Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.429
Filtrar
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728007

RESUMO

Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.


Assuntos
Mitofagia , Proteínas Serina-Treonina Quinases , Ubiquitina-Proteína Ligases , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Mitofagia/genética , Humanos , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Células HeLa , Ligação Proteica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Células HEK293
2.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724488

RESUMO

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Relacionadas à Autofagia , Autofagia , Progressão da Doença , Neoplasias Pulmonares , MicroRNAs , Material Particulado , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Material Particulado/efeitos adversos , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proliferação de Células/genética , Células A549 , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transporte Vesicular
3.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674078

RESUMO

Canonical autophagy is an evolutionarily conserved process that forms double-membrane structures and mediates the degradation of long-lived proteins (LLPs). Noncanonical autophagy (NCA) is an important alternative pathway involving the formation of microtubule-associated protein 1 light chain 3 (LC3)-positive structures that are independent of partial core autophagy proteins. NCA has been defined by the conjugation of ATG8s to single membranes (CASM). During canonical autophagy and NCA/CASM, LC3 undergoes a lipidation modification, and ATG16L1 is a crucial protein in this process. Previous studies have reported that the WDR domain of ATG16L1 is not necessary for canonical autophagy. However, our study found that WDR domain deficiency significantly impaired LLP degradation in basal conditions and slowed down LC3-II accumulation in canonical autophagy. We further demonstrated that the observed effect was due to a reduced interaction between ATG16L1 and FIP200/WIPI2, without affecting lysosome function or fusion. Furthermore, we also found that the WDR domain of ATG16L1 is crucial for chemical-induced NCA/CASM. The results showed that removing the WDR domain or introducing the K490A mutation in ATG16L1 significantly inhibited the NCA/CASM, which interrupted the V-ATPase-ATG16L1 axis. In conclusion, this study highlights the significance of the WDR domain of ATG16L1 for both canonical autophagy and NCA functions, improving our understanding of its role in autophagy.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Proteínas de Membrana , Proteínas Associadas aos Microtúbulos , Proteínas de Ligação a Fosfato , Repetições WD40 , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Humanos , Repetições WD40/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Lisossomos/metabolismo , Células HEK293 , Células HeLa
4.
Traffic ; 25(4): e12933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600522

RESUMO

Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.


Assuntos
Autofagia , Metabolismo Energético , Humanos , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Isoformas de Proteínas/metabolismo
5.
Am J Med Sci ; 367(6): 382-396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431191

RESUMO

BACKGROUND: Calcitriol has the potential to counteract fibrotic diseases beyond its classical action of maintaining calcium and bone metabolism; however, its functional mechanism remains unknown. Autophagy-related gene 16-like 1 (Atg16l1) is one of the genes related to autophagy and is involved in protecting against fibrotic diseases. The present study aimed to explore the contribution of autophagy to the inhibition of calcitriol-induced hepatic fibrosis, as well as its potential molecular mechanism. METHODS: Carbon tetrachloride (Ccl4)-treated mice were established as hepatic fibrosis models and received calcitriol treatment for 6 weeks. Quantification of Sirius red staining and measurement of key fibrotic markers (collagen-1 and α-SMA) was performed to detect hepatic fibrosis. Chloroquine (CQ) treatment was used to observe autophagic flux, and 3-methyladenine (3-MA) was used to inhibit autophagy. Furthermore, the effects of calcitriol on transforming growth factor ß1 (TGFß1)-stimulated primary hepatic stellate cells (HSCs) were detected. Downregulation of Atg16l1 or vitamin D receptor (VDR) in LX-2 cells was used to explore the mechanism of action of calcitriol in fibrosis and autophagy. Additionally, the electrophoretic mobility shift assay (EMSA) was used to investigate the interactions between VDR and ATG16L1. RESULTS: Calcitriol increased the expression of VDR and ATG16L1, enhanced autophagy and attenuated hepatic fibrosis. 3-MA treatment and VDR silencing abolished the protective effects of calcitriol against fibrosis. Calcitriol-induced anti-fibrosis effects were blocked by ATG16L1 suppression. Furthermore, VDR bound to the ATG16L1 promoter and downregulation of VDR decreased the expression of ATG16L1 in LX-2 cells. CONCLUSION: Calcitriol mitigates hepatic fibrosis partly through ATG16L1-mediated autophagy.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Calcitriol , Células Estreladas do Fígado , Cirrose Hepática , Receptores de Calcitriol , Autofagia/efeitos dos fármacos , Animais , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Camundongos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Masculino , Humanos , Tetracloreto de Carbono/toxicidade , Camundongos Endogâmicos C57BL , Progressão da Doença , Fator de Crescimento Transformador beta1/metabolismo
6.
J Stroke Cerebrovasc Dis ; 33(6): 107687, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521147

