Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.167
Filtrar
1.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861480

RESUMO

Guard proteins initiate defense mechanisms upon sensing pathogen-encoded virulence factors. Successful viral pathogens likely inhibit guard protein activity, but these interactions have been largely undefined. Here, we demonstrate that the human pathogen herpes simplex virus 1 (HSV-1) stimulates and inhibits an antiviral pathway initiated by NLRP1, a guard protein that induces inflammasome formation and pyroptotic cell death when activated. Notably, HSV-1 infection of human keratinocytes promotes posttranslational modifications to NLRP1, consistent with MAPK-dependent NLRP1 activation, but does not result in downstream inflammasome formation. We identify infected cell protein 0 (ICP0) as the critical HSV-1 protein that is necessary and sufficient for inhibition of the NLRP1 pathway. Mechanistically, ICP0's cytoplasmic localization and function as an E3 ubiquitin ligase prevents proteasomal degradation of the auto-inhibitory NT-NLRP1 fragment, thereby preventing inflammasome formation. Further, we demonstrate that inhibiting this inflammasome is important for promoting HSV-1 replication. Thus, we have established a mechanism by which HSV-1 overcomes a guard-mediated antiviral defense strategy in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Herpesvirus Humano 1 , Inflamassomos , Proteínas NLR , Ubiquitina-Proteína Ligases , Humanos , Inflamassomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas NLR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Imediatamente Precoces/metabolismo , Células HEK293 , Replicação Viral , Queratinócitos/virologia , Queratinócitos/metabolismo , Herpes Simples/virologia , Herpes Simples/imunologia , Herpes Simples/metabolismo , Animais
2.
Genome Biol Evol ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38787537

RESUMO

Nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes form a major line of defense in plants, acting in both pathogen recognition and resistance machinery activation. NLRs are reported to form large gene clusters in limber pine (Pinus flexilis), but it is unknown how widespread this genomic architecture may be among the extant species of conifers (Pinophyta). We used comparative genomic analyses to assess patterns in the abundance, diversity, and genomic distribution of NLR genes. Chromosome-level whole genome assemblies and high-density linkage maps in the Pinaceae, Cupressaceae, Taxaceae, and other gymnosperms were scanned for NLR genes using existing and customized pipelines. The discovered genes were mapped across chromosomes and linkage groups and analyzed phylogenetically for evolutionary history. Conifer genomes are characterized by dense clusters of NLR genes, highly localized on one chromosome. These clusters are rich in TNL-encoding genes, which seem to have formed through multiple tandem duplication events. In contrast to angiosperms and nonconiferous gymnosperms, genomic clustering of NLR genes is ubiquitous in conifers. NLR-dense genomic regions are likely to influence a large part of the plant's resistance, informing our understanding of adaptation to biotic stress and the development of genetic resources through breeding.


Assuntos
Cromossomos de Plantas , Proteínas NLR , Traqueófitas , Proteínas NLR/genética , Cromossomos de Plantas/genética , Traqueófitas/genética , Filogenia , Genoma de Planta , Evolução Molecular , Proteínas de Plantas/genética , Família Multigênica
3.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791594

RESUMO

In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair Pik-H4 confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik1-H4 and Pik2-H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on Pik-H4-mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene ndhB. Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.


Assuntos
Cloroplastos , Regulação da Expressão Gênica de Plantas , Oryza , Imunidade Vegetal , Proteínas de Plantas , Cloroplastos/metabolismo , Cloroplastos/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/imunologia , Proteínas de Repetições Ricas em Leucina , Sítios de Ligação , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas NLR/metabolismo , Proteínas NLR/genética , Edição de RNA
4.
Arch Microbiol ; 206(5): 241, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698267

