Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.705
Filtrar
1.
Nat Commun ; 15(1): 4914, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851846

RESUMO

FOXA family proteins act as pioneer factors by remodeling compact chromatin structures. FOXA1 is crucial for the chromatin binding of the androgen receptor (AR) in both normal prostate epithelial cells and the luminal subtype of prostate cancer (PCa). Recent studies have highlighted the emergence of FOXA2 as an adaptive response to AR signaling inhibition treatments. However, the role of the FOXA1 to FOXA2 transition in regulating cancer lineage plasticity remains unclear. Our study demonstrates that FOXA2 binds to distinct classes of developmental enhancers in multiple AR-independent PCa subtypes, with its binding depending on LSD1. Moreover, we reveal that FOXA2 collaborates with JUN at chromatin and promotes transcriptional reprogramming of AP-1 in lineage-plastic cancer cells, thereby facilitating cell state transitions to multiple lineages. Overall, our findings underscore the pivotal role of FOXA2 as a pan-plasticity driver that rewires AP-1 to induce the differential transcriptional reprogramming necessary for cancer cell lineage plasticity.


Assuntos
Linhagem da Célula , Regulação Neoplásica da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito , Neoplasias da Próstata , Fator de Transcrição AP-1 , Masculino , Humanos , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Animais , Cromatina/metabolismo , Cromatina/genética , Plasticidade Celular/genética , Reprogramação Celular/genética , Camundongos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Elementos Facilitadores Genéticos/genética , Transcrição Gênica
2.
Mol Cancer ; 23(1): 114, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811984

RESUMO

BACKGROUND: Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood. METHODS: We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment. RESULTS: Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1ß production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1ß and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1ß, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth. CONCLUSIONS: Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.


Assuntos
Progressão da Doença , PTEN Fosfo-Hidrolase , Neoplasias da Próstata , Microambiente Tumoral , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Animais , Camundongos , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Microambiente Tumoral/imunologia , Fenótipo Secretor Associado à Senescência , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Senescência Celular/genética , Modelos Animais de Doenças
3.
Toxicology ; 505: 153843, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801936

RESUMO

Benzene, a widely used industrial chemical, has been clarified to cause hematotoxicity. Our previous study suggested that miR-451a may play a role in benzene-induced impairment of erythroid differentiation. However, the mechanism underlying remains unclear. In this study, we explored the role of miR-451a and its underlying mechanisms in hydroquinone (HQ)-induced suppression of erythroid differentiation in K562 cells. 0, 1.0, 2.5, 5.0, 10.0, and 50 µM HQ treatment of K562 cells resulted in a dose-dependent inhibition of erythroid differentiation, as well as the expression of miR-451a. Bioinformatics analysis was conducted to predict potential target genes of miR-451a and dual-luciferase reporter assays confirmed that miR-451a can directly bind to the 3'-UTR regions of BATF, SETD5, and ARHGEF3 mRNAs. We further demonstrated that over-expression or down-regulation of miR-451a altered the expression of BATF, SETD5, and ARHGEF3, and also modified erythroid differentiation. In addition, BATF, SETD5, and ARHGEF3 were verified to play a role in HQ-induced inhibition of erythroid differentiation in this study. Knockdown of SETD5 and ARHGEF3 reversed HQ-induced suppression of erythroid differentiation while knockdown of BATF had the opposite effect. On the other hand, we also identified c-Jun as a potential transcriptional regulator of miR-451a. Forced expression of c-Jun increased miR-451a expression and reversed the inhibition of erythroid differentiation induced by HQ, whereas knockdown of c-Jun had the opposite effect. And the binding site of c-Jun and miR-451a was verified by dual-luciferase reporter assay. Collectively, our findings indicate that miR-451a and its downstream targets BATF, SETD5, and ARHGEF3 are involved in HQ-induced erythroid differentiation disorder, and c-Jun regulates miR-451a as a transcriptional regulator in this process.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Diferenciação Celular , MicroRNAs , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células K562 , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Metiltransferases/genética , Metiltransferases/metabolismo
4.
Biochem Biophys Res Commun ; 719: 150042, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761633

