were used to establish a TSDO model to explore osteogenesis of zygomaticomaxillary sutures. A Gli1+ cell lineage tracing model was used to observe the distribution of Gli1+ cells and explore the role of Gli1+ cells in facial bone remodeling. RESULTS: Distraction force promoted bone remodeling during TSDO. Fluorescence and two-photon scanning images revealed the distribution of Gli1+ cells. Under distraction force, Gli1-lineage cells proliferated significantly and co-localized with Runx2+ cells. Hedgehog signaling was upregulated in Gli1+ cells. Inhibition of Hedgehog signaling suppresses the proliferation and osteogenesis of Gli1+ cells induced by distraction force. Subsequently, the stem cell characteristics of Gli1+ cells were identified. Cell-stretching experiments verified that mechanical force promoted the osteogenic differentiation of Gli1+ cells through Hh signaling. Furthermore, immunofluorescence staining and RT-qPCR experiments demonstrated that the primary cilia in Gli1+ cells exhibit Hedgehog-independent mechanosensitivity, which was required for the osteogenic differentiation induced by mechanical force. CONCLUSIONS: Our study indicates that the primary cilia of Gli1+ cells sense mechanical stimuli, mediate Hedgehog signaling activation, and promote the osteogenic differentiation of Gli1+ cells in zygomaticomaxillary sutures.


Assuntos
Diferenciação Celular , Cílios , Suturas Cranianas , Proteínas Hedgehog , Osteogênese , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco , Animais , Camundongos , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Osteogênese/fisiologia , Cílios/metabolismo , Suturas Cranianas/metabolismo , Camundongos Endogâmicos C57BL , Osteogênese por Distração/métodos , Proliferação de Células
2.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999049

RESUMO

Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.


Assuntos
Proteínas Hedgehog , Simulação de Acoplamento Molecular , Piridinas , Pirimidinas , Proteína GLI1 em Dedos de Zinco , Piridinas/farmacologia , Piridinas/química , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Pirimidinas/farmacologia , Pirimidinas/química , Proteínas Hedgehog/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Células NIH 3T3 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
3.
Microb Pathog ; 192: 106723, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823465

RESUMO

The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 µg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.


Assuntos
Enterotoxinas , Proteínas Hedgehog , Transdução de Sinais , Linfócitos T , Timo , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Feminino , Gravidez , Ratos , Timo/metabolismo , Timo/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino
4.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892279

RESUMO

Although not completely understood, the role of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and epithelial skin tumors has been reported before. In this study, we confirmed in various melanoma cell line models that keratin 16 (KRT16) and S100 Calcium-Binding Protein A7 (S100A7) are transcriptional targets of GLI Family Zinc Finger (GLI) proteins. Besides their important role in protecting and maintaining the epidermal barrier, keratins are somehow tightly connected with the S100 family of proteins. We found that stronger expression of KRT16 indeed corresponds to stronger expression of S100A7 in our clinical melanoma samples. We also report a trend regarding staining of GLI1, which corresponds to stronger staining of GLI3, KRT16, and S100A7 proteins. The most interesting of our findings is that all the proteins are detected specifically in the epidermis overlying the tumor, but rarely in the tumor itself. The examined proteins were also not detected in the healthy epidermis at the edges of the sample, suggesting that the staining is specific to the epidermis overlaying the tumor mass. Of all proteins, only S100A7 demonstrated a statistically significant trend regarding tumor staging and staining intensity. Results from our clinical samples prove that immune infiltration is an important feature of melanoma. Pigmentophages and tumor-infiltrating lymphocytes (TIL) demonstrate a significant association with tumor stage, while mononuclear cells are equally present in all stages. For S100A7, we found an association between the number of TILs and staining intensity. Considering these new findings presented in our study, we suggest a more detailed examination of the possible role of the S100A7 protein as a biomarker in melanoma.


