RESUMO
Background and Objectives: Congenital thyroid dyshormonogenesis is caused by alterations in the synthesis of thyroid hormones in a newborn. Additionally, 10 to 20% of these cases are hereditary, caused by defects in proteins involved in hormonal synthesis. One of the most common causes is mutations in the thyroid peroxidase (TPO) enzyme gene, an autosomal recessive disease. We aimed to detect mutations of the TPO gene in 12 Chilean patients with congenital hypothyroidism due to dyshormonogenesis (CHD) and to characterize these patients clinically and molecularly. Materials and Methods: Twelve patients under 20 years of age with CHD, controlled at San Juan de Dios Hospital in Santiago, Chile, were selected according to the inclusion criteria: elevated neonatal TSH, persistent hypothyroidism, and thyroid normotopic by imaging study. Those with deafness, Down syndrome, and central or transient congenital hypothyroidism were excluded. Blood samples were taken for DNA extraction, and the 17 exons and exon-intron junctions of the TPO gene were amplified by PCR. The PCR products were sequenced by Sanger. Results: Two possibly pathogenic mutations of the TPO gene were detected: c.2242G>A (p.Val748Met) and c.1103C>T (p.Pro368Leu). These mutations were detected in 2 of 12 patients (16.6%): 1 was compound heterozygous c.1103C>T/c.2242G>A, and the other was heterozygous for c.2242G>A. In the diagnostic confirmation test, both patients presented diffuse hyper-uptake goiter on thyroid scintigraphy and high TSH in venous blood (>190 uIU/mL). Conclusions: The frequency of patients with possibly pathogenic mutations in TPO with CHD was 16.6%. Its study would allow for genetic counseling to be offered to the families of affected patients.
Assuntos
Hipotireoidismo Congênito , Iodeto Peroxidase , Proteínas de Ligação ao Ferro , Mutação , Humanos , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/sangue , Chile , Iodeto Peroxidase/genética , Feminino , Masculino , Proteínas de Ligação ao Ferro/genética , Autoantígenos/genética , Lactente , Criança , Adolescente , Pré-Escolar , Recém-Nascido , Disgenesia da Tireoide/genética , Disgenesia da Tireoide/complicações , Disgenesia da Tireoide/sangueRESUMO
Friedreich's Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways. This study amalgamated 226 FXN genetic variants from the literature and database searches, with only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental and destabilizing predictions for FXN mutations, predominantly impacting conserved residues crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R. These variants, selected for their severe clinical implications, underwent molecular dynamics (MD) simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments, encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced by I154F and W155R mutations, aligning with the existing literature.
Assuntos
Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Simulação de Dinâmica Molecular , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Mutação de Sentido Incorreto , Simulação por Computador , Variação GenéticaRESUMO
OBJECTIVE: Identify molecular mimicry between TPO, eosinophil peroxidase (EPX), thyroglobulin and IL24 and microorganism antigens. METHODS: Through in silico analysis, we performed local alignments between human and microorganism antigens with PSI-BLAST. Proteins that did not present a 3D structure were modeled by homology through the Swiss Modeller server and epitope prediction was performed through Ellipro. Epitopes were located in the 3D models using PYMOL software. RESULTS: A total of 38 microorganism antigens (parasites, bacteria) had identities between 30% and 45%, being the highest with Anisakis simplex. The alignment between 2 candidate proteins from A. simplex and EPX presented significant values, with identities of 43 and 44%. In bacteria, Campylobacter jejuni presented the highest identity with thyroglobulin (35%). 220 linear and conformational epitopes of microorganism antigens were predicted. Peroxidasin-like proteins from Toxocara canis and Trichinella pseudospiralis presented 10 epitopes similar to TPO and EPX, as possible molecules triggering cross-reactivity. No virus presented identity with the human proteins studied. CONCLUSION: TPO and EPX antigens shared potential cross-reactive epitopes with bacterial and nematode proteins, suggesting that molecular mimicry could be a mechanism that explains the relationship between infections and urticaria/hypothyroidism. In vitro work is needed to demonstrate the results obtained in the in silico analysis.