RESUMO

OBJECTIVE: Recent research indicates that autophagy is essential for the rupture of intracranial aneurysm (IA). This study aimed to examine and validate potential autophagy-related genes (ARGs) in cases of IA using bioinformatics analysis. METHODS: Two expression profiles (GSE54083 and GSE75436) were obtained from the Gene Expression Omnibus database. Differentially expressed ARGs (DEARGs) in cases of IA were screened using GSE75436, and enrichment analysis and Protein-Protein Interaction (PPI) networks were used to identify the hub genes and related pathways. Furthermore, a novel predictive diagnostic signature for IA based on the hub genes was constructed. The area under the Receiver Operating Characteristic curve (AUC) was used to evaluate the signature performance in GSE75436. RESULTS: In total, 75 co-expressed DEARGs were identified in the GSE75436 and GSE54083 dataset (28 upregulated and 47 downregulated genes). Enrichment analysis of DEARGs revealed several enriched terms associated with proteoglycans in cancer and human immunodeficiency virus 1 infection. PPI analysis revealed interactions between these genes. Hub DEARGs included insulin-like growth factor 1, clusters of differentiation 4, cysteine-aspartic acid protease 8, Bcl-2-like protein 11, mouse double mutant 2 homolog, toll-like receptor 4, growth factor receptor-bound protein 2, Jun proto-oncogene, AP-1 transcription factor subunit, hypoxia inducible factor 1 alpha, and erythroblastic oncogene B-2. Notably, the signature showed good performance in distinguishing IA (AUC = 0.87). The sig calibration curves showed good calibration. CONCLUSION: Bioinformatic analysis identified 75 potential DEARGs in cases of IA. This study revealed that IA is affected by autophagy, which could explain the pathogenesis of IA and aid in its diagnosis and treatment. However, future research with experimental validation is necessary to identify potential DEARGs in cases of IA.


Assuntos
Autofagia , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Aneurisma Intracraniano , Mapas de Interação de Proteínas , Proto-Oncogene Mas , Aneurisma Intracraniano/genética , Humanos , Mapas de Interação de Proteínas/genética , Autofagia/genética , Transcriptoma , Proteínas Relacionadas à Autofagia/genética , Predisposição Genética para Doença , Valor Preditivo dos Testes , Regulação da Expressão Gênica , Transdução de Sinais/genética
7.
Sci Rep ; 14(1): 6049, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472280

RESUMO

The ubiquitin-adaptor protein UBQLN2 promotes degradation of several aggregate-prone proteins implicated in neurodegenerative diseases. Missense UBQLN2 mutations also cause X-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Previously we demonstrated that the liquid-like properties of UBQLN2 molecular assemblies are altered by a specific pathogenic mutation, P506T, and that the propensity of UBQLN2 to aggregate correlated with neurotoxicity. Here, we systematically assess the effects of multiple, spatially distinct ALS/FTD-linked missense mutations on UBQLN2 aggregation propensity, neurotoxicity, phase separation, and autophagic flux. In contrast to what we observed for the P506T mutation, no other tested pathogenic mutant exhibited a clear correlation between aggregation propensity and neurotoxicity. These results emphasize the unique nature of pathogenic UBQLN2 mutations and argue against a generalizable link between aggregation propensity and neurodegeneration in UBQLN2-linked ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Relacionadas à Autofagia/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
J Cell Mol Med ; 28(8): e18261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526029