RESUMO

The epidemic of stripe rust, caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), would reduce wheat (Triticum aestivum) yields seriously. Traditional experimental methods are difficult to discover the interaction between wheat and Pst. Multi-omics data analysis provides a new idea for efficiently mining the interactions between host and pathogen. We used 140 wheat-Pst RNA-Seq data to screen for differentially expressed genes (DEGs) between low susceptibility and high susceptibility samples, and carried out Gene Ontology (GO) enrichment analysis. Based on this, we constructed a gene co-expression network, identified the core genes and interacted gene pairs from the conservative modules. Finally, we checked the distribution of Nucleotide-binding and leucine-rich repeat (NLR) genes in the co-expression network and drew the wheat NLR gene co-expression network. In order to provide accessible information for related researchers, we built a web-based visualization platform to display the data. Based on the analysis, we found that resistance-related genes such as TaPR1, TaWRKY18 and HSP70 were highly expressed in the network. They were likely to be involved in the biological processes of Pst infecting wheat. This study can assist scholars in conducting studies on the pathogenesis and help to advance the investigation of wheat-Pst interaction patterns.


Assuntos
Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Doenças das Plantas , Puccinia , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , Puccinia/genética , Resistência à Doença/genética , Ontologia Genética , Regulação da Expressão Gênica de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Basidiomycota/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
5.
New Phytol ; 243(1): 330-344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38742296

RESUMO

Arabidopsis Col-0 RPP2A and RPP2B confer recognition of Arabidopsis downy mildew (Hyaloperonospora arabidopsidis [Hpa]) isolate Cala2, but the identity of the recognized ATR2Cala2 effector was unknown. To reveal ATR2Cala2, an F2 population was generated from a cross between Hpa-Cala2 and Hpa-Noks1. We identified ATR2Cala2 as a non-canonical RxLR-type effector that carries a signal peptide, a dEER motif, and WY domains but no RxLR motif. Recognition of ATR2Cala2 and its effector function were verified by biolistic bombardment, ectopic expression and Hpa infection. ATR2Cala2 is recognized in accession Col-0 but not in Ler-0 in which RPP2A and RPP2B are absent. In ATR2Emoy2 and ATR2Noks1 alleles, a frameshift results in an early stop codon. RPP2A and RPP2B are essential for the recognition of ATR2Cala2. Stable and transient expression of ATR2Cala2 under 35S promoter in Arabidopsis and Nicotiana benthamiana enhances disease susceptibility. Two additional Col-0 TIR-NLR (TNL) genes (RPP2C and RPP2D) adjacent to RPP2A and RPP2B are quantitatively required for full resistance to Hpa-Cala2. We compared RPP2 haplotypes in multiple Arabidopsis accessions and showed that all four genes are present in all ATR2Cala2-recognizing accessions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Doenças das Plantas , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oomicetos/patogenicidade , Proteínas NLR/metabolismo , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/imunologia , Sequência de Aminoácidos , Alelos
6.
New Phytol ; 243(1): 345-361, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757730

RESUMO

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins with pathogen sensor activities have evolved to initiate immune signaling by activating helper NLRs. However, the mechanisms underpinning helper NLR activation by sensor NLRs remain poorly understood. Although coiled coil (CC) type sensor NLRs such as the Potato virus X disease resistance protein Rx have been shown to activate the oligomerization of their downstream helpers NRC2, NRC3 and NRC4, the domains involved in sensor-helper signaling are not known. Here, we used Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana to show that the nucleotide-binding (NB) domain within the NB-ARC of Rx is necessary and sufficient for oligomerization and immune signaling of downstream helper NLRs. In addition, the NB domains of the disease resistance proteins Gpa2 (cyst nematode resistance), Rpi-amr1, Rpi-amr3 (oomycete resistance) and Sw-5b (virus resistance) are also sufficient to activate their respective downstream NRC helpers. Using transient expression in the lettuce (Lactuca sativa), we show that Rx (both as full length or as NB domain truncation) and its helper NRC2 form a minimal functional unit that can be transferred from solanaceous plants (lamiids) to Campanulid species. Our results challenge the prevailing paradigm that NLR proteins exclusively signal via their N-terminal domains and reveal a signaling activity for the NB domain of NRC-dependent sensor NLRs. We propose a model in which helper NLRs can perceive the status of the NB domain of their upstream sensors.