OBJETIVO: Identificar mimetismo molecular entre TPO, eosinofil peroxidasa (EPX), tiroglobulina e IL24 y antígenos de microorganismos. MÉTODOS: A través de análisis in silico, realizamos los alineamientos locales entre los antígenos humanos y de microorganismos con PSI-BLAST. Las proteínas que no presentaban estructura 3D, fueron modeladas por homología a través del servidor Swiss Modeller y se realizó una predicción de epítopes a través de Ellipro. Los epítopes se localizaron en los modelos 3D utilizando el software PYMOL. RESULTADOS: Un total de 38 antígenos de microorganismos (parásitos y bacterias), tuvieron identidades entre 30 y 45%, siendo los más altos con Anisakis simplex. El alineamiento entre dos proteínas candidatas de A. simplex y EPX presentaron valores importantes, con identidades de 43 y 44%. En las bacterias, Campylobacter jejuni presentó la mayor identidad con tiroglobulina (35%). Se predijeron 220 epítopes lineales y conformacionales de antígenos de microorganismos. Las proteínas similares a la peroxidasina de Toxocara canis y Trichinella pseudospiralis presentaron diez epítopes similares a TPO y EPX, como posibles moléculas desencadenantes de una reactividad cruzada. Ningún virus presentó identidad con las proteínas humanas estudiadas. CONCLUSIÓN: Los antígenos TPO y EPX compartieron potenciales epítopes de reacción cruzada con proteínas bacterianas y nematodos, lo que sugiere que el mimetismo molecular podría ser un mecanismo que explique la relación entre infecciones y la urticaria/hipotiroidismo. Se necesitan trabajos in vitro que demuestren los resultados obtenidos en el análisis in silico.
Assuntos
Autoantígenos , Iodeto Peroxidase , Mimetismo Molecular , Tireoglobulina , Mimetismo Molecular/imunologia , Humanos , Tireoglobulina/imunologia , Iodeto Peroxidase/imunologia , Peroxidase de Eosinófilo/imunologia , Animais , Antígenos de Bactérias/imunologia , Reações Cruzadas , Proteínas de Ligação ao Ferro/imunologia , Epitopos/imunologiaRESUMO
Mitochondrial aconitase (ACO2) has been postulated as a redox sensor in the tricarboxylic acid cycle. Its high sensitivity towards reactive oxygen and nitrogen species is due to its particularly labile [4Fe-4S]2+ prosthetic group which yields an inactive [3Fe-4S]+ cluster upon oxidation. Moreover, ACO2 was found as a main oxidant target during aging and in pathologies where mitochondrial dysfunction is implied. Herein, we report the expression and characterization of recombinant human ACO2 and its interaction with frataxin (FXN), a protein that participates in the de novo biosynthesis of Fe-S clusters. A high yield of pure ACO2 (≥99%, 22 ± 2 U/mg) was obtained and kinetic parameters for citrate, isocitrate, and cis-aconitate were determined. Superoxide, carbonate radical, peroxynitrite, and hydrogen peroxide reacted with ACO2 with second-order rate constants of 108, 108, 105, and 102 M-1 s-1, respectively. Temperature-induced unfolding assessed by tryptophan fluorescence of ACO2 resulted in apparent melting temperatures of 51.1 ± 0.5 and 43.6 ± 0.2 °C for [4Fe-4S]2+ and [3Fe-4S]+ states of ACO2, sustaining lower thermal stability upon cluster oxidation. Differences in protein dynamics produced by the Fe-S cluster redox state were addressed by molecular dynamics simulations. Reactivation of [3Fe-4S]+-ACO2 by FXN was verified by activation assays and direct iron-dependent interaction was confirmed by protein-protein interaction ELISA and fluorescence spectroscopic assays. Multimer modeling and protein-protein docking predicted an ACO2-FXN complex where the metal ion binding region of FXN approaches the [3Fe-4S]+ cluster, supporting that FXN is a partner for reactivation of ACO2 upon oxidative cluster inactivation.
Assuntos
Proteínas de Ligação ao Ferro , Proteínas Ferro-Enxofre , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Oxirredução , Superóxidos/metabolismo , Aconitato Hidratase/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , FrataxinaRESUMO
La Ataxia de Friedreich (AF) es una enfermedad neurodegenerativa autosómica recesiva con compromiso multisistémico. En esta revisión, se actualizan aspectos epidemiológicos, fisiopatológicos y clínico-terapéuticos y se conduce una búsqueda sistemática de casos de AF reportados en Latinoamérica. La prevalencia de AF en poblaciones caucásicas es estimada entre 2 y 5 casos por 100 000 habitantes. En Latinoamérica se han publicado 35 estudios que reúnen 1481 casos en 6 países. Causada por la expansión anormal de repeticiones GAA en el gen FXN, la etiopatogenia está asociada a una reducción en los niveles de la proteína frataxina (que altera el metabolismo energético) y el acúmulo de hierro mitocondrial. El fenotipo clásico de AF suele comenzar antes de los 25 años, aunque hay otros de inicio tardío y retención de reflejos. La sintomatología se caracteriza por ataxia progresiva, alteración sensitiva, arreflexia, disartria, y alteraciones oculomotoras, además de compromiso cardiaco, endocrino y musculoesquelético. El diagnóstico requiere evaluación neurológica detallada, estudios neurofisiológicos, neuroimágenes y pruebas bioquímicas pero el enfoque determinante es el estudio genético que demuestre variantes genéticas bialélicas en el gen FXN. El manejo es multidisciplinario, orientado a aminorar los síntomas, prevenir complicaciones y brindar asesoramiento genético apropiado. Recientemente se ha aprobado el primer tratamiento farmacológico para AF con varios más en fases de experimentación.