RESUMO

We aimed to explore the biological function of CPNE7 and determine the impact of CPNE7 on chemotherapy resistance in colorectal cancer (CRC) patients. According to the Gene Expression Profiling Interactive Analysis database and previously published data, CPNE7 was identified as a potential oncogene in CRC. RT-qPCR and Western blotting were performed to verify the expression of CPNE7. Chi-square test was used to evaluate the associations between CPNE7 and clinical features. Cell proliferation, colony formation, cell migration and invasion, cell cycle and apoptosis were assessed to determine the effects of CPNE7. Transcriptome sequencing was used to identify potential downstream regulatory genes, and gene set enrichment analysis was performed to investigate downstream pathways. The effect of CPNE7 on 5-fluorouracil chemosensitivity was verified by half maximal inhibitory concentration (IC50). Subcutaneous tumorigenesis assay was used to examine the role of CPNE7 in sensitivity of CRC to chemotherapy in vivo. Transmission electron microscopy was used to detect autophagosomes. CPNE7 was highly expressed in CRC tissues, and its expression was correlated with T stage and tumour site. Knockdown of CPNE7 inhibited the proliferation and colony formation of CRC cells and promoted apoptosis. Knockdown of CPNE7 suppressed the expression of ATG9B and enhanced the sensitivity of CRC cells to 5-fluorouracil in vitro and in vivo. Knockdown of CPNE7 reversed the induction of the autophagy pathway by rapamycin and reduced the number of autophagosomes. Depletion of CPNE7 attenuated the malignant proliferation of CRC cells and enhanced the chemosensitivity of CRC cells to 5-fluorouracil.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/genética
9.
Int Immunopharmacol ; 130: 111742, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452414

RESUMO

BACKGROUND: Cerebral ischemia/reperfusion injury (IRI) is pathologically associated with protein damage. The flavonoid fisetin has good therapeutic effects on cerebral IRI. However, the role of fisetin in regulating protein damage during cerebral IRI development remains unclear. This study investigated the pharmacological effects of fisetin on protein damage during cerebral IRI progression and defined the underlying mechanism of action. METHODS: In vivo and in vitro models of cerebral IRI were established by middle cerebral artery occlusion/reperfusion (MACO/R) and oxygen-glucose deprivation/reperfusion (OGD/R) treatment, respectively. Triphenyl tetrazolium chloride staining was performed to detect cerebral infarct size, and the modified neurologic severity score was used to examine neurological deficits. LDH activity and protein damage were assessed using kits. HT22 cell vitality and apoptosis were examined using CCK-8 assay and TUNEL staining, respectively. Interactions between Foxc1, Ubqln1, Sirt1, and Ezh2 were analyzed using CoIP, ChIP and/or dual-luciferase reporter gene assays. RESULTS: Fisetin alleviated protein damage and ubiquitinated protein aggregation and neuronal death caused by MCAO/R and OGD/R. Ubqln1 knockdown abrogated the inhibitory effect of fisetin on OGD/R-induced protein damage, ubiquitinated protein aggregation, and neuronal death in HT22 cells. Further experiments demonstrated that Foxc1 functions as a transcriptional activator of Ubqln1 and that Sirt1 promotes Foxc1 expression by deacetylating Ezh2 and inhibiting its activity. Furthermore, Sirt1 knockdown abrogated fisetin-mediated biological effects on OGD/R-treated HT22 cells. CONCLUSION: Fisetin improved proteostasis during cerebral IRI by regulating the Sirt1/Foxc1/Ubqln1 signaling axis. Our findings strongly suggest that fisetin-mediated inhibition of protein damage after ischemic stroke is a part of the mechanism through which fisetin is neuroprotective in cerebral IRI.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Relacionadas à Autofagia , Isquemia Encefálica , Flavonóis , Fatores de Transcrição Forkhead , Proteostase , Traumatismo por Reperfusão , Sirtuína 1 , Apoptose , Isquemia Encefálica/tratamento farmacológico , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Agregados Proteicos , Proteostase/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Sirtuína 1/metabolismo , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição Forkhead/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
10.
Nat Commun ; 15(1): 2465, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548722

