Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.653
Filtrar
1.
J Mass Spectrom ; 59(6): e5037, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752484

RESUMO

Bacillus cereus is responsible for foodborne outbreaks worldwide. Among the produced toxins, cereulide induces nausea and vomiting after 30 min to 6 h following the consumption of contaminated foods. Cereulide, a cyclodepsipeptide, is an ionophore selective to K+ in solution. In electrospray, the selectivity is reduced as [M + Li]+; [M + Na]+ and [M + NH4]+ can also be detected without adding corresponding salts. Two forms are possible for alkali-cationized ions: charge-solvated (CS) that exclusively dissociates by releasing a bare alkali ion and protonated salt (PS), yielding alkali product ions by covalent bond cleavages (CBC) promoted by mobile proton. Based on a modified peptide cleavage nomenclature, the PS product ion series (b, a, [b + H2O] and [b + CnH2nO] [n = 4, 5]) are produced by Na+/Li+/K+-cationized cereulide species that specifically open at ester linkages followed by proton mobilization promoting competitive ester CBC as evidenced under resonant collision activation. What is more, unlike the sodiated or lithiated cereulide, which regenerates little or no alkali cation, the potassiated forms lead to an abundant K+ regeneration. This occurs by splitting of (i) the potassiated CS forms with an appearance threshold close to that of the PS first fragment ion generation and (ii) eight to four potassiated residue product ions from the PS forms. Since from Na+/Li+-cationized cereulide, (i) the negligible Na+/Li+ regeneration results in a higher sensibility than that of potassiated forms that abundantly releasing K+, and (ii) a better sequence recovering, the use of Na+ (or Li+) should be more pertinent to sequence isocereulides and other cyclodepsipeptides.


Assuntos
Cátions , Depsipeptídeos , Prótons , Espectrometria de Massas por Ionização por Electrospray , Depsipeptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cátions/química , Álcalis/química , Bacillus cereus/química , Sais/química
2.
Biochem J ; 481(7): 499-514, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572757

RESUMO

Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.


Assuntos
Complexo I de Transporte de Elétrons , Prótons , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Antiporters/metabolismo , Elétrons , Simulação de Dinâmica Molecular , Oxirredução , Benzoquinonas
3.
Inorg Chem ; 63(15): 6776-6786, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572830

RESUMO

The heme-containing chlorite dismutases catalyze the rapid and efficient decomposition of chlorite (ClO2-) to yield Cl- and O2, and the catalytic efficiency of chlorite dismutase from Dechloromonas aromatica (DaCld) in catalyzing the decomposition of bromite (BrO2-) was dependent on pH, which was supposed to be caused by the conversion of active Cpd I to the inactive Cpd II by proton-coupled electron transfer (PCET) from the pocket Tyr118 to the propionate side chain of heme at high pH. However, the direct evidence of PCET and how the pH affects the efficiency of DaCld, as well as whether Cpd II is really inactive, are still poorly understood. Here, on the basis of the high-resolution crystal structures, the computational models in both acidic (pH 5.0) and alkaline (pH 9.0) environments were constructed, and a series of quantum mechanical/molecular mechanical calculations were performed. On the basis of our calculation results, the O-Br bond cleavage of BrO2- always follows the homolytic mode to generate Cpd II rather than Cpd I. It is different from the O-O cleavage of O2/H2O2 or peracetic acid catalyzed by the other heme-containing enzymes. Thus, in the subsequent O-O rebound reaction, it is the Fe(IV)═O in Cpd II that combines with the O-Br radical. Because the porphyrin ring in Cpd II does not bear an unpaired electron, the previously suggested PCET from Tyr118 to the propionate side chain of heme was not theoretically recognized in an alkaline environment. In addition, the O-O rebound step in an alkaline solution corresponds to an energy barrier that is larger than that in an acidic environment, which can well explain the pH dependence of the activity of DaCld. In addition, the protonation state of the propionic acid side chains of heme and the surrounding hydrogen bond networks were calculated to have a significant impact on the barriers of the O-O rebound step, which is mainly achieved by affecting the reactivity of the Fe(IV)═O group in Cpd II. In an acidic environment, the relatively weaker coordination of the O2 atom to Fe leads to its higher reactivity toward the O-O rebound reaction. These observations may provide useful information for understanding the catalysis of chlorite dismutases.


Assuntos
Betaproteobacteria , Cloretos , Peróxido de Hidrogênio , Oxirredutases , Propionatos , Peróxido de Hidrogênio/química , Catálise , Prótons , Concentração de Íons de Hidrogênio , Heme/química
4.
Sci Rep ; 14(1): 8468, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605022

RESUMO

Spatially Fractionated Radiotherapy (SFRT) has demonstrated promising potential in cancer treatment, combining the advantages of reduced post-radiation effects and enhanced local control rates. Within this paradigm, proton minibeam radiotherapy (pMBRT) was suggested as a new treatment modality, possibly producing superior normal tissue sparing to conventional proton therapy, leading to improvements in patient outcomes. However, an effective and convenient beam generation method for pMBRT, capable of implementing various optimum dose profiles, is essential for its real-world application. Our study investigates the potential of utilizing the moiré effect in a dual collimator system (DCS) to generate pMBRT dose profiles with the flexibility to modify the center-to-center distance (CTC) of the dose distribution in a technically simple way.We employ the Geant4 Monte Carlo simulations tool to demonstrate that the angle between the two collimators of a DCS can significantly impact the dose profile. Varying the DCS angle from 10 ∘ to 50 ∘ we could cover CTC ranging from 11.8 mm to 2.4 mm, respectively. Further investigations reveal the substantial influence of the multi-slit collimator's (MSC) physical parameters on the spatially fractionated dose profile, such as period (CTC), throughput, and spacing between MSCs. These findings highlight opportunities for precision dose profile adjustments tailored to specific clinical scenarios.The DCS capacity for rapid angle adjustments during the energy transition stages of a spot scanning system can facilitate dynamic alterations in the irradiation profile, enhancing dose contrast in normal tissues. Furthermore, its unique attribute of spatially fractionated doses in both lateral directions could potentially improve normal tissue sparing by minimizing irradiated volume. Beyond the realm of pMBRT, the dual MSC system exhibits remarkable versatility, showing compatibility with different types of beams (X-rays and electrons) and applicability across various SFRT modalities.Our study illuminates the dual MSC system's potential as an efficient and adaptable tool in the refinement of pMBRT techniques. By enabling meticulous control over irradiation profiles, this system may expedite advancements in clinical and experimental applications, thereby contributing to the evolution of SFRT strategies.


Assuntos
Terapia com Prótons , Lesões por Radiação , Humanos , Terapia com Prótons/métodos , Prótons , Radiação Ionizante , Método de Monte Carlo , Etoposídeo , Fracionamento da Dose de Radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
5.
Medicine (Baltimore) ; 103(15): e37748, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608106

RESUMO

We aimed to investigate the accuracy of proton density fat fraction (PDFF) measurement of the lumbar vertebral bone marrow using chemical shift-encoded magnetic resonance imaging (CSE-MRI) with compressed sensing combined with parallel imaging (CSPI). This study recruited a commercially available phantom, and 43 patients. Fully sampled data without CSPI and under-sampled data with CSPI acceleration factors of 2.4, 3.6, and 4.8 were acquired using a 1.5T imaging system. The relationships between PDFF measurements obtained with the no-CSPI acquisition and those obtained with each CSPI acquisition were assessed using Pearson correlation coefficient (r), linear regression analyses, and Bland-Altman analysis. The intra- and inter-observer variabilities of the PDFF measurements were evaluated using the intraclass correlation coefficient. PDFF measurements obtained with all acquisitions showed a significant correlation and strong agreement with the reference PDFF measurement of the phantom. PDFF measurements obtained using CSE-MRI with and without CSPI were positively correlated (all acquisitions: r = 0.99; P < .001). The mean bias was -0.31% to -0.17% with 95% limits of agreement within ±2.02%. The intra- and inter-observer agreements were excellent (intraclass correlation coefficient: 0.988 and 0.981, respectively). A strong agreement and positive correlation were observed between the PDFF measurements obtained using CSE-MRI with and without CSPI. PDFF measurement of the lumbar vertebral bone marrow using CSE-MRI with CSPI can be acquired with a maximum reduction of approximately 75% in the acquisition time compared with a fully sampled acquisition.


Assuntos
Medula Óssea , Prótons , Humanos , Medula Óssea/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas
6.
Sci Rep ; 14(1): 8625, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616193

RESUMO

While particle therapy has been used for decades for cancer treatment, there is still a lack of information on the molecular mechanisms of biomolecules radiolysis by accelerated ions. Here, we examine the effects of accelerated protons on highly concentrated native myoglobin, by means of Fourier transform infrared and UV-Visible spectroscopies. Upon irradiation, the secondary structure of the protein is drastically modified, from mostly alpha helices conformation to mostly beta elements at highest fluence. These changes are accompanied by significant production of carbon monoxide, which was shown to come from heme degradation under irradiation. The radiolytic yields of formation of denatured protein, carbon monoxide, and of heme degradation were determined, and found very close to each other: G+denatured Mb ≈ G+CO ≈ G-heme = 1.6 × 10-8 ± 0.1 × 10-8 mol/J = 0.16 ± 0.01 species/100 eV. The denaturation of the protein to a beta structure and the production of carbon monoxide under ion irradiation are phenomena that may play an important role in the biological effects of ionizing radiation.


Assuntos
Mioglobina , Prótons , Monóxido de Carbono , Géis , Heme
7.
Biomed Phys Eng Express ; 10(3)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652667

RESUMO

Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in thex-axis,y-axis, major axis, minor axis, and relative positional errors in thex-axis andy-axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.


Assuntos
Redes Neurais de Computação , Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Terapia com Prótons/métodos , Radiometria/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Aprendizado de Máquina , Reprodutibilidade dos Testes , Prótons
8.
Cancer Radiother ; 28(2): 195-201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599941

RESUMO

PURPOSE: Preclinical data demonstrated that the use of proton minibeam radiotherapy reduces the risk of toxicity in healthy tissue. Ventricular tachycardia radioablation is an area under clinical investigation in proton beam therapy. We sought to simulate a ventricular tachycardia radioablation with proton minibeams and to demonstrate that it was possible to obtain a homogeneous coverage of an arrhythmogenic cardiac zone with this technique. MATERIAL AND METHODS: An arrhythmogenic target volume was defined on the simulation CT scan of a patient, localized in the lateral wall of the left ventricle. A dose of 25Gy was planned to be delivered by proton minibeam radiotherapy, simulated using a Monte Carlo code (TOPAS v.3.7) with a collimator of 19 0.4 mm-wide slits spaced 3mm apart. The main objective of the study was to obtain a plan ensuring at least 93% of the prescription dose in 93% of the planning target volume without exceeding 110% of the prescribed dose in the planning target volume. RESULTS: The average dose in the planning treatment volume in proton minibeam radiotherapy was 25.12Gy. The percentage of the planning target volume receiving 93% (V93%), 110% (V110%), and 95% (V95%) of the prescribed dose was 94.25%, 0%, and 92.6% respectively. The lateral penumbra was 6.6mm. The mean value of the peak-to-valley-dose ratio in the planning target volume was 1.06. The mean heart dose was 2.54Gy versus 5.95Gy with stereotactic photon beam irradiation. CONCLUSION: This proof-of-concept study shows that proton minibeam radiotherapy can achieve a homogeneous coverage of an arrhythmogenic cardiac zone, reducing the dose at the normal tissues. This technique, ensuring could theoretically reduce the risk of late pulmonary and breast fibrosis, as well as cardiac toxicity as seen in previous biological studies in proton minibeam radiotherapy.


Assuntos
Terapia com Prótons , Prótons , Humanos , Estudos de Viabilidade , Terapia com Prótons/métodos , Radiometria , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Método de Monte Carlo
9.
Neuron ; 112(8): 1200-1202, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636452

RESUMO

In this issue of Neuron, Yamada et al.1 show that fast excitatory neurotransmission by protons acting at acid-sensing ion channels (ASICs) mediates mechanical force-evoked signaling at the Merkel cell-neurite complex, contributing to mammalian tactile discrimination.


Assuntos
Células de Merkel , Neurônios , Animais , Neurônios/metabolismo , Prótons , Neuritos/metabolismo , Transmissão Sináptica , Canais Iônicos Sensíveis a Ácido/metabolismo , Mamíferos/metabolismo
10.
BMC Med Imaging ; 24(1): 85, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600452

RESUMO

BACKGROUND: 1p/19q co-deletion in low-grade gliomas (LGG, World Health Organization grade II and III) is of great significance in clinical decision making. We aim to use radiomics analysis to predict 1p/19q co-deletion in LGG based on amide proton transfer weighted (APTw), diffusion weighted imaging (DWI), and conventional MRI. METHODS: This retrospective study included 90 patients histopathologically diagnosed with LGG. We performed a radiomics analysis by extracting 8454 MRI-based features form APTw, DWI and conventional MR images and applied a least absolute shrinkage and selection operator (LASSO) algorithm to select radiomics signature. A radiomics score (Rad-score) was generated using a linear combination of the values of the selected features weighted for each of the patients. Three neuroradiologists, including one experienced neuroradiologist and two resident physicians, independently evaluated the MR features of LGG and provided predictions on whether the tumor had 1p/19q co-deletion or 1p/19q intact status. A clinical model was then constructed based on the significant variables identified in this analysis. A combined model incorporating both the Rad-score and clinical factors was also constructed. The predictive performance was validated by receiver operating characteristic curve analysis, DeLong analysis and decision curve analysis. P < 0.05 was statistically significant. RESULTS: The radiomics model and the combined model both exhibited excellent performance on both the training and test sets, achieving areas under the curve (AUCs) of 0.948 and 0.966, as well as 0.909 and 0.896, respectively. These results surpassed the performance of the clinical model, which achieved AUCs of 0.760 and 0.766 on the training and test sets, respectively. After performing Delong analysis, the clinical model did not significantly differ in predictive performance from three neuroradiologists. In the training set, both the radiomic and combined models performed better than all neuroradiologists. In the test set, the models exhibited higher AUCs than the neuroradiologists, with the radiomics model significantly outperforming resident physicians B and C, but not differing significantly from experienced neuroradiologist. CONCLUSIONS: Our results suggest that our algorithm can noninvasively predict the 1p/19q co-deletion status of LGG. The predictive performance of radiomics model was comparable to that of experienced neuroradiologist, significantly outperforming the diagnostic accuracy of resident physicians, thereby offering the potential to facilitate non-invasive 1p/19q co-deletion prediction of LGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Prótons , Estudos Retrospectivos , Radiômica , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Algoritmos , Imageamento por Ressonância Magnética/métodos
11.
J Am Chem Soc ; 146(19): 13282-13295, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687970

RESUMO

We present a detailed study of the time-dependent photophysics and photochemistry of a known conformation of the two protonated pentapeptides Leu-enkephalin (Tyrosine-Glycine-Glycine-Phenylalanine-Leucine, YGGFL) and its chromophore-swapped analogue FGGYL, carried out under cryo-cooled conditions in the gas phase. Using ultraviolet-infrared (UV-IR) double resonance, we record excited state IR spectra as a function of time delay between UV and IR pulses. We identify unique Tyr OH stretch transitions due to the S1 state and the vibrationally excited triplet state(s) formed by intersystem crossing, Tn(v). Photofragment mass spectra are recorded out of the S1 origin and following UV-IR double resonance. Several competing site-specific fragmentation pathways are discovered involving peptide backbone cleavage, Tyr side chain loss, and N-terminal NH3 loss mediated by electron transfer. In YGGFL, IR excitation in the S1 state promotes electron transfer (ET) from the aromatic ring to the N-terminal R-NH3+ group leading to loss of neutral NH3. This product channel is missing in FGGYL due to the larger distance for ET from Y(4) to NH3+. Selective loss of the Tyr side chain occurs out of an excited state process following UV excitation and is further enhanced by IR excitation in S1 and Tn(v) states of both YGGFL and FGGYL. Finally, IR excitation in the S1 or Tn(v) states fragments the peptide backbone exclusively at amide(4), producing the b4 cation. We postulate that this selective fragmentation results from intersystem crossing to produce vibrationally excited triplets with enough energy to launch the proton along a proton conduit present in the known starting structure.


Assuntos
Processos Fotoquímicos , Prótons , Espectrofotometria Infravermelho , Peptídeos/química , Encefalina Leucina/química
12.
Phys Med Biol ; 69(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38640918

RESUMO

Objective. In this experimental work we compared the determination of absorbed dose to water using four ionization chambers (ICs), a PTW-34045 Advanced Markus, a PTW-34001 Roos, an IBA-PPC05 and a PTW-30012 Farmer, irradiated under the same conditions in one continuous- and in two pulsed-scanned proton beams.Approach. The ICs were positioned at 2 cm depth in a water phantom in four square-field single-energy scanned-proton beams with nominal energies between 80 and 220 MeV and in the middle of 10 × 10 × 10 cm3dose cubes centered at 10 cm or 12.5 cm depth in water. The water-equivalent thickness (WET) of the entrance window and the effective point of measurement was considered when positioning the plane parallel (PP) ICs and the cylindrical ICs, respectively. To reduce uncertainties, all ICs were calibrated at the same primary standards laboratory. We used the beam quality (kQ) correction factors for the ICs under investigation from IAEA TRS-398, the newly calculated Monte Carlo (MC) values and the anticipated IAEA TRS-398 updated recommendations.Main results. Dose differences among the four ICs ranged between 1.5% and 3.7% using both the TRS-398 and the newly recommendedkQvalues. The spread among the chambers is reduced with the newlykQvalues. The largest differences were observed between the rest of the ICs and the IBA-PPC05 IC, obtaining lower dose with the IBA-PPC05.Significance. We provide experimental data comparing different types of chambers in different proton beam qualities. The observed dose differences between the ICs appear to be related to inconsistencies in the determination of thekQvalues. For PP ICs, MC studies account for the physical thickness of the entrance window rather than the WET. The additional energy loss that the wall material invokes is not negligible for the IBA-PPC05 and might partially explain the lowkQvalues determined for this IC. To resolve this inconsistency and to benchmark MC values,kQvalues measured using calorimetry are needed.


Assuntos
Radiometria , Radiometria/instrumentação , Radiometria/métodos , Método de Monte Carlo , Terapia com Prótons/instrumentação , Prótons , Imagens de Fantasmas , Padrões de Referência , Incerteza , Água , Calibragem
13.
J Chem Inf Model ; 64(9): 3599-3604, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38620066

RESUMO

Understanding tautomerism and characterizing solvent effects on the dynamic processes pose significant challenges. Using enhanced-sampling molecular dynamics based on state-of-the-art deep learning potentials, we investigated the tautomeric equilibria of glycine in water. We observed that the tautomerism between neutral and zwitterionic glycine can occur through both intramolecular and intermolecular proton transfers. The latter proceeds involving a contact anionic-glycine-hydronium ion pair or separate cationic-glycine-hydroxide ion pair. These pathways with comparable barriers contribute almost equally to the reaction flux.


Assuntos
Glicina , Simulação de Dinâmica Molecular , Solventes , Água , Glicina/química , Água/química , Solventes/química , Isomerismo , Prótons , Conformação Molecular
14.
Biomacromolecules ; 25(5): 3163-3168, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38651279

RESUMO

Studies have shown that poly(adenine) DNA and RNA strands protonate at a low pH to form self-associating duplexes; however, the nanoscopic morphology of these structures is unclear. Here, we use Transition Electron Microscopy (TEM), Atomic Force Microscopy (AFM), dynamic light scattering (DLS), and fluorescence spectroscopy to show that both ribose identity (DNA or RNA) and assembly conditions (thermal or room-temperature annealing) dictate unique hierarchical structures for poly(adenine) sequences at a low pH. We show that while the thermodynamic product of protonating poly(adenine) DNA is a discrete dimer of two DNA strands, the kinetic product is a supramolecular polymer that branches and aggregates to form micron-diameter superstructures. In contrast, we find that protonated poly(A) RNA polymerizes into micrometer-length, twisted fibers under the same conditions. These divergent hierarchical morphologies highlight the amplification of subtle chemical differences between RNA and DNA into unique nanoscale behaviors. With the use of poly(adenine) strands spanning vaccine technologies, sensing, and dynamic biotechnology, understanding and controlling the underlying assembly pathways of these structures are critical to developing robust, programmable nanotechnologies.


Assuntos
DNA , Poli A , RNA , RNA/química , DNA/química , Poli A/química , Prótons , Polímeros/química , Microscopia de Força Atômica , Concentração de Íons de Hidrogênio
15.
Acta Physiol (Oxf) ; 240(6): e14143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577966

RESUMO

AIMS: Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS: The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS: OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION: OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.


Assuntos
2,4-Dinitrofenol , Ácidos Graxos , Animais , 2,4-Dinitrofenol/farmacologia , Camundongos , Ácidos Graxos/metabolismo , Humanos , Malatos/metabolismo , Mitocôndrias/metabolismo , Transporte de Íons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Prótons , Ácidos Cetoglutáricos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas de Membrana Transportadoras
16.
Proc Natl Acad Sci U S A ; 121(17): e2320345121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630723

RESUMO

The TWIK-related acid-sensitive K+ channel 3 (TASK3) belongs to the two-pore domain (K2P) potassium channel family, which regulates cell excitability by mediating a constitutive "leak" potassium efflux in the nervous system. Extracellular acidification inhibits TASK3 channel, but the molecular mechanism by which channel inactivation is coupled to pH decrease remains unclear. Here, we report the cryo-electron microscopy structures of human TASK3 at neutral and acidic pH. Structural comparison revealed selectivity filter (SF) rearrangements upon acidification, characteristic of C-type inactivation, but with a unique structural basis. The extracellular mouth of the SF was prominently dilated and simultaneously blocked by a hydrophobic gate. His98 protonation shifted the conformational equilibrium between the conductive and C-type inactivated SF toward the latter by engaging a cation-π interaction with Trp78, consistent with molecular dynamics simulations and electrophysiological experiments. Our work illustrated how TASK3 is gated in response to extracellular pH change and implies how physiological stimuli might directly modulate the C-type gating of K2P channels.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Prótons , Humanos , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Canais de Potássio de Domínios Poros em Tandem/metabolismo
17.
Phys Med Biol ; 69(11)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38657638

RESUMO

Objective. Prompt gamma timing (PGT) uses the detection time of prompt gammas emitted along the range of protons in proton radiotherapy to verify the position of the Bragg peak (BP). Cherenkov detectors offer the possibility of enhanced signal-to-noise ratio (SNR) due to the inherent physics of Cherenkov emission which enhances detection of high energy prompt gamma rays relative to other induced uncorrelated signals. In this work, the PGT technique was applied to 3 semiconductor material slabs that emit only Cherenkov light for use in a full scale system: a 3 × 3 × 20 mm3TlBr, a 12 × 12 × 12 mm3TlBr, and a 5 × 5 × 5 mm3TlCl.Approach. A polymethyl methacrylate (PMMA) target was exposed to a 67.5 MeV, 0.5 nA proton beam and shifted in 3 mm increments at the Crocker nuclear laboratory (CNL) in Davis, CA, USA. A fast plastic scintillator coupled to a photomultiplier tube (PMT) provided the start reference for the proton time of flight. Time of flight (TOF) distributions were generated using this reference and the gamma-ray timestamp in the Cherenkov detector.Main results. The SNR of the proton correlated peaks relative to the background was 20, 29, and 30 for each of the three samples, respectively. The upper limit of the position resolutions with the TlCl sample were 2 mm, 3 mm, and 5 mm for 30k, 10k, and 5k detected events, respectively. The time distribution of events with respect to the reference reproduced with clarity the periodicity of the beam, implying a very high SNR of the Cherenkov crystals to detect prompt gammas. Background presence from the neutron-induced continuum, prompt gammas from deuterium, or positron activation were not observed. Material choice and crystal dimensions did not seem to affect significantly the outcome of the results.Significance. These results show the high SNR of the pure Cherenkov emitters TlBr and TlCl for the detection of prompt gammas in a proton beam with current of clinical significance and their potential for verifying the proton range. The accuracy in determining shifts of the BP was highly dependent on the number of events acquired, therefore, the performance of these detectors are expected to vary with different beam conditions such as current, pulse repetition, and proton bunch width.


Assuntos
Raios gama , Terapia com Prótons , Fatores de Tempo , Terapia com Prótons/instrumentação , Tálio , Lutécio/química , Prótons , Polimetil Metacrilato/química
18.
Radiother Oncol ; 195: 110267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614282

RESUMO

BACKGROUND AND PURPOSE: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS: TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS: Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION: In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.


Assuntos
Animais Recém-Nascidos , Apoptose , Hipocampo , Fótons , Terapia com Prótons , Animais , Camundongos , Apoptose/efeitos da radiação , Terapia com Prótons/efeitos adversos , Hipocampo/efeitos da radiação , Meduloblastoma/radioterapia , Meduloblastoma/patologia , Carcinogênese/efeitos da radiação , Camundongos Knockout , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/patologia , Encéfalo/efeitos da radiação , Receptor Patched-1/genética , Modelos Animais de Doenças , Prótons/efeitos adversos
19.
Magn Reson Imaging ; 110: 69-77, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614223

RESUMO

PURPOSE: Conventional amide proton transfer (APT)-weighted imaging requires a chemical exchange saturation transfer (CEST) sequence with multiple saturation frequency offsets and a B0 correction sequence, plus a long acquisition time that can be reduced by applying the conventional method using CEST images with seven radiation pulses (i.e., the seven-points method). For a further reduction of acquisition times, we propose fast two-dimensional (2D) APT-weighted imaging based on a self B0 correction using the turbo spin echo (TSE)-Dixon method. We conducted a phantom study to investigate the accuracy of TSE-Dixon APT-weighted imaging. METHODS: We prepared two types of phantoms with six samples for a concentrationdependent evaluation and a pH-dependent evaluation. APT-weighted images were acquired by the conventional, seven-points, and TSE-Dixon methods. Linear regression analyses assessed the dependence between each method's APT signal intensities (SIs) and the concentration or pH. We performed a one-way analysis of variance with Tukey's honestly significant difference post hoc test to compare the APT SIs among the three methods. The agreement of the APT SIs between the conventional and seven-points or TSE-Dixon methods was assessed by a Bland- Altman plot analysis. RESULTS: The APT SIs of all three acquisition methods showed positive concentration dependence and pH dependence. No significant differences were observed in the APT SIs between the conventional and TSE-Dixon methods at each concentration. The Bland-Altman plot analyses showed that the APT SIs measured with the seven-points method resulted in 0.42% bias and narrow 95% limits of agreement (LOA) (0.93%-0.09%) compared to the conventional method. The APT SIs measured using the TSE-Dixon method showed 0.14% bias and similar 95% LOA (-0.33% to 0.61%) compared with the seven-points method. The APT SIs of all three methods showed positive pH dependence. At each pH, no significant differences in the APT SIs were observed among the methods. Bland-Altman plot analyses showed that the APT SIs measured with the seven-points method resulted in low bias (0.03%) and narrow 95% LOA (-0.30% to 0.36%) compared to the conventional method. The APT SIs measured by the TSE-Dixon method showed slightly larger bias (0.29%) and similar 95% LOA (from -0.15% to 0.72%) compared to those measured by the seven-points method. CONCLUSION: These results demonstrated that our proposed method has the same concentration dependence and pH dependence as the conventional method and the seven-points method. We thus expect that APT-weighted imaging with less influence of motion can be obtained in clinical examinations.


Assuntos
Imageamento por Ressonância Magnética , Imagens de Fantasmas , Prótons , Imageamento por Ressonância Magnética/métodos , Amidas/química , Reprodutibilidade dos Testes , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Concentração de Íons de Hidrogênio , Interpretação de Imagem Assistida por Computador/métodos , Aumento da Imagem/métodos
20.
Phys Med Biol ; 69(11)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38657632

RESUMO

Six decades after its conception, proton computed tomography (pCT) and proton radiography have yet to be used in medical clinics. However, good progress has been made on relevant detector technologies in the past two decades, and a few prototype pCT systems now exist that approach the performance needed for a clinical device. The tracking and energy-measurement technologies in common use are described, as are the few pCT scanners that are in routine operation at this time. Most of these devices still look like detector R&D efforts as opposed to medical devices, are difficult to use, are at least a factor of five slower than desired for clinical use, and are too small to image many parts of the human body. Recommendations are made for what to consider when engineering a pre-clinical pCT scanner that is designed to meet clinical needs in terms of performance, cost, and ease of use.


Assuntos
Prótons , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/instrumentação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...