SUMMARY Friedreich Ataxia (FA) is an autosomal recessive neurodegenerative disease with multisystemic involvement. This update of epidemiological, pathophysiological, and clinico-therapeutic aspects of FA, includes a systematic review of cases in Latin America. The estimated FA prevalence in Caucasian populations is between 2 to 5 cases per 100 000. In Latin America, 1481 cases have been published in 35 articles from six different countries. Caused by an abnormally repeated expansion of GAA trinucleotide inside the FXN gene, FA's etiopathogenesis is associated with reduced levels of the frataxin protein, which disturb the energy metabolism and result in mitochondrial iron accumulation. The classic phenotype usually shows symptoms before the age of 25, although there are others with a later onset. The main symptoms of AF are progressive ataxia, sensory disturbances, areflexia, dysarthria, and oculomotor alterations, in addition to cardiac, endocrine, and musculoskeletal compromise. Diagnostic workup requires a detailed neurological examination, neuroconduction studies, neuroimaging, and biochemical tests. The definitive diagnosis is provided by genetic testing showing biallelic variants within the FXN gene. The management is multidisciplinary, aimed at reducing symptoms, preventing complications, and providing an appropriate genetic counseling. Recently, the first pharmacological treatment for AF has been approved, with several others in clinical assessment trials.
Assuntos
Humanos , Adulto Jovem , Ataxia , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Genes Recessivos , América Latina , Relatos de CasosRESUMO
Frataxin is a kinetic activator of the mitochondrial supercomplex for iron-sulfur cluster assembly. Low frataxin expression or a decrease in its functionality results in Friedreich's Ataxia (FRDA). With the aim of creating new molecular tools to study this metabolic pathway, and ultimately, to explore new therapeutic strategies, we have investigated the possibility of obtaining small proteins exhibiting a high affinity for frataxin. In this study, we applied the ribosome display approach, using human frataxin as the target. We focused on Affi_224, one of the proteins that we were able to select after five rounds of selection. We have studied the interaction between both proteins and discussed some applications of this specific molecular tutor, concerning the modulation of the supercomplex activity. Affi_224 and frataxin showed a KD value in the nanomolar range, as judged by surface plasmon resonance analysis. Most likely, it binds to the frataxin acidic ridge, as suggested by the analysis of chemical shift perturbations (nuclear magnetic resonance) and computational simulations. Affi_224 was able to increase Cys NFS1 desulfurase activation exerted by the FRDA frataxin variant G130V. Importantly, Affi_224 interacts with frataxin in a human cellular model. Our results suggest quaternary addition may be a new tool to modulate frataxin function in vivo. Nevertheless, more functional experiments under physiological conditions should be carried out to evaluate Affi_224 effectiveness in FRDA cell models.
Assuntos
Liases de Carbono-Enxofre , Proteínas de Ligação ao Ferro , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , FrataxinaRESUMO
PURPOSE: Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the preventable causes of both cognitive and motor deficits. We present a genetic and bioinformatics investigation of rational clinical design in 17 Argentine patients suspected of CH due to thyroid dyshormonogenesis (TDH). METHODS: Next-Generation Sequencing approach was used to identify variants in Thyroid Peroxidase (TPO) and Dual Oxidase 2 (DUOX2) genes. A custom panel targeting 7 genes associated with TDH [(TPO), Iodothyrosine Deiodinase I (IYD), Solute Carrier Family 26 Member 4 (SLC26A4), Thyroglobulin (TG), DUOX2, Dual Oxidase Maturation Factor 2 (DUOXA2), Solute Carrier Family 5 Member 5 (SLC5A5)] and 4 associated with thyroid dysembryogenesis [PAX8, FOXE1, NKX2-1, Thyroid Stimulating Hormone Receptor (TSHR)] has been designed. Additionally, bioinformatic analysis and structural modeling were carried out to predict the disease-causing potential variants. RESULTS: Four novel variants have been identified, two in TPO: c.2749-2 A > C and c.2752_2753delAG, [p.Ser918Cysfs*62] and two variants in DUOX2 gene: c.425 C > G [p.Pro142Arg] and c.2695delC [p.Gln899Serfs*21]. Eighteen identified TPO, DUOX2 and IYD variants were previously described. We identified potentially pahogenic biallelic variants in TPO and DUOX2 in 7 and 2 patients, respectively. We also detected a potentially pathogenic monoallelic variant in TPO and DUOX2 in 7 and 1 patients respectively. CONCLUSIONS: 22 variants have been identified associated with TDH. All described novel mutations occur in domains important for protein structure and function, predicting the TDH phenotype.