RESUMO

Chronic HIV-1 infection is characterized by T-cell dysregulation that is partly restored by antiretroviral therapy. Autophagy is a critical regulator of T-cell function. Here, we demonstrate a protective role for autophagy in HIV-1 disease pathogenesis. Targeted analysis of genetic variation in core autophagy gene ATG16L1 reveals the previously unidentified rs6861 polymorphism, which correlates functionally with enhanced autophagy and clinically with improved survival of untreated HIV-1-infected individuals. T-cells carrying ATG16L1 rs6861(TT) genotype display improved antiviral immunity, evidenced by increased proliferation, revamped immune responsiveness, and suppressed exhaustion/immunosenescence features. In-depth flow-cytometric and transcriptional profiling reveal T-helper-cell-signatures unique to rs6861(TT) individuals with enriched regulation of pro-inflammatory networks and skewing towards immunoregulatory phenotype. Therapeutic enhancement of autophagy recapitulates the rs6861(TT)-associated T-cell traits in non-carriers. These data underscore the in vivo relevance of autophagy for longer-lasting T-cell-mediated HIV-1 control, with implications towards development of host-directed antivirals targeting autophagy to restore immune function in chronic HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Proteínas Relacionadas à Autofagia/genética , Polimorfismo Genético , Autofagia/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética
11.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498238

RESUMO

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Valproico/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Supressora de Tumor p53 , Resistência a Múltiplos Medicamentos/genética , Apoptose , Linhagem Celular Tumoral , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacologia , Proteínas de Transporte Vesicular/uso terapêutico
12.
Sci Rep ; 14(1): 5233, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433218

RESUMO

Macrophages act as the first immune defense line of the host against Mycobacterium tuberculosis (Mtb). A previous study showed that circRNA_SLC8A1 was significantly upregulated in Mtb-infected macrophages, but its regulatory mechanism in anti-tuberculosis infection is unclear. Therefore, this study aimed to investigate the role of circRNA_SLC8A1 in the anti-tuberculosis activity of macrophages. We showed that circRNA_SLC8A1 was upregulated in tuberculosis patients. Moreover, the binding sites of miR-20b-5p on circRNA_SLC8A1 and Sequestosome 1 (SQSTM1/p62) mRNA were predicted by StarBase and verified by the double luciferase reporter gene assay. Next, we found that miR-20b-5p expression was decreased, while SQSTM1 protein expression was increased in a time- and dose-dependent manner in the human macrophage U937 in response to Mtb infection. Furthermore, circRNA_SLC8A1 overexpression vector (circRNA_SLC8A1) or shRNA (sh-circRNA_SLC8A1) and/or miR-20b-5p mimic or inhibitor and/or SQSTM1 overexpression vector (SQSTM1) or small interfering RNA (si-SQSTM1) or its corresponding control were transfected into Mtb-infected macrophages. Results showed that overexpression of circRNA_SLC8A1 or miR-20b-5p inhibitor promoted the secretion of pro-inflammatory factors IL-1ß, IL-6, and TNF-α, increased Nitric Oxide (NO) content and inducible nitric oxide synthase (iNOS) expression, inhibited Reactive oxygen species (ROS) production. Cleaved-caspase-3 protein expression, and cell apoptosis, and promoted Mtb survival. Silencing SQSTM1 inhibited secretion of pro-inflammatory factors and activation of the NF-κB pathway. Overexpression of miR-20b-5p blocked the promoting of circ-SLC8A1 on SQSTM1 protein expression. In summary, circRNA_SLC8A1 sponged miR-20b-5p to upregulate SQSTM1/p62 expression and promoted Mtb survival in macrophages through the NF-κB signaling pathway.