RESUMO

BACKGROUND & AIMS: Psychosocial stress has become an unavoidable part of life, which was reported to promote tumor development. Chronic stress significantly promotes the norepinephrine (NE) secretion and the expression of leptin receptor (LEPR), leading to tumor invasion, metastasis, and proliferation. However, the mechanism of chronic stress-induced tumor proliferation remains unclear. METHODS: To reveal the effect of chronic stress on tumor proliferation, subcutaneous tumor models combined with chronic restraint stress (CRS) were established. Combined with the transcript omics database of liver cancer patients, the target pathways were screened and further verified by in vitro experiments. RESULTS: The results showed that the CRS with subcutaneous tumor transplantation (CRS + tumor) group exhibited significantly larger tumor sizes than the subcutaneous tumor transplantation (tumor) group. Compared with the tumor group, CRS obviously increased the mRNA levels of LEPR, FOS, and JUNB of tumor tissues in the CRS + tumor group. Furthermore, the treatment with norepinephrine (NE) significantly elevated the survival rate of H22 cells and enhanced the expression of LEPR, FOS, and JUNB in vitro. Silencing LEPR significantly reduced the expression of FOS and JUNB, accompanied by a decrease in H22 cell viability. CONCLUSIONS: Our study demonstrated that CRS activates the LEPR-FOS-JUNB signaling pathway by NE, aggravating tumor development. These findings might provide a scientific foundation for investigating the underlying pathological mechanisms of tumors in response to chronic stress.


Assuntos
Proliferação de Células , Proteínas Proto-Oncogênicas c-fos , Receptores para Leptina , Transdução de Sinais , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Masculino , Proteínas Proto-Oncogênicas c-jun/metabolismo , Estresse Psicológico/metabolismo , Restrição Física , Norepinefrina/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Camundongos Endogâmicos BALB C
5.
Cells ; 13(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38727318

RESUMO

CXCR4, JUNB and PD-L1 are implicated in cancer progression and metastasis. The current study investigated these biomarkers in CTCs isolated from metastatic prostate cancer (mPCa) patients at the RNA and protein levels. CTCs were isolated from 48 mPCa patients using the Ficoll density gradient and ISET system (17 out of 48). The (CK/PD-L1/CD45) and (CK/CXCR4/JUNB) phenotypes were identified using two triple immunofluorescence stainings followed by VyCAP platform analysis. Molecular analysis was conducted with an EpCAM-dependent method for 25/48 patients. CK-8, CK-18, CK-19, JUNB, CXCR4, PD-L1, and B2M (reference gene) were analyzed with RT-qPCR. The (CK+/PD-L1+/CD45-) and the (CK+/CXCR4+/JUNB+) were the most frequent phenotypes (61.1% and 62.5%, respectively). Furthermore, the (CK+/CXCR4+/JUNB-) phenotype was correlated with poorer progression-free survival [(PFS), HR: 2.5, p = 0.049], while the (CK+/PD-L1+/CD45-) phenotype was linked to decreased overall survival [(OS), HR: 262.7, p = 0.007]. Molecular analysis revealed that 76.0% of the samples were positive for CK-8,18, and 19, while 28.0% were positive for JUNB, 44.0% for CXCR4, and 48.0% for PD-L1. Conclusively, CXCR4, JUNB, and PD-L1 were highly expressed in CTCs from mPCa patients. The CXCR4 protein expression was associated with poorer PFS, while PD-L1 was correlated with decreased OS, providing new biomarkers with potential clinical relevance.


Assuntos
Antígeno B7-H1 , Células Neoplásicas Circulantes , Neoplasias da Próstata , Receptores CXCR4 , Humanos , Masculino , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Idoso , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regulação Neoplásica da Expressão Gênica
6.
Cell Signal ; 120: 111179, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640980

RESUMO

S100P, a member of the S100 calcium-binding protein family, is closely associated with abnormal proliferation, invasion, and metastasis of various cancers. However, its role in the lung adenocarcinoma (LUAD) tumor microenvironment (TME) remains unclear. In this study, we observed specific expression of S100P on tumor cells in LUAD patients through tissue immunofluorescence analysis. Furthermore, this expression was strongly correlated with the recruitment and polarization of tumor-associated macrophages (TAMs). Bioinformatics analysis revealed that high S100P expression is associated with poorer overall survival in LUAD patients. Subsequently, a subcutaneous mouse model demonstrated that S100P promotes recruitment and polarization of TAMs towards the M2 type. Finally, in vitro studies on LUAD cells revealed that S100P enhances the secretion of chemokines and polarizing factors by activating the PKA/c-Jun pathway, which is implicated in TAM recruitment and polarization towards the M2 phenotype. Moreover, inhibition of c-Jun expression impedes the ability of TAMs to infiltrate and polarize towards the M2 phenotype. In conclusion, our study demonstrates that S100P facilitates LUAD cells growth by recruiting M2 TAMs through PKA/c-Jun signaling, resulting in the production of various cytokines. Considering these findings, S100P holds promise as an important diagnostic marker and potential therapeutic target for LUAD.