Assuntos
Epiderme , Regulação Neoplásica da Expressão Gênica , Queratina-16 , Melanoma , Proteína A7 Ligante de Cálcio S100 , Neoplasias Cutâneas , Proteína GLI1 em Dedos de Zinco , Humanos , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Proteína A7 Ligante de Cálcio S100/metabolismo , Proteína A7 Ligante de Cálcio S100/genética , Epiderme/metabolismo , Epiderme/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Linhagem Celular Tumoral , Queratina-16/metabolismo , Queratina-16/genética , Regulação para Cima , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Idoso
5.
Med Oncol ; 41(7): 167, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831079

RESUMO

Cancer stem cells (CSCs) are mainly responsible for tumorigenesis, chemoresistance, and cancer recurrence. CSCs growth and progression are regulated by multiple signaling cascades including Wnt/ß-catenin and Hh/GLI-1, which acts independently or via crosstalk. Targeting the crosstalk of signaling pathways would be an effective approach to control the CSC population. Both Wnt/ß-catenin and Hh/GLI-1 signaling cascades are known to be regulated by p53/p21-dependent mechanism. However, it is interesting to delineate whether p21 can induce apoptosis in a p53-independent manner. Therefore, utilizing various subtypes of oral CSCs (SCC9-PEMT p53+/+p21+/+, SCC9-PEMT p53-/-p21+/+, SCC9-PEMT p53+/+p21-/- and SCC9-PEMT p53-/-p21-/-), we have examined the distinct roles of p53 and p21 in Resveratrol nanoparticle (Res-Nano)-mediated apoptosis. It is interesting to see that, besides the p53/p21-mediated mechanism, Res-Nano exposure also significantly induced apoptosis in oral CSCs through a p53-independent activation of p21. Additionally, Res-Nano-induced p21-activation deregulated the ß-catenin-GLI-1 complex and consequently reduced the TCF/LEF and GLI-1 reporter activities. In agreement with in vitro data, similar experimental results were obtained in in vivo mice xenograft model.


Assuntos
Apoptose , Inibidor de Quinase Dependente de Ciclina p21 , Neoplasias Bucais , Nanopartículas , Células-Tronco Neoplásicas , Resveratrol , Proteína Supressora de Tumor p53 , Proteína GLI1 em Dedos de Zinco , beta Catenina , Apoptose/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Resveratrol/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , beta Catenina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Biol Rep ; 51(1): 740, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874802

RESUMO

BACKGROUND: Sonic Hedgehog (SHH) is a fundamental signaling pathway that controls tissue reconstruction, stem cell biology, and differentiation and has a role in gut tissue homeostasis and development. Dysregulation of SHH leads to the development of HCC. METHODS, AND RESULTS: The present study was conducted to compare the effects of mesenchymal stem cells (MSCs) and curcumin on SHH molecular targets in an experimental model of HCC in rats. One hundred rats were divided equally into the following groups: control group, HCC group, HCC group received MSCs, HCC group received curcumin, and HCC group received MSCs and curcumin. Histopathological examinations were performed, and gene expression of SHH signaling target genes (SHH, PTCH1, SMOH, and GLI1) was assessed by real-time PCR in rat liver tissue. Results showed that SHH target genes were significantly upregulated in HCC-untreated rat groups and in MSC-treated groups, with no significant difference between them. Administration of curcumin with or without combined administration of MSCs led to a significant down-regulation of SHH target genes, with no significant differences between both groups. As regards the histopathological examination of liver tissues, both curcumin and MSCs, either through separate use or their combined use, led to a significant restoration of normal liver pathology. CONCLUSIONS: In conclusion, SHH signaling is upregulated in the HCC experimental model. MSCs do not inhibit the upregulated SHH target genes in HCC. Curcumin use with or without MSCs administration led to a significant down-regulation of SHH signaling in HCC and a significant restoration of normal liver pathology.


Assuntos
Carcinoma Hepatocelular , Curcumina , Proteínas Hedgehog , Neoplasias Hepáticas , Células-Tronco Mesenquimais , Transdução de Sinais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Animais , Curcumina/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Transdução de Sinais/efeitos dos fármacos , Ratos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Modelos Animais de Doenças , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos
7.
PLoS One ; 19(6): e0294835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848388