Assuntos
MicroRNAs , Mycobacterium tuberculosis , Humanos , NF-kappa B , Proteína Sequestossoma-1/genética , RNA Circular/genética , Proteínas Relacionadas à Autofagia , MicroRNAs/genética
13.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516774

RESUMO

Acute liver failure (ALF) is a complex syndrome characterized by overactivation of innate immunity, and the recruitment and differentiation of immune cells at inflammatory sites. The present study aimed to explore the role of microRNA (miRNA/miR)­21 and its potential mechanisms underlying inflammatory responses in ALF. Baseline serum miR­21 was analyzed in patients with ALF and healthy controls. In addition, miR­21 antagomir was injected via the tail vein into C57BL/6 mice, and lipopolysaccharide/D­galactosamine (LPS/GalN) was injected into mice after 48 h. The expression levels of miR­21, Krüppel­like­factor­6 (KLF6), autophagy­related proteins and interleukin (IL)­23, and hepatic pathology were then assessed in the liver tissue. Furthermore, THP­1­derived macrophages were transfected with a miRNA negative control, miR­21 inhibitor, miR­21 mimics or KLF6 overexpression plasmid, followed by treatment with or without rapamycin, and the expression levels of miR­21, KLF6, autophagy­related proteins and IL­23 were evaluated. The results revealed that baseline serum miR­21 levels were significantly upregulated in patients with ALF. In addition, LPS/GalN­induced ALF was attenuated in the antagomir­21 mouse group. KLF6 was identified as a target of miR­21­5p with one putative seed match site identified by TargetScan. A subsequent luciferase activity assay demonstrated a direct interaction between miR­21­5p and the 3'­UTR of KLF6 mRNA. Further experiments suggested that miR­21 promoted the expression of IL­23 via inhibiting KLF6, which regulated autophagy. In conclusion, in the present study, baseline serum miR­21 levels were highly upregulated in patients with ALF, antagomir­21 attenuated LPS/GalN­induced ALF in a mouse model, and miR­21 could promote the expression of IL­23 via inhibiting KLF6.


Assuntos
Falência Hepática Aguda , MicroRNAs , Animais , Humanos , Camundongos , Antagomirs , Autofagia/genética , Proteínas Relacionadas à Autofagia , Interleucina-23/genética , Interleucina-23/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/genética , Falência Hepática Aguda/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
14.
Dev Cell ; 59(7): 911-923.e4, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38447569

RESUMO

Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagia/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagossomos/metabolismo
15.
Sci Rep ; 14(1): 6379, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493244

RESUMO

The regulatory mechanism of long non-coding RNAs (lncRNAs) in autophagy is as yet not well established. In this research, we show that the long non-coding RNA MLLT4 antisense RNA 1 (lncRNA MLLT4-AS1) is induced by the MTORC inhibitor PP242 and rapamycin in cervical cells. Overexpression of MLLT4-AS1 promotes autophagy and inhibits tumorigenesis and the migration of cervical cancer cells, whereas knockdown of MLLT4-AS1 attenuates PP242-induced autophagy. Mass spectrometry, RNA fluorescence in situ hybridization (RNA-FISH), and immunoprecipitation assays were performed to identify the direct interactions between MLLT4-AS1 and other associated targets, such as myosin-9 and autophagy-related 14(ATG14). MLLT4-AS1 was upregulated by H3K27ac modification with PP242 treatment, and knockdown of MLLT4-AS1 reversed autophagy by modulating ATG14 expression. Mechanically, MLLT4-AS1 was associated with the myosin-9 protein, which further promoted the transcription activity of the ATG14 gene. In conclusion, we demonstrated that MLLT4-AS1 acts as a potential tumor suppressor in cervical cancer by inducing autophagy, and H3K27ac modification-induced upregulation of MLLT4-AS1 could cause autophagy by associating with myosin-9 and promoting ATG14 transcription.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Proliferação de Células/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteínas do Citoesqueleto/metabolismo , Miosinas/genética , Miosinas/metabolismo , Autofagia/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Relacionadas à Autofagia/genética
16.
BMC Cancer ; 24(1): 283, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431566