Assuntos
Proteínas de Ligação ao Cálcio , Macrófagos Associados a Tumor , Humanos , Animais , Macrófagos Associados a Tumor/metabolismo , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Transdução de Sinais , Feminino , Masculino , Progressão da Doença , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proliferação de Células , Polaridade Celular
7.
Oncogene ; 43(21): 1608-1619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565943

RESUMO

Cancer cells employ adaptive mechanisms to survive various stressors, including genotoxic drugs. Understanding the factors promoting survival is crucial for developing effective treatments. In this study, we unveil a previously unexplored long non-coding RNA, JUNI (JUN-DT, LINC01135), which is upregulated by genotoxic drugs through the activation of stress-activated MAPKs, JNK, and p38 and consequently exerts positive control over the expression of its adjacent gene product c-Jun, a well-known oncoprotein, which transduces signals to multiple transcriptional outputs. JUNI regulates cellular migration and has a crucial role in conferring cellular resistance to chemotherapeutic drugs or UV radiation. Depletion of JUNI markedly increases the sensitivity of cultured cells and spheroids to chemotherapeutic agents. We identified 57 proteins interacting with JUNI. The activity of one of them the MAPK phosphatase and inhibitor, DUSP14, is counteracted by JUNI, thereby, facilitating efficient JNK phosphorylation and c-Jun induction when cells are exposed to UV radiation. The antagonistic interplay with DUSP14 contributes not only to c-Jun induction but also augments the survival of UV-exposed cells. In summary, we introduce JUNI as a novel stress-inducible regulator of c-Jun, positioning it as a potential target for enhancing the sensitivity of cancer cells to chemotherapy.


Assuntos
Movimento Celular , Sobrevivência Celular , Fosfatases de Especificidade Dupla , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Movimento Celular/genética , Sobrevivência Celular/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Linhagem Celular Tumoral , Raios Ultravioleta/efeitos adversos , Sistema de Sinalização das MAP Quinases/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(18): e2404188121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657045

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.


Assuntos
Carcinoma Hepatocelular , Antígeno 2 Relacionado a Fos , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-fos , Proteínas Proto-Oncogênicas c-jun , Proteínas Proto-Oncogênicas c-myc , Fator de Transcrição AP-1 , Animais , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Antígeno 2 Relacionado a Fos/metabolismo , Antígeno 2 Relacionado a Fos/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Hepatócitos/metabolismo , Multimerização Proteica , Regulação Neoplásica da Expressão Gênica , Camundongos Transgênicos
9.
Cell Death Dis ; 15(3): 180, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429278

RESUMO

Gasdermin E (GSDME) has recently been identified as a critical executioner to mediate pyroptosis. While epidermal keratinocytes can initiate GSDME-mediated pyroptosis, the role of keratinocyte GSDME in psoriatic dermatitis remains poorly characterized. Through analysis of GEO datasets, we found elevated GSDME levels in psoriatic lesional skin. Additionally, GSDME levels correlated with both psoriasis severity and response to biologics treatments. Single-cell RNA sequencing (scRNA-seq) from a GEO dataset revealed GSDME upregulation in keratinocytes of psoriasis patients. In the imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model, both full-length and cleaved forms of caspase-3 and GSDME were elevated in the epidermis. Abnormal proliferation and differentiation of keratinocytes and dermatitis were attenuated in Gsdme-/- mice and keratinocyte-specific Gsdme conditional knockout mice after IMQ stimulation. Exposure of keratinocytes to mixed cytokines (M5), mimicking psoriatic conditions, led to GSDME cleavage. Moreover, the interaction between GSDME-FL and p65 or c-jun was significantly increased after M5 stimulation. GSDME knockdown inhibited nuclear translocation of p65 and c-jun and decreased upregulation of psoriatic inflammatory mediators such as IL1ß, CCL20, CXCL1, CXCL8, S100A8, and S100A9 in M5-challenged keratinocytes. In conclusion, GSDME in keratinocytes contributes to the pathogenesis and progression of psoriasis, potentially in a pyroptosis-independent manner by interacting and promoting translocation of p65 and c-jun. These findings suggest that keratinocyte GSDME could serve as a potential therapeutic target for psoriasis treatment.


