Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.682
Filtrar
1.
Alzheimers Res Ther ; 16(1): 121, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831312

RESUMO

BACKGROUND: Beta-amyloid (Aß) deposition in the brain parenchyma is a crucial initiating step in the amyloid cascade hypothesis of Alzheimer's disease (AD) pathology. Furthermore, dysfunction of plaque-associated microglia, also known as disease-associated microglia (DAM) has been reported to accelerate Aß deposition and cognitive impairment. Our previous research demonstrated that intermittent hypoxia training (IHT) improved AD pathology by upregulating autophagy in DAM, thereby enhancing oligomeric Aß (oAß) clearance. Considering that oAß internalization is the initial stage of oAß clearance, this study focused on the IHT mechanism involved in upregulating Aß uptake by DAM. METHODS: IHT was administered to 8-month-old APP/PS1 mice or 6-month-old microglial vacuolar protein sorting 35 (VPS35) knockout mice in APP/PS1 background (MG VPS35 KO: APP/PS1) for 28 days. After the IHT, the spatial learning-memory capacity of the mice was assessed. Additionally, AD pathology was determined by estimating the nerve fiber and synapse density, Aß plaque deposition, and Aß load in the brain. A model of Aß-exposed microglia was constructed and treated with IHT to explore the related mechanism. Finally, triggering receptor expressed on myeloid cells 2 (TREM2) intracellular recycling and Aß internalization were measured using a fluorescence tracing technique. RESULTS: Our results showed that IHT ameliorated cognitive function and Aß pathology. In particular, IHT enhanced Aß endocytosis by augmenting the intracellular transport function of microglial TREM2, thereby contributing to Aß clearance. Furthermore, IHT specifically upregulated VPS35 in DAM, the primary cause for the enhanced intracellular recycling of TREM2. IHT lost ameliorative effect on Aß pathology in MG VPS35 KO: APP/PS1 mice brain. Lastly, the IHT mechanism of VPS35 upregulation in DAM was mediated by the transcriptional regulation of VPS35 by transcription factor EB (TFEB). CONCLUSION: IHT enhances Aß endocytosis in DAM by upregulating VPS35-dependent TREM2 recycling, thereby facilitating oAß clearance and mitigation of Aß pathology. Moreover, the transcriptional regulation of VPS35 by TFEB demonstrates a close link between endocytosis and autophagy in microglia. Our study further elucidates the IHT mechanism in improving AD pathology and provides evidence supporting the potential application of IHT as a complementary therapy for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Endocitose , Glicoproteínas de Membrana , Microglia , Placa Amiloide , Receptores Imunológicos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Microglia/metabolismo , Camundongos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Endocitose/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Camundongos Transgênicos , Hipóxia/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL
2.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724488

RESUMO

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Relacionadas à Autofagia , Autofagia , Progressão da Doença , Neoplasias Pulmonares , MicroRNAs , Material Particulado , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Material Particulado/efeitos adversos , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proliferação de Células/genética , Células A549 , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transporte Vesicular
4.
Front Immunol ; 15: 1404846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774881

RESUMO

Lysosomes and lysosome related organelles (LROs) are dynamic organelles at the intersection of various pathways involved in maintaining cellular hemostasis and regulating cellular functions. Vesicle trafficking of lysosomes and LROs are critical to maintain their functions. The lysosomal trafficking regulator (LYST) is an elusive protein important for the regulation of membrane dynamics and intracellular trafficking of lysosomes and LROs. Mutations to the LYST gene result in Chédiak-Higashi syndrome, an autosomal recessive immunodeficiency characterized by defective granule exocytosis, cytotoxicity, etc. Despite eight decades passing since its initial discovery, a comprehensive understanding of LYST's function in cellular biology remains unresolved. Accumulating evidence suggests that dysregulation of LYST function also manifests in other disease states. Here, we review the available literature to consolidate available scientific endeavors in relation to LYST and discuss its relevance for immunomodulatory therapies, regenerative medicine and cancer applications.


Assuntos
Lisossomos , Proteínas de Transporte Vesicular , Humanos , Lisossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Síndrome de Chediak-Higashi/genética , Transporte Proteico , Mutação
5.
Mol Genet Genomics ; 299(1): 55, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771357

RESUMO

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.


Assuntos
Sequenciamento do Exoma , Estudos de Associação Genética , Transtornos do Neurodesenvolvimento , Linhagem , Proteínas de Transporte Vesicular , Humanos , Transtornos do Neurodesenvolvimento/genética , Masculino , Feminino , Proteínas de Transporte Vesicular/genética , Estudos de Associação Genética/métodos , Criança , Pré-Escolar , Exoma/genética , Paquistão , Predisposição Genética para Doença , Mutação , Moléculas de Adesão Celular Neuronais/genética
6.
Physiol Res ; 73(2): 189-203, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710051

RESUMO

This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.


Assuntos
Neuroacantocitose , Proteínas de Transporte Vesicular , Humanos , Animais , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Neuroacantocitose/metabolismo , Neuroacantocitose/genética , Neuroacantocitose/fisiopatologia , Neuroacantocitose/patologia , Mutação , Metabolismo dos Lipídeos/fisiologia , Metabolismo dos Lipídeos/genética
7.
Sci Rep ; 14(1): 10146, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698024

RESUMO

The closely related endolysosomal tethering complexes HOPS and CORVET play pivotal roles in the homo- and heterotypic fusion of early and late endosomes, respectively, and HOPS also mediates the fusion of lysosomes with incoming vesicles including late endosomes and autophagosomes. These heterohexameric complexes share their four core subunits that assemble with additional two, complex-specific subunits. These features and the similar structure of the complexes could allow the formation of hybrid complexes, and the complex specific subunits may compete for binding to the core. Indeed, our biochemical analyses revealed the overlap of binding sites for HOPS-specific VPS41 and CORVET-specific VPS8 on the shared core subunit VPS18. We found that the overexpression of CORVET-specific VPS8 or Tgfbrap1 decreased the amount of core proteins VPS11 and VPS18 that are assembled with HOPS-specific subunits VPS41 or VPS39, indicating reduced amount of assembled HOPS. In line with this, we observed the elevation of both lipidated, autophagosome-associated LC3 protein and the autophagic cargo p62 in these cells, suggesting impaired autophagosome-lysosome fusion. In contrast, overexpression of HOPS-specific VPS39 or VPS41 did not affect the level of assembled CORVET or autophagy. VPS8 or Tgfbrap1 overexpression also induced Cathepsin D accumulation, suggesting that HOPS-dependent biosynthetic delivery of lysosomal hydrolases is perturbed, too. These indicate that CORVET-specific subunit levels fine-tune HOPS assembly and activity in vivo.


Assuntos
Endossomos , Proteínas de Transporte Vesicular , Endossomos/metabolismo , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Lisossomos/metabolismo , Subunidades Proteicas/metabolismo , Autofagia , Autofagossomos/metabolismo , Células HeLa , Ligação Proteica
8.
Cancer Res Commun ; 4(5): 1380-1397, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38717149

RESUMO

Macrophages represent a heterogeneous myeloid population with diverse functions in normal tissues and tumors. While macrophages expressing the cell surface marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) have been identified in stromal regions of the normal mammary gland and in the peritumoral stroma, their functions within these regions are not well understood. Using a genetic mouse model of LYVE-1+ macrophage depletion, we demonstrate that loss of LYVE-1+ macrophages is associated with altered extracellular matrix remodeling in the normal mammary gland and reduced mammary tumor growth in vivo. In further studies focused on investigating the functions of LYVE-1+ macrophages in the tumor microenvironment, we demonstrate that LYVE-1 expression correlates with an increased ability of macrophages to bind, internalize, and degrade hyaluronan. Consistent with this, we show that depletion of LYVE-1+ macrophages correlates with increased hyaluronan accumulation in both the normal mammary gland and in mammary tumors. Analysis of single-cell RNA sequencing of macrophages isolated from these tumors reveals that depletion of LYVE-1+ macrophages in tumors drives a shift in the majority of the remaining macrophages toward a proinflammatory phenotype, as well as an increase in CD8+ T-cell infiltration. Together, these findings indicate that LYVE-1+ macrophages represent a tumor-promoting anti-inflammatory subset of macrophages that contributes to hyaluronan remodeling in the tumor microenvironment. SIGNIFICANCE: We have identified a macrophage subset in mouse mammary tumors associated with tumor structural components. When this macrophage subset is absent in tumors, we report a delay in tumor growth and an increase in antitumor immune cells. Understanding the functions of distinct macrophage subsets may allow for improved therapeutic strategies for patients with breast cancer.


Assuntos
Matriz Extracelular , Ácido Hialurônico , Macrófagos , Microambiente Tumoral , Animais , Ácido Hialurônico/metabolismo , Feminino , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/genética , Células Estromais/metabolismo , Células Estromais/patologia , Humanos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia
9.
Nat Commun ; 15(1): 4131, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755250

RESUMO

The transition between yeast and hyphae is crucial for regulating the commensalism and pathogenicity in Candida albicans. The mechanisms that affect the invasion of hyphae in solid media, whose deficiency is more related to the pathogenicity of C. albicans, have not been elucidated. Here, we found that the disruption of VAM6 or VPS41 which are components of the homotypic vacuolar fusion and protein sorting (HOPS) complex, or the Rab GTPase YPT72, all responsible for vacuole fusion, led to defects in hyphal growth in both liquid and solid media, but more pronounced on solid agar. The phenotypes of vac8Δ/Δ and GTR1OE-vam6Δ/Δ mutants indicated that these deficiencies are mainly caused by the reduced mechanical forces that drive agar and organs penetration, and confirmed that large vacuoles are required for hyphal mechanical penetration. In summary, our study revealed that large vacuoles generated by vacuolar fusion support hyphal penetration and provided a perspective to refocus attention on the role of solid agar in evaluating C. albicans invasion.


Assuntos
Candida albicans , Proteínas Fúngicas , Hifas , Vacúolos , Candida albicans/metabolismo , Candida albicans/genética , Hifas/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/genética , Vacúolos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Animais , Camundongos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Candidíase/microbiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Feminino , Fusão de Membrana
10.
Sci Rep ; 14(1): 10160, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698045

RESUMO

How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas de Transporte , Regulador de Condutância Transmembrana em Fibrose Cística , Transporte Proteico , Proteínas de Transporte Vesicular , Humanos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Ubiquitinação , Proteólise
11.
Bull Exp Biol Med ; 176(5): 636-639, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727953

RESUMO

Immunohistochemical detection of the LYVE-1 marker in healthy human full-thickness skin (the epidermis and the dermis) was carried out. LYVE-1 expression was found in the endothelium of lymphatic capillaries located in the papillary dermis, in the endothelium of larger lymphatic vessels of the reticular dermis, and in fibroblasts, which indicates their joint participation in hyaluronan metabolism. LYVE-1+ staining detected for the first time in cells of the stratum basale, the stratum spinosum, and the stratum granulosum of healthy human epidermis indicates their participation in hyaluronan metabolism and allows us to consider the spaces between epidermis cells as prelimphatics.


Assuntos
Epiderme , Ácido Hialurônico , Vasos Linfáticos , Pele , Proteínas de Transporte Vesicular , Humanos , Ácido Hialurônico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Pele/metabolismo , Vasos Linfáticos/metabolismo , Epiderme/metabolismo , Ligantes , Fibroblastos/metabolismo , Derme/metabolismo , Sistema Linfático/metabolismo , Adulto , Feminino , Masculino , Imuno-Histoquímica
12.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791166

RESUMO

Movement disorders such as bradykinesia, tremor, dystonia, chorea, and myoclonus most often arise in several neurodegenerative diseases with basal ganglia and white matter involvement. While the pathophysiology of these disorders remains incompletely understood, dysfunction of the basal ganglia and related brain regions is often implicated. The VPS13D gene, part of the VPS13 family, has emerged as a crucial player in neurological pathology, implicated in diverse phenotypes ranging from movement disorders to Leigh syndrome. We present a clinical case of VPS13D-associated disease with two variants in the VPS13D gene in an adult female. This case contributes to our evolving understanding of VPS13D-related diseases and underscores the importance of genetic screening in diagnosing and managing such conditions.


Assuntos
Ataxias Espinocerebelares , Humanos , Feminino , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/congênito , Proteínas de Transporte Vesicular/genética , Adulto , Fenótipo , Mutação , Genes Recessivos , Linhagem , Proteínas
13.
Cell Biochem Funct ; 42(4): e4028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715125

RESUMO

Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.


Assuntos
Terapia Genética , Mutação , Proteína C1 de Niemann-Pick , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/terapia , Doenças de Niemann-Pick/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Animais
14.
PLoS One ; 19(4): e0302045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630692

RESUMO

In this work, a Python framework for characteristic feature extraction is developed and applied to gene expression data of human fibroblasts. Unlabeled feature selection objectively determines groups and minimal gene sets separating groups. ML explainability methods transform the features correlating with phenotypic differences into causal reasoning, supported by further pipeline and visualization tools, allowing user knowledge to boost causal reasoning. The purpose of the framework is to identify characteristic features that are causally related to phenotypic differences of single cells. The pipeline consists of several data science methods enriched with purposeful visualization of the intermediate results in order to check them systematically and infuse the domain knowledge about the investigated process. A specific focus is to extract a small but meaningful set of genes to facilitate causal reasoning for the phenotypic differences. One application could be drug target identification. For this purpose, the framework follows different steps: feature reduction (PFA), low dimensional embedding (UMAP), clustering ((H)DBSCAN), feature correlation (chi-square, mutual information), ML validation and explainability (SHAP, tree explainer). The pipeline is validated by identifying and correctly separating signature genes associated with aging in fibroblasts from single-cell gene expression measurements: PLK3, polo-like protein kinase 3; CCDC88A, Coiled-Coil Domain Containing 88A; STAT3, signal transducer and activator of transcription-3; ZNF7, Zinc Finger Protein 7; SLC24A2, solute carrier family 24 member 2 and lncRNA RP11-372K14.2. The code for the preprocessing step can be found in the GitHub repository https://github.com/AC-PHD/NoLabelPFA, along with the characteristic feature extraction https://github.com/LauritzR/characteristic-feature-extraction.


Assuntos
Envelhecimento , Aprendizado de Máquina , Humanos , Proteínas dos Microfilamentos , Proteínas de Transporte Vesicular
15.
Protein Sci ; 33(5): e4980, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607248

RESUMO

Endosomal trafficking ensures the proper distribution of lipids and proteins to various cellular compartments, facilitating intracellular communication, nutrient transport, waste disposal, and the maintenance of cell structure. Retromer, a peripheral membrane protein complex, plays an important role in this process by recruiting the associated actin-polymerizing WASH complex to establish distinct sorting domains. The WASH complex is recruited through the interaction of the VPS35 subunit of retromer with the WASH complex subunit FAM21. Here, we report the identification of two separate fragments of FAM21 that interact with VPS35, along with a third fragment that binds to the VPS29 subunit of retromer. The crystal structure of VPS29 bound to a peptide derived from FAM21 shows a distinctive sharp bend that inserts into a conserved hydrophobic pocket with a binding mode similar to that adopted by other VPS29 effectors. Interestingly, despite the network of interactions between FAM21 and retromer occurring near the Parkinson's disease-linked mutation (D620N) in VPS35, this mutation does not significantly impair the direct association with FAM21 in vitro.


Assuntos
Endossomos , Doença de Parkinson , Humanos , Mutação , Transporte Proteico , Proteínas de Transporte Vesicular/genética
16.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612623

RESUMO

Posttranslational modifications (PTMs), particularly phosphorylation, play a pivotal role in expanding the complexity of the proteome and regulating diverse cellular processes. In this study, we present an efficient Escherichia coli phosphorylation system designed to streamline the evaluation of potential substrates for Arabidopsis thaliana plant kinases, although the technology is amenable to any. The methodology involves the use of IPTG-inducible vectors for co-expressing kinases and substrates, eliminating the need for radioactive isotopes and prior protein purification. We validated the system's efficacy by assessing the phosphorylation of well-established substrates of the plant kinase SnRK1, including the rat ACETYL-COA CARBOXYLASE 1 (ACC1) and FYVE1/FREE1 proteins. The results demonstrated the specificity and reliability of the system in studying kinase-substrate interactions. Furthermore, we applied the system to investigate the phosphorylation cascade involving the A. thaliana MKK3-MPK2 kinase module. The activation of MPK2 by MKK3 was demonstrated to phosphorylate the Myelin Basic Protein (MBP), confirming the system's ability to unravel sequential enzymatic steps in phosphorylation cascades. Overall, this E. coli phosphorylation system offers a rapid, cost-effective, and reliable approach for screening potential kinase substrates, presenting a valuable tool to complement the current portfolio of molecular techniques for advancing our understanding of kinase functions and their roles in cellular signaling pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Ratos , Fosforilação , Escherichia coli/genética , Reprodutibilidade dos Testes , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases , Proteínas de Transporte Vesicular
17.
Nat Commun ; 15(1): 3215, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615096

RESUMO

Spatial compartmentalization is a key facet of protein quality control that serves to store disassembled or non-native proteins until triage to the refolding or degradation machinery can occur in a regulated manner. Yeast cells sequester nuclear proteins at intranuclear quality control bodies (INQ) in response to various stresses, although the regulation of this process remains poorly understood. Here we reveal the SUMO modification of the small heat shock protein Btn2 under DNA damage and place Btn2 SUMOylation in a pathway promoting protein clearance from INQ structures. Along with other chaperones, and degradation machinery, Btn2-SUMO promotes INQ clearance from cells recovering from genotoxic stress. These data link small heat shock protein post-translational modification to the regulation of protein sequestration in the yeast nucleus.


Assuntos
Proteínas de Choque Térmico Pequenas , Corpos de Inclusão Intranuclear , Proteínas de Transporte Vesicular , Dano ao DNA , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
18.
Mol Genet Genomic Med ; 12(4): e2423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622850

RESUMO

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal soft tissue sarcomas that often present diagnostic challenges due to their wide and varied morphology. A subset of IMTs have fusions involving ALK or ROS1. The role of next-generation sequencing (NGS) for classification of unselected sarcomas remains controversial. METHODS AND RESULTS: We report a case of a metastatic sarcoma in a 34-year-old female originally diagnosed as an unclassified spindle cell sarcoma with myofibroblastic differentiation and later reclassified as IMT after NGS revealed a TFG-ROS1 rearrangement. Histologically, the neoplasm had spindle cell morphology with a lobulated to focally infiltrative growth pattern with scant inflammatory cell infiltrate. Immunohistochemistry demonstrated focal desmin and variable smooth muscle actin staining but was negative for SOX10, S100, and CD34. Fluorescence in situ hybridization was negative for USP6 or ALK gene rearrangements. NGS revealed a TFG-ROS1 rearrangement and the patient was treated with crizotinib with clinical benefit. CONCLUSIONS: We discuss the role of NGS as well as its potential benefit in patients with unresectable, ALK-negative metastatic disease. Considering this case and previous literature, we support the use of NGS for patients requiring systemic treatment.


Assuntos
Proteínas Tirosina Quinases , Sarcoma , Feminino , Humanos , Adulto , Proteínas Tirosina Quinases/genética , Quinase do Linfoma Anaplásico/genética , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas/genética , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Ubiquitina Tiolesterase/genética , Proteínas de Transporte Vesicular/genética
19.
Cancer Genomics Proteomics ; 21(3): 272-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670586

RESUMO

BACKGROUND/AIM: Constitutional chromosomal aberrations are rare in hematologic malignancies and their pathogenetic role is mostly poorly understood. We present a comprehensive molecular characterization of a novel constitutional chromosomal translocation found in two siblings - sisters - diagnosed with myelodysplastic syndrome (MDS). MATERIALS AND METHODS: Bone marrow and blood cells from the two patients were examined using G-banding, RNA sequencing, PCR, and Sanger sequencing. RESULTS: We identified a balanced t(17;19)(q21;p13) translocation in both siblings' bone marrow, blood cells, and phytohemagglutinin-stimulated lymphocytes. The translocation generated a MYO1F::WNK4 chimera on the der(19)t(17;19), encoding a chimeric serine/threonine kinase, and a VPS25::MYO1F on the der(17), potentially resulting in an aberrant VPS25 protein. CONCLUSION: The t(17;19)(q21;p13) translocation found in the two sisters probably predisposed them to myelodysplasia. How the MYO1F::WNK4 and/or VPS25::MYO1F chimeras, perhaps especially MYO1F::WNK4 that encodes a chimeric serine/threonine kinase, played a role in MDS pathogenesis, remains incompletely understood.


Assuntos
Síndromes Mielodisplásicas , Irmãos , Translocação Genética , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Feminino , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 19/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Fusão Oncogênica/genética , Pessoa de Meia-Idade
20.
Front Immunol ; 15: 1375171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566986

RESUMO

Background: The underlying molecular pathways of idiopathic pulmonary fibrosis (IPF), a progressive lung condition with a high death rate, are still mostly unknown. By using microarray datasets, this study aims to identify new genetic targets for IPF and provide light on the genetic factors that contribute to the development of IPF. Method: We conducted a comprehensive analysis of three independent IPF datasets from the Gene Expression Omnibus (GEO) database, employing R software for data handling and normalization. Our evaluation of the relationships between differentially expressed genes (DEGs) and IPF included differential expression analysis, expression quantitative trait loci (eQTL) analysis, and Mendelian Randomization(MR) analyses. Additionally, we used Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to explore the functional roles and pathways of these genes. Finally, we validated the results obtained for the target genes. Results: We identified 486 highly expressed genes and 468 lowly expressed genes that play important roles in IPF. MR analysis identified six significantly co-expressed genes associated with IPF, specifically C12orf75, SPP1, ZG16B, LIN7A, PPP1R14A, and TLR2. These genes participate in essential biological processes and pathways, including macrophage activation and neural system regulation. Additionally, CIBERSORT analysis indicated a unique immune cell distribution in IPF, emphasized the significance of immunological processes in the disease. The MR analysis was consistent with the results of the analysis of variance in the validation cohort, which strengthens the reliability of our MR findings. Conclusion: Our findings provide new insights into the molecular basis of IPF and highlight the promise of therapeutic interventions. They emphasize the potential of targeting specific molecular pathways for the treatment of IPF, laying the foundation for further research and clinical work.


Assuntos
Perfilação da Expressão Gênica , Fibrose Pulmonar Idiopática , Humanos , Reprodutibilidade dos Testes , Fibrose Pulmonar Idiopática/genética , Bases de Dados Factuais , Ontologia Genética , Proteínas de Membrana , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...