RESUMO

The Hedgehog (HH) pathway regulates embryonic development of anterior tongue taste fungiform papilla (FP) and the posterior circumvallate (CVP) and foliate (FOP) taste papillae. HH signaling also mediates taste organ maintenance and regeneration in adults. However, there are knowledge gaps in HH pathway component expression during postnatal taste organ differentiation and maturation. Importantly, the HH transcriptional effectors GLI1, GLI2 and GLI3 have not been investigated in early postnatal stages; the HH receptors PTCH1, GAS1, CDON and HHIP, required to either drive HH pathway activation or antagonism, also remain unexplored. Using lacZ reporter mouse models, we mapped expression of the HH ligand SHH, HH receptors, and GLI transcription factors in FP, CVP and FOP in early and late postnatal and adult stages. In adults we also studied the soft palate, and the geniculate and trigeminal ganglia, which extend afferent fibers to the anterior tongue. Shh and Gas1 are the only components that were consistently expressed within taste buds of all three papillae and the soft palate. In the first postnatal week, we observed broad expression of HH signaling components in FP and adjacent, non-taste filiform (FILIF) papillae in epithelium or stroma and tongue muscles. Notably, we observed elimination of Gli1 in FILIF and Gas1 in muscles, and downregulation of Ptch1 in lingual epithelium and of Cdon, Gas1 and Hhip in stroma from late postnatal stages. Further, HH receptor expression patterns in CVP and FOP epithelium differed from anterior FP. Among all the components, only known positive regulators of HH signaling, SHH, Ptch1, Gli1 and Gli2, were expressed in the ganglia. Our studies emphasize differential regulation of HH signaling in distinct postnatal developmental periods and in anterior versus posterior taste organs, and lay the foundation for functional studies to understand the roles of numerous HH signaling components in postnatal tongue development.


Assuntos
Proteínas Hedgehog , Transdução de Sinais , Papilas Gustativas , Língua , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Língua/metabolismo , Língua/crescimento & desenvolvimento , Camundongos , Papilas Gustativas/metabolismo , Papilas Gustativas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Homeostase , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteínas do Tecido Nervoso , Proteínas de Ciclo Celular , Proteínas Ligadas por GPI
8.
Nat Commun ; 15(1): 5233, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898031

RESUMO

Mutations in the FOXF1 gene, a key transcriptional regulator of pulmonary vascular development, cause Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins, a lethal lung disease affecting newborns and infants. Identification of new FOXF1 upstream regulatory elements is critical to explain why frequent non-coding FOXF1 deletions are linked to the disease. Herein, we use multiome single-nuclei RNA and ATAC sequencing of mouse and human patient lungs to identify four conserved endothelial and mesenchymal FOXF1 enhancers. We demonstrate that endothelial FOXF1 enhancers are autoactivated, whereas mesenchymal FOXF1 enhancers are regulated by EBF1 and GLI1. The cell-specificity of FOXF1 enhancers is validated by disrupting these enhancers in mouse embryonic stem cells using CRISPR/Cpf1 genome editing followed by lineage-tracing of mutant embryonic stem cells in mouse embryos using blastocyst complementation. This study resolves an important clinical question why frequent non-coding FOXF1 deletions that interfere with endothelial and mesenchymal enhancers can lead to the disease.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead , Mesoderma , Síndrome da Persistência do Padrão de Circulação Fetal , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Animais , Humanos , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Síndrome da Persistência do Padrão de Circulação Fetal/metabolismo , Camundongos , Elementos Facilitadores Genéticos/genética , Mesoderma/metabolismo , Mesoderma/embriologia , Pulmão/patologia , Células Endoteliais/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Células-Tronco Embrionárias/metabolismo , Alvéolos Pulmonares/anormalidades
9.
Nat Commun ; 15(1): 4614, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816354

RESUMO

ARID1B haploinsufficiency in humans causes Coffin-Siris syndrome, associated with developmental delay, facial dysmorphism, and intellectual disability. The role of ARID1B has been widely studied in neuronal development, but whether it also regulates stem cells remains unknown. Here, we employ scRNA-seq and scATAC-seq to dissect the regulatory functions and mechanisms of ARID1B within mesenchymal stem cells (MSCs) using the mouse incisor model. We reveal that loss of Arid1b in the GLI1+ MSC lineage disturbs MSCs' quiescence and leads to their proliferation due to the ectopic activation of non-canonical Activin signaling via p-ERK. Furthermore, loss of Arid1b upregulates Bcl11b, which encodes a BAF complex subunit that modulates non-canonical Activin signaling by directly regulating the expression of activin A subunit, Inhba. Reduction of Bcl11b or non-canonical Activin signaling restores the MSC population in Arid1b mutant mice. Notably, we have identified that ARID1B suppresses Bcl11b expression via specific binding to its third intron, unveiling the direct inter-regulatory interactions among BAF subunits in MSCs. Our results demonstrate the vital role of ARID1B as an epigenetic modifier in maintaining MSC homeostasis and reveal its intricate mechanistic regulatory network in vivo, providing novel insights into the linkage between chromatin remodeling and stem cell fate determination.