Assuntos
Resistência à Doença , Proteínas NLR , Nicotiana , Proteínas de Plantas , Domínios Proteicos , Transdução de Sinais , Nicotiana/genética , Nicotiana/imunologia , Proteínas NLR/metabolismo , Proteínas NLR/genética , Resistência à Doença/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lactuca/genética , Lactuca/imunologia , Multimerização Proteica , Nucleotídeos/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Imunidade Vegetal
7.
Sci Rep ; 14(1): 12253, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806545

RESUMO

Overexpression of Glycine max disease resistant 1 (GmDR1) exhibits broad-spectrum resistance against Fusarium virguliforme, Heterodera glycines (soybean cyst nematode), Tetranychus urticae (Koch) (spider mites), and Aphis glycines Matsumura (soybean aphids) in soybean. To understand the mechanisms of broad-spectrum immunity mediated by GmDR1, the transcriptomes of a strong and a weak GmDR1-overexpressor following treatment with chitin, a pathogen- and pest-associated molecular pattern (PAMP) common to these organisms, were investigated. The strong and weak GmDR1-overexpressors exhibited altered expression of 6098 and 992 genes, respectively, as compared to the nontransgenic control following chitin treatment. However, only 192 chitin- and 115 buffer-responsive genes exhibited over two-fold changes in expression levels in both strong and weak GmDR1-overexpressors as compared to the control. MapMan analysis of the 192 chitin-responsive genes revealed 64 biotic stress-related genes, of which 53 were induced and 11 repressed as compared to the control. The 53 chitin-induced genes include nine genes that encode receptor kinases, 13 encode nucleotide-binding leucine-rich repeat (NLR) receptor proteins, seven encode WRKY transcription factors, four ethylene response factors, and three MYB-like transcription factors. Investigation of a subset of these genes revealed three receptor protein kinases, seven NLR proteins, and one WRKY transcription factor genes that are induced following F. virguliforme and H. glycines infection. The integral plasma membrane GmDR1 protein most likely recognizes PAMPs including chitin and activates transcription of genes encoding receptor kinases, NLR proteins and defense-related genes. GmDR1 could be a pattern recognition receptor that regulates the expression of several NLRs for expression of PAMP-triggered immunity and/or priming the effector triggered immunity.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max , Proteínas NLR , Doenças das Plantas , Proteínas de Plantas , Glycine max/parasitologia , Glycine max/genética , Resistência à Doença/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas NLR/metabolismo , Proteínas NLR/genética , Animais , Fusarium , Quitina/metabolismo , Membrana Celular/metabolismo , Transcriptoma , Plantas Geneticamente Modificadas
8.
Int Immunopharmacol ; 136: 112347, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38820966

RESUMO

Nucleotide-binding and oligomerization structural domain (NOD)-like receptors (NLRs) play an important role in innate immunity as cytoplasmic pattern recognition receptors (PRRs). Over the past decade, considerable progress has been made in understanding the mechanisms by which NLR family members regulate immune system function, particularly the formation of inflammasome and downstream inflammatory signals. However, recent studies have shown that some members of the NLRs, including Nlrp12, NLRX1, and NLRC3, are important in the negative regulation of inflammatory signaling and are involved in the development of various diseases, including inflammatory diseases and cancer. Based on this, in this review, we first summarize the interactions between canonical and non-canonical nuclear factor-κB (NF-κB) signaling pathways that are mainly involved in NLRs, then highlight the mechanisms by which the above NLRs negatively regulate inflammatory signaling responses as well as their roles in tumor progression, and finally summarize the synthetic and natural derivatives with therapeutic effects on these NLRs, which are considered as potential therapeutic agents for overcoming inflammatory diseases.