Assuntos
Dermatite , Gasderminas , Psoríase , Animais , Humanos , Camundongos , Dermatite/metabolismo , Dermatite/patologia , Gasderminas/metabolismo , Imiquimode/efeitos adversos , Inflamação/patologia , Queratinócitos/patologia , Psoríase/metabolismo , Psoríase/patologia , Fator de Transcrição RelA/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo
10.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456508

RESUMO

IL-33 is a cytokine central to type 2 immune pathology in chronic airway disease. This cytokine is abundantly expressed in the respiratory epithelium and increased in disease, but how expression is regulated is undefined. Here we show that increased IL33 expression occurs from multiple noncanonical promoters in human chronic obstructive pulmonary disease (COPD), and it facilitates production of alternatively spliced isoforms in airway cells. We found that phorbol 12-myristate 13-acetate (PMA) can activate IL33 promoters through protein kinase C in primary airway cells and lines. Transcription factor (TF) binding arrays combined with RNA interference identified activator protein (AP) TFs as regulators of baseline and induced IL33 promoter activity. ATAC-Seq and ChIP-PCR identified chromatin accessibility and differential TF binding as additional control points for transcription from noncanonical promoters. In support of a role for these TFs in COPD pathogenesis, we found that AP-2 (TFAP2A, TFAP2C) and AP-1 (FOS and JUN) family members are upregulated in human COPD specimens. This study implicates integrative and pioneer TFs in regulating IL33 promoters and alternative splicing in human airway basal cells. Our work reveals a potentially novel approach for targeting IL-33 in development of therapeutics for COPD.


Assuntos
Interleucina-33 , Doença Pulmonar Obstrutiva Crônica , Humanos , Interleucina-33/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
11.
Cancer Lett ; 587: 216731, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369005

RESUMO

Therapy resistance and metastatic progression jointly determine the fatal outcome of cancer, therefore, elucidating their crosstalk may provide new opportunities to improve therapeutic efficacy and prevent recurrence and metastasis in esophageal squamous cell carcinoma (ESCC). Here, we have established radioresistant ESCC cells with the remarkable metastatic capacity, and identified miR-494-3p (miR494) as a radioresistant activator. Mechanistically, we demonstrated that cullin 3 (CUL3) is a direct target of miR494, which is transcriptionally regulated by JunD, and highlighted that JunD-miR494-CUL3 axis promotes radioresistance and metastasis by facilitating epithelial-mesenchymal transition (EMT) and restraining programmed cell death 1 ligand 1 (PD-L1) degradation. In clinical specimens, miR494 is significantly up-regulated and positively associated with T stage and lymph node metastasis in ESCC tissues and serum. Notably, patients with higher serum miR494 expression have poor prognosis, and patients with higher CUL3 expression have more conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs), less cancer-associated fibroblasts (CAF2/4), and tumor endothelial cells (TEC2/3) infiltration than patients with lower CUL3 expression, suggesting that CUL3 may be involved in tumor microenvironment (TME). Overall, miR494 may serve as a potential prognostic predictor and therapeutic target, providing a promising strategy for ESCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Células Endoteliais/metabolismo , Prognóstico , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Culina/genética
12.
Cell Death Differ ; 31(2): 136-149, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38104183

RESUMO

Fos-related antigen-2 (Fra-2) is the most recently discovered member of the Fos family and, by dimerizing with Jun proteins, forms the activator protein 1 (AP-1) transcription factor. By inducing or repressing the transcription of several target genes, Fra-2 is critically involved in the modulation of cell response to a variety of extracellular stimuli, stressors and intracellular changes. In physiological conditions, Fra-2 has been found to be ubiquitously expressed in human cells, regulating differentiation and homeostasis of bone, muscle, nervous, lymphoid and other tissues. While other AP-1 members, like Jun and Fos, are well characterized, studies of Fra-2 functions in cancer are still at an early stage. Due to the lack of a trans-activating domain, which is present in other Fos proteins, it has been suggested that Fra-2 might inhibit cell transformation, eventually exerting an anti-tumor effect. In human malignancies, however, Fra-2 activity is enhanced (or induced) by dysregulation of microRNAs, oncogenes and extracellular signaling, suggesting a multifaceted role. Therefore, Fra-2 can promote or prevent transformation, proliferation, migration, epithelial-mesenchymal transition, drug resistance and metastasis formation in a tumor- and context-dependent manner. Intriguingly, recent data reports that Fra-2 is also expressed in cancer associated cells, contributing to the intricate crosstalk between neoplastic and non-neoplastic cells, that leads to the evolution and remodeling of the tumor microenvironment. In this review we summarize three decades of research on Fra-2, focusing on its oncogenic and anti-oncogenic effects in tumor progression and dissemination.