Assuntos
Proteínas de Ligação a DNA , Células-Tronco Mesenquimais , Proteínas Repressoras , Transdução de Sinais , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proliferação de Células , Ativinas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Humanos , Proteína GLI1 em Dedos de Zinco
10.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731849

RESUMO

Tumors of the head and neck, more specifically the squamous cell carcinoma, often show upregulation of the Hedgehog signaling pathway. However, almost nothing is known about its role in the sinonasal adenocarcinoma, either in intestinal or non-intestinal subtypes. In this work, we have analyzed immunohistochemical staining of six Hedgehog pathway proteins, sonic Hedgehog (SHH), Indian Hedgehog (IHH), Patched1 (PTCH1), Gli family zinc finger 1 (GLI1), Gli family zinc finger 2 (GLI2), and Gli family zinc finger 3 (GLI3), on 21 samples of sinonasal adenocarcinoma and compared them with six colon adenocarcinoma and three salivary gland tumors, as well as with matching healthy tissue, where available. We have detected GLI2 and PTCH1 in the majority of samples and also GLI1 in a subset of samples, while GLI3 and the ligands SHH and IHH were generally not detected. PTCH1 pattern of staining shows an interesting pattern, where healthy samples are mostly positive in the stromal compartment, while the signal shifts to the tumor compartment in tumors. This, taken together with a stronger signal of GLI2 in tumors compared to non-tumor tissues, suggests that the Hedgehog pathway is indeed activated in sinonasal adenocarcinoma. As Hedgehog pathway inhibitors are being tested in combination with other therapies for head and neck squamous cell carcinoma, this could provide a therapeutic option for patients with sinonasal adenocarcinoma as well.


Assuntos
Adenocarcinoma , Proteínas Hedgehog , Imuno-Histoquímica , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Masculino , Feminino , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Pessoa de Meia-Idade , Projetos Piloto , Idoso , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Neoplasias dos Seios Paranasais/metabolismo , Neoplasias dos Seios Paranasais/patologia , Adulto , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso , Proteínas Nucleares
12.
Biochemistry ; 63(12): 1534-1542, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38804064

RESUMO

Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8) is a crucial epigenetic regulator that plays a multifaceted role in governing a spectrum of vital cellular processes, encompassing proliferation, apoptosis, migration, tumor suppression, and differentiation. It has emerged as a key player in neuronal differentiation by orchestrating the expression of neuronal lineage-committed genes. The present study uncovers the role of ZMYND8 in regulating the Sonic Hedgehog (SHH) signaling axis, which is crucial for neuronal differentiation. Genetic deletion of ZMYND8 leads to a significant reduction in SHH pathway genes, GLI1, and PTCH1 expression during all-trans-retinoic acid (ATRA)-induced differentiation. ZMYND8 and RNA pol II S5P are found to co-occupy the GLI1 and PTCH1 gene promoters, positively impacting their gene transcription upon ATRA treatment. Interestingly, ZMYND8 is found to counteract the inhibitory effects of Cyclopamine that block the upstream SHH pathway protein SMO, resulting in enhanced neurite formation in neuroblastoma cells following their treatment with ATRA. These results indicate that ZMYND8 is an epigenetic regulator of the SHH signaling pathway and has tremendous therapeutic potential in ATRA-mediated differentiation of neuroblastoma.


Assuntos
Diferenciação Celular , Proteínas Hedgehog , Neuroblastoma , Transdução de Sinais , Tretinoína , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Humanos , Diferenciação Celular/efeitos dos fármacos , Tretinoína/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/genética , Linhagem Celular Tumoral , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Animais , Proteínas Supressoras de Tumor
13.
Int J Oncol ; 64(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38757343

RESUMO

Daunorubicin, also known as daunomycin, is a DNA­targeting anticancer drug that is used as chemotherapy, mainly for patients with leukemia. It has also been shown to have anticancer effects in monotherapy or combination therapy in solid tumors, but at present it has not been adequately studied in colorectal cancer (CRC). In the present study, from a screening using an FDA­approved drug library, it was found that daunorubicin suppresses GLI­dependent luciferase reporter activity. Daunorubicin also increased p53 levels, which contributed to both GLI1 suppression and apoptosis. The current detailed investigation showed that daunorubicin promoted the ß­TrCP­mediated ubiquitination and proteasomal degradation of GLI1. Moreover, a competition experiment using BODIPY­cyclopamine, a well­known Smo inhibitor, suggested that daunorubicin does not bind to Smo in HCT116 cells. Administration of daunorubicin (2 mg/kg, ip, qod, 15 days) into HCT116 xenograft mice profoundly suppressed tumor progress and the GLI1 level in tumor tissues. Taken together, the present results revealed that daunorubicin suppresses canonical Hedgehog pathways in CRC. Ultimately, the present study discloses a new mechanism of daunorubicin's anticancer effect and might provide a rationale for expanding the clinical application of daunorubicin.