Assuntos
Inflamação , NF-kappa B , Neoplasias , Transdução de Sinais , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Inflamação/imunologia , Animais , NF-kappa B/metabolismo , NF-kappa B/imunologia , Inflamassomos/metabolismo , Inflamassomos/imunologia , Proteínas NLR/metabolismo , Imunidade Inata , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas Mitocondriais , Peptídeos e Proteínas de Sinalização Intercelular
9.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734816

RESUMO

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Caspase 1 , Dermatite Atópica , Inflamassomos , Interleucina-18 , Interleucina-1beta , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Humanos , Inflamassomos/metabolismo , Inflamassomos/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Macrófagos/metabolismo , Macrófagos/imunologia , Interleucina-1beta/metabolismo , Masculino , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Adulto , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Caspase 1/metabolismo , Pele/patologia , Pele/imunologia , Pele/metabolismo , Índice de Gravidade de Doença , Pessoa de Meia-Idade , Antígenos de Diferenciação Mielomonocítica/metabolismo , Adulto Jovem , Proteínas Reguladoras de Apoptose/metabolismo , Antígenos CD/metabolismo , Proteínas NLR/metabolismo , Estudos de Casos e Controles , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/patologia , Gasderminas , Molécula CD68 , Proteínas de Ligação a DNA
10.
Nat Commun ; 15(1): 4610, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816417

RESUMO

NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication.


Assuntos
Duplicação Gênica , Proteínas NLR , Oryza , Proteínas de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Morte Celular , Filogenia , Regulação da Expressão Gênica de Plantas
11.
Ecotoxicol Environ Saf ; 275: 116282, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564859

RESUMO

The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.


Assuntos
Arsênio , Hepatopatias , Ratos , Animais , Inflamassomos/metabolismo , Ratos Sprague-Dawley , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Piroptose , Modelos Animais de Doenças , Fibrose , Cirrose Hepática/induzido quimicamente , Sulfonamidas/farmacologia , Citocinas/metabolismo
12.
J Environ Pathol Toxicol Oncol ; 43(3): 69-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38608146

RESUMO

The present study explored that the effects and its possible mechanisms of ring finger protein 20 (RNF20) in Postoperative survival rate of liver cancer in clinical. All the serum samples were collected from our hospital. Quantitative polymerase chain reaction (PCR) and microarray analysis, and RNA pull down assay were used in this study. We found that the serum RNF20 mRNA expression level in patients with liver cancer were down-regulated. Postoperative survival rate of RNF20 high expression was higher than that of RNF20 low expression. Then, over-expression of RNF20 diminished liver cancer cell proliferation and metastasis. RNF20 reduced Warburg effect of liver cancer. RNF20 expression regulated NOD-like receptor protein 3 (NLRP3) expression and increased NLRP3 Ubiquitination. NLRP3 participated in the effects of RNF20 on cell proliferation, and not affected on Warburg effect of liver cancer. Our study demonstrated that the serum RNF20 expression level was down-regulated in liver cancer, and promoted postoperative survival rate. RNF20 can reduce cancer progression of liver cancer by NLRP3 signal pathway, suggesting that it may prove to be a potential therapeutic target for postoperative survival rate of liver cancer.


Assuntos
Neoplasias Hepáticas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proliferação de Células , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
13.
Sci Rep ; 14(1): 8070, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580672

RESUMO

Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16 weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.


Assuntos
Inflamassomos , Leptina , Animais , Feminino , Camundongos , Células da Granulosa/metabolismo , Inflamassomos/genética , Leptina/metabolismo , Camundongos Obesos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR , Obesidade/metabolismo , Receptores para Leptina/genética , RNA Mensageiro
15.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639180

RESUMO

Knee osteoarthritis (KOA) is a major cause of disability in elderly individuals. Dicoumarol is a coumarin­like compound derived from sweet clover [Melilotus officinalis (L.) Pall]. It has been suggested that dicoumarol exhibits various types of pharmacological activities, including anticoagulant, antitumor and antibacterial effects. Due to its various biological activities, dicoumarol has a potential protective effect against OA. Therefore, the present study aimed to assess the effects of dicoumarol on knee osteoarthritis. In the present study, dicoumarol was found to protect rat synoviocytes from lipopolysaccharide (LPS)­induced cell apoptosis. Western blot analysis showed that dicoumarol significantly reduced the protein expression levels of fibrosis­related markers and inflammatory cytokines (Tgfb, Timp, Col1a, Il1b and Il18). The inhibitory rates of these proteins were all >50% (P<0.01) compared with those in the LPS and ATP­induced group. Consistently, the mRNA expression levels of these markers and cytokines were decreased to normal levels by dicoumarol after the treatment of rat synovial fibroblasts with LPS and ATP. Mechanistic studies demonstrated that dicoumarol did not affect NF­κB signaling, but it did directly interact with NOD­like receptor protein 3 (NLRP3) to promote its protein degradation, which could be reversed by MG132, but not NH4Cl. The protein half­life of NLRP3 was accelerated from 26.1 to 4.3 h by dicoumarol. Subsequently, dicoumarol could alleviate KOA in vivo; knee joint diameter was decreased from 11.03 to 9.93 mm. Furthermore, the inflammation and fibrosis of the knee joints were inhibited in rats. In conclusion, the present findings demonstrated that dicoumarol could impede the progression of KOA by inhibiting NLRP3 activation, providing a potential treatment strategy for KOA.