Assuntos
Autoantígenos , Hipotireoidismo Congênito , Oxidases Duais , Iodeto Peroxidase , Proteínas de Ligação ao Ferro , Argentina , Autoantígenos/genética , Criança , Hipotireoidismo Congênito/genética , Oxidases Duais/genética , Humanos , Iodeto Peroxidase/genética , Proteínas de Ligação ao Ferro/genética , Mutação , Receptores da Tireotropina/genéticaRESUMO
In humans, the loss of frataxin results in Friedreich's Ataxia, a neurodegenerative disease, in which a deficit in the iron-sulfur cluster assembly is observed. In this work, we analyzed three frataxin variants in which one tryptophan was replaced by a glycine: W155G, W168G and W173G. As expected, given its localization in the assembly site, W155G was not able to activate the desulfurase activity of the supercomplex for iron-sulfur cluster assembly. In turn, W168G, which was significantly more unstable than W155G, was fully active. W173G, which was highly unstable as W168G, showed a significantly decreased activity, only slightly higher than W155G. As W168G and W173G were highly sensitive to proteolysis, we investigated the protein motions by molecular dynamic simulations. We observed that W173G may display altered motions at the Trp155 site. Furthermore, we revealed a H-bond network in which Trp155 takes part, involving residues Gln148, Asn151, Gln153 and Arg165. We suggest that this motion modulation that specifically alters the population of different Trp155 rotamers can be directly transferred to the assembly site, altering the dynamics of the ISCU His137 key residue. This hypothesis was also contrasted by means of molecular dynamic simulations of frataxin in the context of the complete supercomplex. We propose that the supercomplex requires very definite motions of Trp155 to consolidate the assembly site.
Assuntos
Proteínas de Ligação ao Ferro/química , Triptofano/química , Humanos , Proteínas de Ligação ao Ferro/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Estabilidade Proteica , FrataxinaRESUMO
BACKGROUND: Friedreich's ataxia (FRDA) is caused by homozygous GAA repeat expansions or compound heterozygous (CH) mutations in FXN gene. Its broad clinical spectrum makes it difficult to identify, thus an accurate diagnosis can only be made by genetic testing. OBJECTIVE: This study aims to present data on FXN variants observed in patients with sporadic or recessive ataxia, including detailed data of the first CH Mexican patients. MATERIALS AND METHODS: One hundred and eight patients with recessive or sporadic cerebellar ataxia were referred to our institution between 2009 and 2019 for FXN molecular testing. This was achieved using a combined methodology of triplet repeat-primed PCR (polymerase chain reaction), long PCR, FXN sequencing and multiplex-ligation probe-amplification. RESULTS: Eighteen patients had a homozygous FXN genotype; whereas five were CH patients with a slow progression and phenotypic variability, including a late-onset case with spastic paraparesis, and a Charcot-Marie-Tooth-like case. CONCLUSIONS: These first Mexican CH patients pose important implications for genetic counseling and FRDA management.
Assuntos
Ataxia de Friedreich , Proteínas de Ligação ao Ferro/genética , Ataxia de Friedreich/genética , Testes Genéticos , Humanos , México , Mutação , Repetições de Trinucleotídeos , FrataxinaRESUMO
Introduction: It is rare for a euthyroid mother to carry a child with a fetal goiter. However, cases of congenital hypothyroidism (CH) caused by thyroid dyshormonogenesis have been reported. Even though gene mutations associated with fetal goiter have been reported in a few studies, the effects on intellectual development have not been investigated. This study aimed to characterize and investigate the underlying genetic mechanism of CH and neuropsychological development and growth of two siblings with CH-induced fetal goiters. Case report: Two male siblings from a non-consanguineous marriage with CH and fetal goiter were diagnosed by ultrasonography at 32- and 26-weeks of gestation. This condition was confirmed by cordocentesis in the first pregnancy (TSH: 135 µIU/ml). The mother was euthyroid, and no intra-amniotic levothyroxine treatment was performed. Peripheral blood DNA was screened for TPO mutations. The new deletion p.Cys296Alafs*21 and the p.Arg665Trp mutation, inherited from heterozygous parents, were identified in both patients. Functional analysis showed both mutations reduced the TPO enzyme activity and impaired the membrane localization. The p.Cys296Alafs*21 mutation produces a protein product with a drastically reduced molecular weight. Additionally, a complete clinical and neuropsychological evaluation was also performed. The WISC IV test was employed to provide an overall measure of the siblings' cognitive and intellectual abilities. No growth retardation was detected in either child. In general, both children showed normal neuropsychological development; however, they exhibited slight reduction of Processing Speed Index scores, which are sensitive to neurological and attentional factors and motor maturation activity. Notably, the younger sibling obtained significantly low scores in the Operational Memory Index, a measure of attention capacity and psychoneurological immaturity. Conclusion: We described a new TPO compound heterozygosity that severely impaired the TPO activity and membrane localization leading to severe CH and fetal goiter. This is the first report showing the neuropsychological evaluation in patients with dyshormonogenetic fetal goiter. More studies are needed to understand the neurodevelopmental outcomes of neonates with CH-induced fetal goiters.
Assuntos
Autoantígenos/genética , Hipotireoidismo Congênito/diagnóstico por imagem , Bócio/diagnóstico por imagem , Iodeto Peroxidase/genética , Proteínas de Ligação ao Ferro/genética , Mutação , Hipotireoidismo Congênito/genética , Análise Mutacional de DNA , Feminino , Bócio/genética , Humanos , Recém-Nascido , Masculino , Gravidez , Ultrassonografia Pré-NatalRESUMO
Several biological activities depend on iron-sulfur clusters ([Fe-S]). Even though they are well-known in several organisms their function and metabolic pathway were poorly understood in the majority of the organisms. We propose to use the amoeba Dictyostelium discoideum, as a biological model to study the biosynthesis of [Fe-S] at the molecular, cellular and organism levels. First, we have explored the D. discoideum genome looking for genes corresponding to the subunits that constitute the molecular machinery for Fe-S cluster assembly and, based on the structure of the mammalian supercomplex and amino acid conservation profiles, we inferred the full functionality of the amoeba machinery. After that, we expressed the recombinant mature form of D. discoideum frataxin protein (DdFXN), the kinetic activator of this pathway. We characterized the protein and its conformational stability. DdFXN is monomeric and compact. The analysis of the secondary structure content, calculated using the far-UV CD spectra, was compatible with the data expected for the FXN fold, and near-UV CD spectra were compatible with the data corresponding to a folded protein. In addition, Tryptophan fluorescence indicated that the emission occurs from an apolar environment. However, the conformation of DdFXN is significantly less stable than that of the human FXN, (4.0 vs. 9.0 kcal mol-1, respectively). Based on a sequence analysis and structural models of DdFXN, we investigated key residues involved in the interaction of DdFXN with the supercomplex and the effect of point mutations on the energetics of the DdFXN tertiary structure. More than 10 residues involved in Friedreich's Ataxia are conserved between the human and DdFXN forms, and a good correlation between mutational effect on the energetics of both proteins were found, suggesting the existence of similar sequence/function/stability relationships. Finally, we integrated this information in an evolutionary context which highlights particular variation patterns between amoeba and humans that may reflect a functional importance of specific protein positions. Moreover, the complete pathway obtained forms a piece of evidence in favor of the hypothesis of a shared and highly conserved [Fe-S] assembly machinery between Human and D. discoideum.
Assuntos
Dictyostelium/metabolismo , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sequência de Aminoácidos/genética , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Biologia Computacional , Cristalografia , Dictyostelium/genética , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Cinética , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes , Alinhamento de Sequência , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , FrataxinaRESUMO
The relationships between conformational dynamics, stability and protein function are not obvious. Frataxin (FXN) is an essential protein that forms part of a supercomplex dedicated to the iron-sulfur (Fe-S) cluster assembly within the mitochondrial matrix. In humans, the loss of FXN expression or a decrease in its functionality results in Friedreich's Ataxia, a cardio-neurodegenerative disease. Recently, the way in which FXN interacts with the rest of the subunits of the supercomplex was uncovered. This opens a window to explore relationships between structural dynamics and function. In this study, we prepared a set of FXN variants spanning a broad range of conformational stabilities. Variants S160I, S160M and A204R were more stable than the wild-type and showed similar biological activity. Additionally, we prepared SILCAR, a variant that combines S160I, L203C and A204R mutations. SILCAR was 2.4 kcal mol-1 more stable and equally active. Some of the variants were significantly more resistant to proteolysis than the wild-type FXN. SILCAR showed the highest resistance, suggesting a more rigid structure. It was corroborated by means of molecular dynamics simulations. Relaxation dispersion NMR experiments comparing SILCAR and wild-type variants suggested similar internal motions in the microsecond to millisecond timescale. Instead, variant S157I showed higher denaturation resistance but a significant lower function, similarly to that observed for the FRDA variant N146K. We concluded that the contribution of particular side chains to the conformational stability of FXN might be highly subordinated to their impact on both the protein function and the stability of the functional supercomplex.
Assuntos
Proteínas de Ligação ao Ferro/química , Liases de Carbono-Enxofre/química , Biologia Computacional , Humanos , Proteínas de Ligação ao Ferro/genética , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Proteólise , FrataxinaRESUMO
BACKGROUND: Human proteins such as interleukin-24 (IL24), thyroperoxidase (TPO) and thyroglobulin (Tg) are targets of IgE or IgG autoantibodies. Why these proteins are recognized by autoantibodies in some patients with chronic spontaneous urticaria (CSU) or hypothyroidism is unknown. OBJECTIVE: Through in silico analysis, identify antigen patches of TPO, Tg and IL24 and compare the sequences of these human proteins with some prevalent allergens. METHODS: The amino acids sequences of IL24, thyroperoxidase and thyroglobulin were compared between them and with 22 environmental allergens. Phylogenetic studies and multiple pairing were carried out to explore the degree of protein identity and cover. The proteins without 3D structure reported in the database, were modeled by homology with "Swiss Modeller" and compared through PYMOL. Residues conserved and accessible to the solvent (rASA> 0.25) were located in the 3D model to identify possible areas of cross-reactivity and antigen binding. RESULTS: We build a 3D model of the TPO and thyroglobulin protein base on proteins closely related. Five epitopes for TPO, six for IL24 and six for thyroglobulin were predicted. The amino acid sequences of allergens from different sources (Dermatophagoides pteronyssinus, Blomia tropicalis, Betula verrucosa, Cynodon dactylon, Aspergillus fumigatus, Canis domesticus, Felis domesticus) were compared with human TPO, Tg and IL24. The cover and alignments between allergens and human proteins were low. CONCLUSION: We identify possible linear and conformational epitopes of TPO, Tg and IL24 that could be the target of IgE or IgG binding in patients with urticaria or hypothyroidism; These epitopes do not appear to be present among common environmental allergens, suggesting that autoreactivity to these human proteins are not by cross-reactivity.
Assuntos
Alérgenos/imunologia , Autoantígenos/imunologia , Urticária Crônica/imunologia , Epitopos/imunologia , Hipotireoidismo/imunologia , Interleucinas/imunologia , Iodeto Peroxidase/imunologia , Proteínas de Ligação ao Ferro/imunologia , Tireoglobulina/imunologia , Animais , Aspergillus fumigatus/imunologia , Autoanticorpos/imunologia , Autoantígenos/química , Autoantígenos/classificação , Gatos , Reações Cruzadas , Cães , Mapeamento de Epitopos , Epitopos/química , Epitopos/classificação , Humanos , Interleucinas/química , Interleucinas/classificação , Iodeto Peroxidase/química , Iodeto Peroxidase/classificação , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/classificação , Modelos Químicos , Filogenia , Tireoglobulina/química , Tireoglobulina/classificaçãoRESUMO
BACKGROUND: The mitochondrial protein frataxin is involved in iron metabolism, as well as regulation of oxidative stress. To elucidate the association of frataxin with the pathophysiology of diabetes, we evaluated the mRNA levels of frataxin in leukocytes of patients with type 2 diabetes (T2D). In addition, we investigated the relation between frataxin mRNA levels, inflammatory cytokines, and oxidative stress biomarkers. METHODS: A study including 150 subjects (115 patients with T2D and 35 healthy subjects) was performed to evaluate the frataxin mRNA levels in leukocytes. We assessed the relation between frataxin and interleukin (IL)-6, IL-1, tumour necrosis factor-alpha (TNF-α), total oxidation status (TOS), total antioxidant capacity (TAC), and serum iron. RESULTS: The frataxin mRNA levels in the T2D group were significantly lower than those in healthy subjects. It was also demonstrated that T2D patients with frataxin mRNA levels in the lowest quartile had significantly elevated levels of serum iron, TOS, and inflammatory cytokines, such as TNF-α, IL-1, and IL-6, while TAC levels were significantly lower in this quartile when compared with the upper quartile. CONCLUSIONS: Our findings showed that T2D patients with low frataxin mRNA levels showed a high degree of inflammation and oxidative stress. It is speculated that frataxin deficiency in T2D patients can contribute to the imbalance in mitochondrial iron homeostasis leading to the acceleration of oxidative stress and inflammation.
Assuntos
Biomarcadores/análise , Diabetes Mellitus Tipo 2/fisiopatologia , Inflamação/diagnóstico , Proteínas de Ligação ao Ferro/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Brasil/epidemiologia , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Incidência , Inflamação/epidemiologia , Inflamação/genética , Inflamação/metabolismo , Proteínas de Ligação ao Ferro/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/genética , FrataxinaRESUMO
BACKGROUND: Chronic spontaneous urticaria (CSU) is a heterogeneous disease with some frequent comorbidities like autoimmune diseases, drug reactions, and inducible urticaria. IgE antibodies against thyroid peroxidase (anti-TPO IgE) could be associated with some of these clinical characteristics. OBJECTIVE: To explore the clinical characteristics of CSU patients, according to the presence of anti-TPO IgE in serum. METHODS: Anti-TPO IgE levels were measured during the clinical control period (Urticaria Activity Score, 0 point) and exacerbation period (≥3 points) in 100 CSU patients. Patients with self-reported exacerbation of skin involvement by foods, nonsteroidal anti-inflammatory drugs (NSAIDs), and physical triggers underwent controlled challenge tests. RESULTS: We identified 2 groups of patients: (1) patients with anti-TPO IgE during the clinical control period or during an exacerbation, who had a higher frequency of atopy, asthma, and positive challenge test results with NSAIDs and (2) patients without anti-TPO IgE during any period, who had a higher frequency of positive challenge test results for inducible urticaria. Among the first group (anti-TPO IgE at any point), we identified 3 subgroups: patients with anti-TPO IgE during the clinical control period (n = 12); patients with anti-TPO IgE during the clinical control period and significantly increased levels during an urticaria exacerbation (n = 18); and patients with anti-TPO IgE only during an exacerbation (n = 13). None of the patients with self-reported food reactions had a positive challenge test result. CONCLUSION: Anti-TPO IgE is a useful biomarker for differentiating between clinical phenotypes of patients with CSU. Elevation of anti-TPO IgE during exacerbation periods supports an association between this autoantibody and the pathogenesis of urticaria.
Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Urticária Crônica/diagnóstico , Urticária Crônica/etiologia , Imunoglobulina E/imunologia , Iodeto Peroxidase/imunologia , Proteínas de Ligação ao Ferro/imunologia , Adolescente , Adulto , Autoanticorpos/sangue , Biomarcadores , Suscetibilidade a Doenças/imunologia , Feminino , Humanos , Imunoglobulina E/sangue , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Protein dynamics, folding, and thermodynamics represent a central aspect of biophysical chemistry. pH, temperature, and denaturant perturbations inform our understanding of diverse contributors to stability and rates. In this work, we performed a thermodynamic analysis using a combined experimental and computational approach to gain insights into the role of electrostatics in the folding reaction of a psychrophile frataxin variant from Psychromonas ingrahamii. This folding reaction is strongly modulated by pH with a single, narrow, and well-defined transition state with â¼80% compactness, â¼70% electrostatic interactions, and â¼60% hydration shell compared to the native state (αD = 0.82, αH = 0.67, and αΔCp = 0.59). Our results are best explained by a two-proton/two-state model with very different pKa values of the native and denatured states (â¼5.5 and â¼8.0, respectively). As a consequence, the stability strongly increases from pH 8.0 to 6.0 (|ΔΔG°| = 5.2 kcal mol-1), mainly because of a decrease in the TΔS°. Variation of ΔH° and ΔS° at pH below 7.0 is dominated by a change in ΔHf⧧ and ΔSf⧧, while at pH above 7.0, it is governed by ΔHu⧧ and ΔSu⧧. Molecular dynamics simulations showed that these pH modulations could be explained by the fluctuations of two regions, rich in electrostatic contacts, whose dynamics are pH-dependent and motions are strongly correlated. Results presented herein contribute to the understanding of the stability and dynamics of this frataxin variant, pointing to an intrinsic feature of the family topology to support different folding mechanisms.
Assuntos
Proteínas de Ligação ao Ferro/química , Simulação de Dinâmica Molecular , Termodinâmica , Concentração de Íons de Hidrogênio , Dobramento de Proteína , FrataxinaRESUMO
We have previously shown that the small metal-binding protein (SmbP) extracted from the gram-negative bacterium Nitrosomonas europaea can be employed as a fusion protein for the expression and purification of recombinant proteins in Escherichia coli. With the goal of increasing the amounts of SmbP-tagged proteins produced in the E. coli periplasm, we replaced the native SmbP signal peptide with three different signal sequences: two were from the proteins CusF and PelB, for transport via the Sec pathway, and one was the signal peptide from TorA, for transport via the Tat pathway. Expression of SmbP-tagged Red Fluorescent Protein (RFP) using these three alternative signal peptides individually showed a considerable increase in protein levels in the periplasm of E. coli as compared to its level using the SmbP signal sequence. Therefore, for routine periplasmic expression and purification of recombinant proteins in E. coli, we highly recommend the use of the fusion proteins PelB-SmbP or CusF-SmbP, since these signal sequences increase periplasmic production considerably as compared to the wild-type. Our work, finally, demonstrates that periplasmic expression for SmbP-tagged proteins is not limited to the Sec pathway, in that the TorA-SmbP construct can export reasonable quantities of folded proteins to the periplasm. Although the Sec route has been the most widely used, sometimes, depending on the nature of the protein of interest, for example, if it contains cofactors, it is more appropriate to consider using the Tat route over the Sec. SmbP therefore can be recommended in terms of its particular versatility when combined with signal peptides for the two different routes.
Assuntos
Proteínas de Bactérias/genética , Clonagem Molecular/métodos , Nitrosomonas europaea/genética , Periplasma/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cobre , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Nitrosomonas europaea/metabolismo , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Periplasma/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Proteína Vermelha FluorescenteRESUMO
Frataxin plays a key role in cellular iron homeostasis of different organisms. It is engaged in several activities at the FeS cluster assembly machinery and it is also involved in heme biosynthesis. In plants, two genes encoding ferrochelatases (FC1 and FC2) catalyze the incorporation of iron into protoporphyrin IX in the last stage of heme synthesis in chloroplasts. Despite ferrochelatases are absent from other cell compartments, a remaining ferrochelatase activity has been observed in plant mitochondria. Here we analyze the possibility that frataxin acts as the iron donor to protoporphyrin IX for the synthesis of heme groups in plant mitochondria. Our findings show that frataxin catalyzes the formation of heme in vitro when it is incubated with iron and protoporphyrin IX. When frataxin is combined with AtNFS1 and AtISD11 the ferrochelatse activity is increased. These results suggest that frataxin could be the iron donor in the final step of heme synthesis in plant mitochondria, and constitutes an important advance in the elucidation of the mechanisms of heme synthesis in plants.
Assuntos
Proteínas de Arabidopsis/metabolismo , Ferroquelatase/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Mitocôndrias/enzimologia , Arabidopsis , Proteínas de Arabidopsis/química , Catálise , Cloroplastos/enzimologia , Ferroquelatase/química , Heme/biossíntese , Proteínas de Ligação ao Ferro/química , Protoporfirinas/biossínteseRESUMO
Friedreich ataxia (FRDA) is an autosomal recessive disorder due to mutations in the FXN gene. FRDA is characterized by the classical triad of ataxia, absent reflexes, and Babinski sign, but atypical presentations might also occur. Our aims were to describe the proportion of FRDA diagnoses in suspected families living in Rio Grande do Sul, South Brazil, and to estimate a minimum frequency of symptomatic subjects. Subjects that were evaluated by molecular analysis for FRDA at the Hospital de Clínicas de Porto Alegre were identified in our files. Patients' clinical manifestation and phenotypes were described and compared. The number of FRDA subjects alive in the last 5 years was determined. One hundred fifty-six index cases (families) were submitted to evaluation of GAA repeats at FXN since 1997: 27 were confirmed as FRDA patients. Therefore, the diagnostic yield was 17.3%. Proportion of classical, late onset, and retained reflexes subphenotypes were similar to those described by other studies. A minimum prevalence was estimated as 0.20:100.000 inhabitants. In conclusion, we verified that this FRDA population displayed the usual clinical characteristics, but with a lower period prevalence than those obtained in populations from Europe.