Assuntos
Apoptose , Neoplasias Colorretais , Daunorrubicina , Proteína GLI1 em Dedos de Zinco , Animais , Humanos , Camundongos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Daunorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/metabolismo , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética
14.
Stem Cells Dev ; 33(11-12): 306-320, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38753688

RESUMO

Lower population of dopaminergic (DA) neurons is known to increase susceptibility to Parkinson's disease (PD), and our earlier study showed a lower yield of DA neurons in Leucine-Rich Repeat Kinase Isoleucine 1371 Valine (LRRK2-I1371V) mutation-carrying PD patient-derived induced Pluripotent Stem Cells (iPSCs). Although the role of Sonic Hedgehog (SHH) in DA neurogenesis of floor plate cells (FPCs) is known, the effect of LRRK2 mutations on SHH responsiveness of FPCs impacting DA neuronal yield has not been studied. We investigated SHH responsiveness of FPCs derived from LRRK2-I1371V PD patient iPSCs with regard to the expression of SHH receptors Patched1 (Ptch1) and Smoothened (Smo), in conjunction with nuclear Gli1 (glioma-associated oncogene 1) expression, intracellular Ca2+ rise, and cytosolic cyclic adenosine monophosphate (cAMP) levels upon SHH induction. In addition, we examined the mechanistic link with LRRK2-I1371V gain-of-function by assessing membrane fluidity and Rab8A and Rab10 phosphorylation in SH-SY5Y cells and healthy control (HC) FPCs overexpressing LRRK2-I1371V as well as FPCs. Although total expression of Ptch1 and Smo was comparable, receptor expression on cell surface was significantly lower in LRRK2-I1371V FPCs than in HC FPCs, with distinctly lower nuclear expression of the downstream transcription factor Gli1. HC-FPCs transfected with LRRK2-I1371V exhibited a similarly reduced cell surface expression of Ptch1 and Smo. Intracellular Ca2+ response was significantly lower with corresponding elevated cAMP levels in LRRK2-I1371V FPCs compared with HC FPCs upon SHH stimulation. The LRRK2-I1371V mutant FPCs and LRRK2-I1371V-transfected SH-SY5Y and HC FPCs too exhibited higher autophosphorylation of phospho LRRK2 (pLRRK2) serine1292 and serine935, as well as substrate phosphorylation of Rab8A and Rab10. Concurrent increase in membrane fluidity, accompanied by a decrease in membrane cholesterol, and lower expression of lipid raft marker caveolin 1 were also observed in them. These findings suggest that impaired SHH responsiveness of LRRK2-I1371V PD FPCs indeed leads to lower yield of DA neurons during ontogeny. Reduced cell surface expression of SHH receptors is influenced by alteration in membrane fluidity owing to the increased substrate phosphorylation of Rab8A and reduced membrane protein trafficking due to pRab10, both results of the LRRK2-I1371V mutation.


Assuntos
Neurônios Dopaminérgicos , Proteínas Hedgehog , Células-Tronco Pluripotentes Induzidas , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Receptor Patched-1 , Proteína GLI1 em Dedos de Zinco , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Dopaminérgicos/metabolismo , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , AMP Cíclico/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Mutação/genética , Cálcio/metabolismo , Diferenciação Celular/genética , Transdução de Sinais/genética
16.
Am J Case Rep ; 25: e943271, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778503