Assuntos
Neoplasias , Fator de Transcrição AP-1 , Humanos , Transformação Celular Neoplásica/genética , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Regulação da Expressão Gênica , Neoplasias/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Microambiente Tumoral
13.
Stem Cell Res Ther ; 14(1): 371, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110996

RESUMO

BACKGROUND: Morbidity and mortality associated with cardiovascular diseases, such as myocardial infarction, stem from the inability of terminally differentiated cardiomyocytes to regenerate, and thus repair the damaged myocardial tissue structure. The molecular biological mechanisms behind the lack of regenerative capacity for those cardiomyocytes remains to be fully elucidated. Recent studies have shown that c-Jun serves as a cell cycle regulator for somatic cell fates, playing a key role in multiple molecular pathways, including the inhibition of cellular reprogramming, promoting angiogenesis, and aggravation of cardiac hypertrophy, but its role in cardiac development is largely unknown. This study aims to delineate the role of c-Jun in promoting early-stage cardiac differentiation. METHODS: The c-Jun gene in mouse embryonic stem cells (mESCs) was knocked out with CRISPR-Cas9, and the hanging drop method used to prepare the resulting embryoid bodies. Cardiac differentiation was evaluated up to 9 days after c-Jun knockout (ko) via immunofluorescence, flow cytometric, and qPCR analyses. RESULTS: Compared to the wild-type control group, obvious beating was observed among the c-Jun-ko mESCs after 6 days, which was also associated with significant increases in myocardial marker expression. Additionally, markers associated with mesoderm and endoderm cell layer development, essential for further differentiation of ESCs into cardiomyocytes, were also up-regulated in the c-Jun-ko cell group. CONCLUSIONS: Knocking out c-Jun directs ESCs toward a meso-endodermal cell lineage fate, in turn leading to generation of beating myocardial cells. Thus, c-Jun plays an important role in regulating early cardiac cell development.


Assuntos
Corpos Embrioides , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-jun , Animais , Camundongos , Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias Murinas , Miocárdio , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo
14.
Genome Biol ; 24(1): 268, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012744

RESUMO

BACKGROUND: Enhancer dysregulation is one of the important features for cancer cells. Enhancers enriched with H3K4me3 have been implicated to play important roles in cancer. However, their detailed features and regulatory mechanisms have not been well characterized. RESULTS: Here, we profile the landscape of H3K4me3-enriched enhancers (m3Es) in 43 pairs of colorectal cancer (CRC) samples. M3Es are widely distributed in CRC and averagely possess around 10% of total active enhancers. We identify 1322 gain variant m3Es and 367 lost variant m3Es in CRC. The target genes of the gain m3Es are enriched in immune response pathways. We experimentally prove that repression of CBX8 and RPS6KA5 m3Es inhibits target gene expression in CRC. Furthermore, we find histone methyltransferase MLL1 is responsible for depositing H3K4me3 on the identified Vm3Es. We demonstrate that the transcription factor AP1/JUN interacts with MLL1 and regulates m3E activity. Application of a small chemical inhibitor for MLL1 activity, OICR-9429, represses target gene expression of the identified Vm3Es, enhances anti-tumor immunity and inhibits CRC growth in an animal model. CONCLUSIONS: Taken together, our study illustrates the genome-wide landscape and the regulatory mechanisms of m3Es in CRC, and reveals potential novel strategies for cancer treatment.