RESUMO

BACKGROUND: This study aims to investigate the expression of UBQLN1 in lung cancer (LC) tissue and the diagnostic capability of autoantibody to UBQLN1 (anti-UBQLN1) in the detection of LC and the discrimination of pulmonary nodules (PNs). METHODS: Sera from 798 participants were used to discover and validate the level of autoantibodies via HuProt microarray and Enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis was applied to establish model. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the diagnostic potential. Immunohistochemistry was performed to detect UBQLN1 expression in 88 LC tissues and 88 para-tumor tissues. qRT-PCR and western blotting were performed to detect the expression of UBQLN1 at the mRNA and protein levels, respectively. Trans-well assay and cell counting kit-8 (CCK-8) was used to investigate the function of UBQLN1. RESULTS: Anti-UBQLN1 was identified with the highest fold change by protein microarray. The level of anti-UBQLN1 in LC patients was obviously higher than that in NC or patients with benign lung disease of validation cohort 1 (P<0.05). The area under the curve (AUC) of anti-UBQLN1 was 0.610 (95%CI: 0.508-0.713) while reached at 0.822 (95%CI: 0.784-0.897) when combining anti-UBQLN1 with CEA, CYFRA21-1, CA125 and three CT indicators (vascular notch sign, lobulation sign and mediastinal lymph node enlargement) in the discrimination of PNs. UBQLN1 protein was overexpressed in lung adenocarcinoma (LUAD) tissues compared to para-tumor tissues. UBQLN1 knockdown remarkably inhibited the migration, invasion and proliferation of LUAD cell lines. CONCLUSIONS: Anti-UBQLN1 might be a potential biomarker for the diagnosis of LC and the discrimination of PNs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico , Imunidade Humoral , Antígenos de Neoplasias , Queratina-19 , Biomarcadores Tumorais , Proteínas Relacionadas à Autofagia/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
17.
Virulence ; 15(1): 2322183, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38438325

RESUMO

Autophagy is an intracellular degradation process that is important for the development and pathogenicity of phytopathogenic fungi and for the defence response of plants. However, the molecular mechanisms underlying autophagy in the pathogenicity of the plant pathogenic oomycete Peronophythora litchii, the causal agent of litchi downy blight, have not been well characterized. In this study, the autophagy-related protein ATG2 homolog, PlATG2, was identified and characterized using a CRISPR/Cas9-mediated gene replacement strategy in P. litchii. A monodansylcadaverine (MDC) staining assay indicated that deletion of PlATG2 abolished autophagosome formation. Infection assays demonstrated that ΔPlatg2 mutants showed significantly impaired pathogenicity in litchi leaves and fruits. Further studies have revealed that PlATG2 participates in radial growth and asexual/sexual development of P. litchii. Moreover, zoospore release and cytoplasmic cleavage of sporangia were considerably lower in the ΔPlatg2 mutants than in the wild-type strain by FM4-64 staining. Taken together, our results revealed that PlATG2 plays a pivotal role in vegetative growth, sporangia and oospore production, zoospore release, sporangial cleavage, and plant infection of P. litchii. This study advances our understanding of the pathogenicity mechanisms of the phytopathogenic oomycete P. litchii and is conducive to the development of effective control strategies.


Assuntos
Autofagossomos , Esporângios , Virulência , Autofagia , Proteínas Relacionadas à Autofagia
18.
Bioorg Chem ; 146: 107245, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484587

RESUMO

The overuse of antibiotics has led to the enhanced resistance of many pathogenic bacteria, posing a threat to human health. Therefore, there is a need to develop green and safe alternatives to antibiotics. Beta-defensins play a crucial role in host defense against pathogens and have multifunctional properties, exerting key roles in innate and adaptive immunity, as well as non-immune processes. In this study, a 210 bp long cDNA sequence of yak DEFB114 gene was amplified and successfully expressed in a prokaryotic system. The DEFB114 protein exhibited significant inhibitory effects on the growth of Aspergillus fumigatus in vitro. When co-cultured with yak macrophages, DEFB114 protein enhanced macrophage phagocytic activity and increased nucleic acid fluorescence intensity (P < 0.05). DEFB114 protein also enhanced the activity of yak macrophages stimulated by inactivated Aspergillus fumigatus spores, increased the release of nitric oxide (NO), and promoted the expression of genes such as γ-actin, Lgals, Man2b, and Capg (P < 0.05). In mice experiments, DEFB114 protein promoted resistance against Aspergillus fumigatus infection, by regulating the NOD1/2-ATG16L1-NF-κB pathway to modulate the host immune response and exert its anti-infective effects. In summary, the yak DEFB114 protein could inhibit the growth of Aspergillus fumigatus and enhance the animal's resistance to pathogenic microorganisms, thereby having significant implications in the treatment and prevention of fungal infections.


Assuntos
Aspergilose , NF-kappa B , Animais , Camundongos , Antibacterianos , Aspergilose/tratamento farmacológico , Aspergillus fumigatus , Proteínas Relacionadas à Autofagia/metabolismo , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Transdução de Sinais
19.
Sci Adv ; 10(6): eadj8027, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324698

RESUMO

The covalent attachment of ubiquitin-like LC3 proteins (microtubule-associated proteins 1A/1B light chain 3) prepares the autophagic membrane for cargo recruitment. We resolve key steps in LC3 lipidation by combining molecular dynamics simulations and experiments in vitro and in cellulo. We show how the E3-like ligaseautophagy-related 12 (ATG12)-ATG5-ATG16L1 in complex with the E2-like conjugase ATG3 docks LC3 onto the membrane in three steps by (i) the phosphatidylinositol 3-phosphate effector protein WD repeat domain phosphoinositide-interacting protein 2 (WIPI2), (ii) helix α2 of ATG16L1, and (iii) a membrane-interacting surface of ATG3. Phosphatidylethanolamine (PE) lipids concentrate in a region around the thioester bond between ATG3 and LC3, highlighting residues with a possible role in the catalytic transfer of LC3 to PE, including two conserved histidines. In a near-complete pathway from the initial membrane recruitment to the LC3 lipidation reaction, the three-step targeting of the ATG12-ATG5-ATG16L1 machinery establishes a high level of regulatory control.


Assuntos
Autofagossomos , Proteínas Associadas aos Microtúbulos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Autofagossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose , Autofagia
20.
Nat Cell Biol ; 26(3): 366-377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316984

RESUMO

Cells convert complex metabolic information into stress-adapted autophagy responses. Canonically, multilayered protein kinase networks converge on the conserved Atg1/ULK kinase complex (AKC) to induce non-selective and selective forms of autophagy in response to metabolic changes. Here we show that, upon phosphate starvation, the metabolite sensor Pho81 interacts with the adaptor subunit Atg11 at the AKC via an Atg11/FIP200 interaction motif to modulate pexophagy by virtue of its conserved phospho-metabolite sensing SPX domain. Notably, core AKC components Atg13 and Atg17 are dispensable for phosphate starvation-induced autophagy revealing significant compositional and functional plasticity of the AKC. Our data indicate that, instead of functioning as a selective autophagy receptor, Pho81 compensates for partially inactive Atg13 by promoting Atg11 phosphorylation by Atg1 critical for pexophagy during phosphate starvation. Our work shows Atg11/FIP200 adaptor subunits bind not only selective autophagy receptors but also modulator subunits that convey metabolic information directly to the AKC for autophagy regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Macroautofagia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte/metabolismo , Autofagia/fisiologia , Fagossomos/metabolismo , Fatores de Transcrição/metabolismo , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...