RESUMO

BACKGROUND Soft tissue tumors have various subtypes, among which sarcomas exhibit high malignant potential and poor prognosis. Malignant epithelioid tumor with GLI1 alterations was originally found in myopericytoma with t(7;12) translocation. However, recent studies indicated that it is a distinct tumor type characterized by multiple nodular distributions of oval or round epithelioid cells with a rich capillary network and a lack of specific immunophenotype. There are only a few cases reported worldwide and the optimal treatment is still being explored. CASE REPORT We report the case of a 31-year-old patient who presented with severe anemia and a large soft tissue mass in the duodenum. The patient underwent surgical resection with a negative margin, and none of the 15 lymph nodes tested positive for the tumor. Postoperative pathology and FISH testing further confirmed the presence of GLI1 disruption and S-100 and SMA negativity. Genetic testing revealed the ACTB-GLI1 fusion. No specific medication was offered after the surgery. No tumor recurrence was found during the 23-month follow-up period. The patient's quality of life is currently satisfactory. CONCLUSIONS Soft tissue sarcomas characterized by GLI1 gene rearrangement have a relatively less aggressive and metastatic nature, with the solid mass spreading minimally even as it grows. Patients can benefit from surgical resection, resulting in a relatively long period of tumor-free survival.


Assuntos
Neoplasias Duodenais , Rearranjo Gênico , Sarcoma , Proteína GLI1 em Dedos de Zinco , Humanos , Adulto , Proteína GLI1 em Dedos de Zinco/genética , Sarcoma/genética , Sarcoma/patologia , Sarcoma/cirurgia , Neoplasias Duodenais/genética , Neoplasias Duodenais/cirurgia , Neoplasias Duodenais/patologia , Masculino
17.
J Dent Res ; 103(7): 734-744, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38752256

RESUMO

N6-methyladenosine (m6A) modification, a eukaryotic messenger RNA modification catalyzed by methyltransferase-like 3 (METTL3), plays a pivotal role in stem cell fate determination. Calvarial bone development and maintenance are orchestrated by the cranial sutures. Cathepsin K (CTSK)-positive calvarial stem cells (CSCs) contribute to mice calvarial ossification. However, the role of m6A modification in regulating Ctsk+ lineage cells during calvarial development remains elusive. Here, we showed that METTL3 was colocalized with cranial nonosteoclastic Ctsk+ lineage cells, which were also associated with GLI1 expression. During neonatal development, depletion of Mettl3 in the Ctsk+ lineage cells delayed suture formation and decreased mineralization. During adulthood maintenance, loss of Mettl3 in the Ctsk+ lineage cells impaired calvarial bone formation, which was featured by the increased bone porosity, enhanced bone marrow cavity, and decreased number of osteocytes with the less-developed cellular outline. The analysis of methylated RNA immunoprecipitation sequencing and RNA sequencing data indicated that loss of METTL3 reduced Hedgehog (Hh) signaling pathway. Restoration of Hh signaling pathway by crossing Sufufl/+ alleles or by local administration of SAG21 partially rescued the abnormity. Our data indicate that METTL3 modulates Ctsk+ lineage cells supporting calvarial bone formation by regulating the Hh signaling pathway, providing new insights for clinical treatment of skull vault osseous diseases.


Assuntos
Catepsina K , Proteínas Hedgehog , Metiltransferases , Osteogênese , Transdução de Sinais , Crânio , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Osteogênese/fisiologia , Osteogênese/genética , Camundongos , Proteínas Hedgehog/metabolismo , Linhagem da Célula , Suturas Cranianas , Células-Tronco , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética
18.
Steroids ; 206: 109421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614233

RESUMO

Colorectal cancer (CRC) is one of the most common gastrointestinal cancers that results in death in worldwide. The Hedgehog (HH) signalling pathway regulates the initiation and progression of CRC. Inhibiting the HH pathway has been presented as a potential treatment strategy in recent years. Cynanbungeigenin C (CBC) is a new type of C21 steroid that has been previously reported for the treatment of medulloblastoma. However, its further investigation was limited by its poor water solubility. In this study, six new CBC derivatives were synthesized through the structural modification of CBC, and four of them showed better water solubility than CBC. Moreover, their antiproliferative activities on CRC were evaluated. It was found that CBC-1 presented the best inhibitory effect on three types of CRC cell lines, and this effect was superior to that of CBC. Mechanistically, CBC-1 inhibited the proliferation of CRC cells through regulation of mRNA and proteins of the HH pathway according to qRT-PCR and Western blotting analysis. Furthermore, Cellular Thermal Shift Assay results indicated that CBC-1 regulated this signalling pathway by targeting glioma­associated oncogene (GLI 1).In addition, cell apoptosis was induced increasingly by transfection with GLI 1 siRNA or treatment with CBC-1 to downregulate GLI 1. Last, the in vivo results demonstrated that CBC-1 significantly reduced tumour size and downregulated GLI 1 in CRC. Therefore, this study suggests that CBC-1, a new GLI 1 inhibitor derived from natural products, may be developed as a potential antitumour candidate for CRC treatment.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Neoplasias Colorretais , Proteínas Hedgehog , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco , Humanos , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos Endogâmicos BALB C
19.
Biomed Pharmacother ; 174: 116503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565060