Assuntos
Neoplasias Colorretais , Histonas , Proteína de Leucina Linfoide-Mieloide , Proteínas Proto-Oncogênicas c-jun , Animais , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fator de Transcrição AP-1/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
15.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604584

RESUMO

Loss of c-JUN leads to early mouse embryonic death, possibly because of a failure to develop a normal cardiac system. How c-JUN regulates human cardiomyocyte cell fate remains unknown. Here, we used the in vitro differentiation of human pluripotent stem cells into cardiomyocytes to study the role of c-JUN. Surprisingly, the knockout of c-JUN improved cardiomyocyte generation, as determined by the number of TNNT2+ cells. ATAC-seq data showed that the c-JUN defect led to increased chromatin accessibility on critical regulatory elements related to cardiomyocyte development. ChIP-seq data showed that the knockout c-JUN increased RBBP5 and SETD1B expression, leading to improved H3K4me3 deposition on key genes that regulate cardiogenesis. The c-JUN KO phenotype could be copied using the histone demethylase inhibitor CPI-455, which also up-regulated H3K4me3 levels and increased cardiomyocyte generation. Single-cell RNA-seq data defined three cell branches, and knockout c-JUN activated more regulons that are related to cardiogenesis. In summary, our data demonstrated that c-JUN could regulate cardiomyocyte cell fate by modulating H3K4me3 modification and chromatin accessibility and shed light on how c-JUN regulates heart development in humans.


Assuntos
Células-Tronco Embrionárias Humanas , Proteínas Proto-Oncogênicas c-jun , Animais , Humanos , Camundongos , Diferenciação Celular , Cromatina/genética , Genes jun , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-jun/metabolismo
16.
Front Immunol ; 14: 1224892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483616

RESUMO

Activator protein-1 (AP-1) is a transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and invasion in cells. Dysfunctional AP-1 activity is associated with cancer initiation, development, invasion, migration and drug resistance. Therefore, AP-1 is a potential target for cancer targeted therapy. Currently, some small molecule inhibitors targeting AP-1 have been developed and tested, showing some anticancer effects. However, AP-1 is complex and diverse in its structure and function, and different dimers may play different roles in different type of cancers. Therefore, more research is needed to reveal the specific mechanisms of AP-1 in cancer, and how to select appropriate inhibitors and treatment strategies. Ultimately, this review summarizes the potential of combination therapy for cancer.


Assuntos
Neoplasias , Fator de Transcrição AP-1 , Humanos , Fator de Transcrição AP-1/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regulação da Expressão Gênica
17.
Mol Cancer Res ; 21(9): 908-921, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310848

RESUMO

Luminal breast cancer has the highest bone metastasis frequency among all breast cancer subtypes; however, its metastatic mechanism has not been elucidated because of a lack of appropriate models. We have previously developed useful bone metastatic cell lines of luminal breast cancer using MCF7 cells. In this study, we characterized bone metastatic MCF7-BM cell lines and identified c-Jun as a novel bone metastasis marker of luminal breast cancer. The protein level of c-Jun was upregulated in MCF7-BM cells compared with that in parental cells, and its deficiency resulted in the suppression of tumor cell migration, transformation, and reduced osteolytic ability. In vivo, dominant-negative c-Jun exhibited smaller bone metastatic lesions and a lower metastatic frequency. Histologic analysis revealed that c-Jun expression was heterogeneous in bone metastatic lesions, whereas c-Jun overexpression mediated a vicious cycle between MCF7-BM cells and osteoclasts by enhancing calcium-induced migration and releasing the osteoclast activator BMP5. Pharmacological inhibition of c-Jun by the Jun amino-terminal kinase (JNK) inhibitor JNK-IN-8 effectively suppressed tumorigenesis and bone metastasis in MCF7-BM cells. Furthermore, c-Jun downstream signals were specifically correlated with the clinical prognosis of patients with the luminal subtype of breast cancer. Our results illustrate the potential benefits of a therapy that targets c-Jun to prevent bone metastasis in luminal breast cancer. IMPLICATIONS: c-Jun expression mediates bone metastasis in luminal breast cancer by forming a vicious cycle in the bone microenvironment, which reveals potential strategies for subtype-specific bone metastasis therapy.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Feminino , Humanos , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Osteoclastos/metabolismo , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
18.
PLoS Genet ; 19(3): e1010684, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972315

RESUMO

The function of the stem cell system is supported by a stereotypical shape of the niche structure. In Drosophila ovarian germarium, somatic cap cells form a dish-like niche structure that allows only two or three germ-line stem cells (GSCs) reside in the niche. Despite extensive studies on the mechanism of stem cell maintenance, the mechanisms of how the dish-like niche structure is shaped and how this structure contributes to the stem cell system have been elusive. Here, we show that a transmembrane protein Stranded at second (Sas) and its receptor Protein tyrosine phosphatase 10D (Ptp10D), effectors of axon guidance and cell competition via epidermal growth factor receptor (Egfr) inhibition, shape the dish-like niche structure by facilitating c-Jun N-terminal kinase (JNK)-mediated apoptosis. Loss of Sas or Ptp10D in gonadal apical cells, but not in GSCs or cap cells, during the pre-pupal stage results in abnormal shaping of the niche structure in the adult, which allows excessive, four to six GSCs reside in the niche. Mechanistically, loss of Sas-Ptp10D elevates Egfr signaling in the gonadal apical cells, thereby suppressing their naturally-occurring JNK-mediated apoptosis that is essential for the shaping of the dish-like niche structure by neighboring cap cells. Notably, the abnormal niche shape and resulting excessive GSCs lead to diminished egg production. Our data propose a concept that the stereotypical shaping of the niche structure optimizes the stem cell system, thereby maximizing the reproductive capacity.


Assuntos
Proteínas de Drosophila , Animais , Apoptose/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Germinativas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Nicho de Células-Tronco/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
19.
Nat Commun ; 14(1): 1330, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899005

RESUMO

Microenvironmental bystander cells are essential for the progression of chronic lymphocytic leukemia (CLL). We have discovered previously that LYN kinase promotes the formation of a microenvironmental niche for CLL. Here we provide mechanistic evidence that LYN regulates the polarization of stromal fibroblasts to support leukemic progression. LYN is overexpressed in fibroblasts of lymph nodes of CLL patients. LYN-deficient stromal cells reduce CLL growth in vivo. LYN-deficient fibroblasts show markedly reduced leukemia feeding capacity in vitro. Multi-omics profiling reveals that LYN regulates the polarization of fibroblasts towards an inflammatory cancer-associated phenotype through modulation of cytokine secretion and extracellular matrix composition. Mechanistically, LYN deletion reduces inflammatory signaling including reduction of c-JUN expression, which in turn augments the expression of Thrombospondin-1, which binds to CD47 thereby impairing CLL viability. Together, our findings suggest that LYN is essential for rewiring fibroblasts towards a leukemia-supportive phenotype.


Assuntos
Leucemia Linfocítica Crônica de Células B , Proteínas Proto-Oncogênicas c-jun , Trombospondinas , Quinases da Família src , Humanos , Fibroblastos/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia/genética , Leucemia Linfocítica Crônica de Células B/genética , Transdução de Sinais , Quinases da Família src/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Trombospondinas/metabolismo
20.
Aging Cell ; 22(4): e13792, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840360

RESUMO

Diverse mouse strains have different health and life spans, mimicking the diversity among humans. To capture conserved aging signatures, we studied long-lived C57BL/6J and short-lived NZO/HILtJ mouse strains by profiling transcriptomes and epigenomes of immune cells from peripheral blood and the spleen from young and old mice. Transcriptional activation of the AP-1 transcription factor complex, particularly Fos, Junb, and Jun genes, was the most significant and conserved aging signature across tissues and strains. ATAC-seq data analyses showed that the chromatin around these genes was more accessible with age and there were significantly more binding sites for these TFs with age across all studied tissues, targeting pro-inflammatory molecules including Il6. Age-related increases in binding sites of JUN and FOS factors were also conserved in human peripheral blood ATAC-seq data. Single-cell RNA-seq data from the mouse aging cell atlas Tabula Muris Senis showed that the expression of these genes increased with age in B, T, NK cells, and macrophages, with macrophages from old mice expressing these molecules more abundantly than other cells. Functional data showed that upon myeloid cell activation via poly(I:C), the levels of JUN protein and its binding activity increased more significantly in spleen cells from old compared to young mice. In addition, upon activation, old cells produced more IL6 compared to young cells. In sum, we showed that the aging-related transcriptional activation of Jun and Fos family members in AP-1 complex is conserved across immune tissues and long- and short-living mouse strains, possibly contributing to increased inflammation with age.


Assuntos
Proteínas Proto-Oncogênicas c-fos , Fator de Transcrição AP-1 , Animais , Humanos , Camundongos , Envelhecimento/genética , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...