Assuntos
Osteoartrite do Joelho , Animais , Ratos , Trifosfato de Adenosina , Citocinas , Dicumarol , Fibrose , Inflamassomos/metabolismo , Inflamação , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Osteoartrite do Joelho/metabolismo
16.
Mol Biomed ; 5(1): 14, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644450

RESUMO

NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.


Assuntos
Inflamassomos , Proteínas NLR , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Proteínas NLR/metabolismo , Animais , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais/imunologia , Imunidade Inata , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética
17.
Clin Epigenetics ; 16(1): 58, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658973

RESUMO

Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.


Assuntos
Doença de Alzheimer , Metilação de DNA , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Doença de Alzheimer/genética , Doença de Alzheimer/etnologia , Negro ou Afro-Americano/genética , Estudos de Casos e Controles , Metilação de DNA/genética , Epigênese Genética/genética , Impressão Genômica/genética , Proteínas NLR/genética , Brancos/genética
19.
World J Gastroenterol ; 30(6): 527-541, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38463022

RESUMO

Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease. Despite ongoing advances in our understanding of UC, its pathogenesis is yet unelucidated, underscoring the urgent need for novel treatment strategies for patients with UC. Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules, such as proteins, RNAs, DNA, and metabolites. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-18, triggering the inflammatory response to a pathogenic agent or injury. Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome, with vital roles in the pathological process of UC. Here, recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC. First, the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized. Finally, an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are highlighted.


Assuntos
Colite Ulcerativa , Exossomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Exossomos/metabolismo , Domínio Pirina
20.
Epilepsy Res ; 201: 107338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447234

RESUMO

BACKGROUND: The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammatory pathway is implicated in the development of epilepsy and can be suppressed by the activation of the silent information regulator 1 (SIRT1). However, the expression and correlation of the NLRP3 pathway and SIRT1 in drug-resistant epilepsy (DRE) remain unknown. METHODS: This study evaluated the histopathology of the cerebral cortex from nine patients with DRE and eight patients with cavernous haemangioma undergoing surgical treatment. It analysed the expression of the NLRP3, interleukin-1ß (IL-1ß), caspase-1 and SIRT1 using immunohistochemistry. Additionally, the contents of NLRP3, caspase-1, IL-1ß and SIRT1 in the serum samples of the included study participants were determined using ELISA method. The correlation between the NLRP3 pathway and the SIRT1 was assessed using Spearman's correlation analysis. RESULTS: The expression of NLRP3, caspase-1 and IL-1ß in the cerebral cortex of patients with DRE was elevated, with the NLRP3 expression being negatively correlated with the SIRT1 expression. Furthermore, IL-1ß in serum was upregulated in patients with DRE. The correlation between the content of serum SIRT1 and NLRP3, caspase-1 and IL-1ß in patients with DRE was not significant. Notably, serum caspase-1 levels were obviously higher in patients with bilateral hippocampal sclerosis than in patients with unilateral hippocampal sclerosis. CONCLUSIONS: The current results indicate that the expression of the NLRP3/caspase-1/IL-1ß pathway is significantly upregulated in patients with DRE and that it is partially correlated with the SIRT1 expression. This study is important for understanding the pathophysiology of DRE and developing new treatment strategies for it.


Assuntos
Esclerose Hipocampal , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Domínio Pirina , Sirtuína 1/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...