RESUMO

Androgenetic alopecia (AGA) is a prevalent disease in worldwide, local application or oral are often used to treat AGA, however, effective treatments for AGA are currently limited. In this work, we observed the promoting the initial anagen phase effect of pilose antler extract (PAE) on hair regeneration in AGA mice. We found that PAE accelerated hair growth and increased the degree of skin blackness by non-invasive in vivo methods including camera, optical coherence tomography and dermoscopy. Meanwhile, HE staining of sagittal and coronal skin sections revealed that PAE augmented the quantity and length of hair follicles, while also enhancing skin thickness and hair papilla diameter. Furthermore, PAE facilitated the shift of the growth cycle from the telogen to the anagen phase and expedited the proliferation of hair follicle stem cells and matrix cells in mice with AGA. This acceleration enabled the hair follicles to enter the growth phase at an earlier stage. PAE upregulated the expression of the sonic hedgehog (SHH), smoothened receptor, glioma-associated hemolog1 (GLI1), and downregulated the expression of bone morphogenetic protein 4 (BMP4), recombinant mothers against decapentaplegic homolog (Smad) 1 and 5 phosphorylation. This evidence suggests that PAE fosters hair growth and facilitates the transition of the growth cycle from the telogen to the anagen phase in AGA mice. This effect is achieved by enhancing the proliferation of follicle stem cells and matrix cells through the activation of the SHH/GLI pathway and suppression of the BMP/Smad pathway.


Assuntos
Alopecia , Chifres de Veado , Proteína Morfogenética Óssea 4 , Folículo Piloso , Cabelo , Animais , Chifres de Veado/química , Alopecia/tratamento farmacológico , Alopecia/patologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Camundongos , Masculino , Proteína Morfogenética Óssea 4/metabolismo , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Extratos de Tecidos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Regeneração/efeitos dos fármacos , Cervos , Proteína Smad5/metabolismo
20.
Theranostics ; 14(6): 2379-2395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646644

RESUMO

Background: It is poorly understood what cellular types participate in ductular reaction (DR) and whether DR facilitates recovery from injury or accelerates hepatic fibrosis. The aim of this study is to gain insights into the role of hepatic progenitor cell (HPC)-originated DR during fibrotic progression. Methods: DR in liver specimens of PBC, chronic HBV infection (CHB) or NAFLD, and four rodent fibrotic models by different pathogenic processes was evaluated. Gli1 expression was inhibited in rodent models or cell culture and organoid models by AAV-shGli1 or treating with GANT61. Results: Severity of liver fibrosis was positively correlated with DR extent in patients with PBC, CHB or NAFLD. HPCs were activated, expanded, differentiated into reactive cholangiocytes and constituted "HPC-originated DR", accompanying with exacerbated fibrosis in rodent models of HPC activation & proliferation (CCl4/2-AAF-treated), Μdr2-/- spontaneous PSC, BDL-cholestatic fibrosis or WD-fed/CCl4-treated NASH-fibrosis. Gli1 expression was significantly increased in enriched pathways in vivo and in vitro. Enhanced Gli1 expression was identified in KRT19+-reactive cholangiocytes. Suppressing Gli1 expression by administration of AAV-shGli1 or GANT61 ameliorated HPC-originated DR and fibrotic extent. KRT19 expression was reduced after GANT61 treatment in sodium butyrate-stimulated WB-F344 cells or organoids or in cells transduced with Gli1 knockdown lentiviral vectors. In contrast, KRT19 expression was elevated after transducing Gli1 overexpression lentiviral vectors in these cells. Conclusions: During various modes of chronic injury, Gli1 acted as an important mediator of HPC activation, expansion, differentiation into reactive cholangiocytes that formed DR, and subsequently provoked hepatic fibrogenesis.


Assuntos
Proteínas Hedgehog , Cirrose Hepática , Transdução de Sinais , Células-Tronco , Proteína GLI1 em Dedos de Zinco , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , Diferenciação Celular , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Hepatite B Crônica/complicações , Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , Pirimidinas/farmacologia , Células-Tronco/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA