Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.646
Filtrar
1.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731521

RESUMO

Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.


Assuntos
Domínio Catalítico , Inibidores Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Aminoácidos/química , Aminoácidos/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Lactato Desidrogenase 5/metabolismo , Lactato Desidrogenase 5/antagonistas & inibidores , Lactato Desidrogenase 5/química , Ácido Pirúvico/metabolismo , Ácido Pirúvico/química , Mutagênese Sítio-Dirigida , Simulação de Dinâmica Molecular
2.
BMC Cancer ; 24(1): 611, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773399

RESUMO

RNA interactomes and their diversified functionalities have recently benefited from critical methodological advances leading to a paradigm shift from a conventional conception on the regulatory roles of RNA in pathogenesis. However, the dynamic RNA interactomes in adenoma-carcinoma sequence of human CRC remain unexplored. The coexistence of adenoma, cancer, and normal tissues in colorectal cancer (CRC) patients provides an appropriate model to address this issue. Here, we adopted an RNA in situ conformation sequencing technology for mapping RNA-RNA interactions in CRC patients. We observed large-scale paired RNA counts and identified some unique RNA complexes including multiple partners RNAs, single partner RNAs, non-overlapping single partner RNAs. We focused on the antisense RNA OIP5-AS1 and found that OIP5-AS1 could sponge different miRNA to regulate the production of metabolites including pyruvate, alanine and lactic acid. Our findings provide novel perspectives in CRC pathogenesis and suggest metabolic reprogramming of pyruvate for the early diagnosis and treatment of CRC.


Assuntos
Adenoma , Neoplasias Colorretais , MicroRNAs , Ácido Pirúvico , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Ácido Pirúvico/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Reprogramação Metabólica
3.
Microb Cell Fact ; 23(1): 143, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773442

RESUMO

BACKGROUND: Zymomonas mobilis is well known for its outstanding ability to produce ethanol with both high specific productivity and with high yield close to the theoretical maximum. The key enzyme in the ethanol production pathway is the pyruvate decarboxylase (PDC) which is converting pyruvate to acetaldehyde. Since it is widely considered that its gene pdc is essential, metabolic engineering strategies aiming to produce other compounds derived from pyruvate need to find ways to reduce PDC activity. RESULTS: Here, we present a new platform strain (sGB027) of Z. mobilis in which the native promoter of pdc was replaced with the IPTG-inducible PT7A1, allowing for a controllable expression of pdc. Expression of lactate dehydrogenase from E. coli in sGB027 allowed the production of D-lactate with, to the best of our knowledge, the highest reported specific productivity of any microbial lactate producer as well as with the highest reported lactate yield for Z. mobilis so far. Additionally, by expressing the L-alanine dehydrogenase of Geobacillus stearothermophilus in sGB027 we produced L-alanine, further demonstrating the potential of sGB027 as a base for the production of compounds other than ethanol. CONCLUSION: We demonstrated that our new platform strain can be an excellent starting point for the efficient production of various compounds derived from pyruvate with Z. mobilis and can thus enhance the establishment of this organism as a workhorse for biotechnological production processes.


Assuntos
Escherichia coli , Etanol , Ácido Láctico , Engenharia Metabólica , Piruvato Descarboxilase , Zymomonas , Zymomonas/metabolismo , Zymomonas/genética , Piruvato Descarboxilase/metabolismo , Piruvato Descarboxilase/genética , Engenharia Metabólica/métodos , Etanol/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Escherichia coli/metabolismo , Escherichia coli/genética , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Alanina/metabolismo , Ácido Pirúvico/metabolismo , Fermentação
4.
Nat Commun ; 15(1): 4092, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750010

RESUMO

Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Serratia sp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by a Desulfosporosinus sp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermenting Serratia sp. supplying amino acids as essential growth factors to the N2O-reducing Desulfosporosinus sp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.


Assuntos
Óxido Nitroso , Serratia , Microbiologia do Solo , Óxido Nitroso/metabolismo , Concentração de Íons de Hidrogênio , Serratia/metabolismo , Serratia/genética , Oxirredução , Solo/química , Fermentação , Técnicas de Cocultura , Ácido Pirúvico/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Nitrogênio/metabolismo
5.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38726824

RESUMO

Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.


Assuntos
Cicer , Germinação , Mitocôndrias , Proteínas Mitocondriais , Óxido Nítrico , Estresse Oxidativo , Oxirredutases , Proteínas de Plantas , Superóxidos , Cicer/crescimento & desenvolvimento , Cicer/efeitos dos fármacos , Cicer/metabolismo , Proteínas de Plantas/metabolismo , Germinação/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Superóxidos/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Pirúvico/metabolismo
6.
Eur Radiol Exp ; 8(1): 46, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594558

RESUMO

BACKGROUND: Monitoring pyruvate metabolism in the spleen is important for assessing immune activity and achieving successful radiotherapy for cervical cancer due to the significance of the abscopal effect. We aimed to explore the feasibility of utilizing hyperpolarized (HP) [1-13C]-pyruvate magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) to evaluate pyruvate metabolism in the human spleen, with the aim of identifying potential candidates for radiotherapy in cervical cancer. METHODS: This prospective study recruited six female patients with cervical cancer (median age 55 years; range 39-60) evaluated using HP [1-13C]-pyruvate MRI/MRS at baseline and 2 weeks after radiotherapy. Proton (1H) diffusion-weighted MRI was performed in parallel to estimate splenic cellularity. The primary outcome was defined as tumor response to radiotherapy. The Student t-test was used for comparing 13C data between the groups. RESULTS: The splenic HP [1-13C]-lactate-to-total carbon (tC) ratio was 5.6-fold lower in the responders than in the non-responders at baseline (p = 0.009). The splenic [1-13C]-lactate-to-tC ratio revealed a 1.7-fold increase (p = 0.415) and the splenic [1-13C]-alanine-to-tC ratio revealed a 1.8-fold increase after radiotherapy (p = 0.482). The blood leukocyte differential count revealed an increased proportion of neutrophils two weeks following treatment, indicating enhanced immune activity (p = 0.013). The splenic apparent diffusion coefficient values between the groups were not significantly different. CONCLUSIONS: This exploratory study revealed the feasibility of HP [1-13C]-pyruvate MRS of the spleen for evaluating baseline immune potential, which was associated with clinical outcomes of cervical cancer after radiotherapy. TRIAL REGISTRATION: ClinicalTrials.gov NCT04951921 , registered 7 July 2021. RELEVANCE STATEMENT: This prospective study revealed the feasibility of using HP 13C MRI/MRS for assessing pyruvate metabolism of the spleen to evaluate the patients' immune potential that is associated with radiotherapeutic clinical outcomes in cervical cancer. KEY POINTS: • Effective radiotherapy induces abscopal effect via altering immune metabolism. • Hyperpolarized 13C MRS evaluates patients' immune potential non-invasively. • Pyruvate-to-lactate conversion in the spleen is elevated following radiotherapy.


Assuntos
Ácido Pirúvico , Neoplasias do Colo do Útero , Humanos , Feminino , Pessoa de Meia-Idade , Ácido Pirúvico/metabolismo , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Estudos Prospectivos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Lactatos
7.
Islets ; 16(1): 2339558, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38607959

RESUMO

BACKGROUND: Studies suggest that short chain fatty acids (SCFAs), which are primarily produced from fermentation of fiber, regulate insulin secretion through free fatty acid receptors 2 and 3 (FFA2 and FFA3). As these are G-protein coupled receptors (GPCRs), they have potential therapeutic value as targets for treating type 2 diabetes (T2D). The exact mechanism by which these receptors regulate insulin secretion and other aspects of pancreatic ß cell function is unclear. It has been reported that glucose-dependent release of acetate from pancreatic ß cells negatively regulates glucose stimulated insulin secretion. While these data raise the possibility of acetate's potential autocrine action on these receptors, these findings have not been independently confirmed, and multiple concerns exist with this observation, particularly the lack of specificity and precision of the acetate detection methodology used. METHODS: Using Min6 cells and mouse islets, we assessed acetate and pyruvate production and secretion in response to different glucose concentrations, via liquid chromatography mass spectrometry. RESULTS: Using Min6 cells and mouse islets, we showed that both intracellular pyruvate and acetate increased with high glucose conditions; however, intracellular acetate level increased only slightly and exclusively in Min6 cells but not in the islets. Further, extracellular acetate levels were not affected by the concentration of glucose in the incubation medium of either Min6 cells or islets. CONCLUSIONS: Our findings do not substantiate the glucose-dependent release of acetate from pancreatic ß cells, and therefore, invalidate the possibility of an autocrine inhibitory effect on glucose stimulated insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Camundongos , Acetatos , Glucose , Ácido Pirúvico
8.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38587863

RESUMO

Previously, we reported an engineered Saccharomyces cerevisiae CEN.PK113-1A derivative able to produce succinic acid (SA) from glycerol with net CO2 fixation. Apart from an engineered glycerol utilization pathway that generates NADH, the strain was equipped with the NADH-dependent reductive branch of the TCA cycle (rTCA) and a heterologous SA exporter. However, the results indicated that a significant amount of carbon still entered the CO2-releasing oxidative TCA cycle. The current study aimed to tune down the flux through the oxidative TCA cycle by targeting the mitochondrial uptake of pyruvate and cytosolic intermediates of the rTCA pathway, as well as the succinate dehydrogenase complex. Thus, we tested the effects of deletions of MPC1, MPC3, OAC1, DIC1, SFC1, and SDH1 on SA production. The highest improvement was achieved by the combined deletion of MPC3 and SDH1. The respective strain produced up to 45.5 g/L of SA, reached a maximum SA yield of 0.66 gSA/gglycerol, and accumulated the lowest amounts of byproducts when cultivated in shake-flasks. Based on the obtained data, we consider a further reduction of mitochondrial import of pyruvate and rTCA intermediates highly attractive. Moreover, the approaches presented in the current study might also be valuable for improving SA production when sugars (instead of glycerol) are the source of carbon.


Assuntos
Saccharomyces cerevisiae , Ácido Succínico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Glicerol/metabolismo , Dióxido de Carbono/metabolismo , NAD/metabolismo , Ácido Pirúvico/metabolismo , Membranas Mitocondriais/metabolismo , Carbono/metabolismo , Engenharia Metabólica/métodos
9.
Cell Rep ; 43(4): 114103, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607920

RESUMO

Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.


Assuntos
Proliferação de Células , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , NAD , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NAD/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Animais , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Camundongos
10.
JCI Insight ; 9(10)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687612

RESUMO

Fetal growth restriction (FGR) is accompanied by early activation of hepatic glucose production (HGP), a hallmark of type 2 diabetes (T2D). Here, we used fetal hepatic catheterization to directly measure HGP and substrate flux in a sheep FGR model. We hypothesized that FGR fetuses would have increased hepatic lactate and amino acid uptake to support increased HGP. Indeed, FGR fetuses compared with normal (CON) fetuses had increased HGP and activation of gluconeogenic genes. Unexpectedly, hepatic pyruvate output was increased, while hepatic lactate and gluconeogenic amino acid uptake rates were decreased in FGR liver. Hepatic oxygen consumption and total substrate uptake rates were lower. In FGR liver tissue, metabolite abundance, 13C-metabolite labeling, enzymatic activity, and gene expression supported decreased pyruvate oxidation and increased lactate production. Isolated hepatocytes from FGR fetuses had greater intrinsic capacity for lactate-fueled glucose production. FGR livers also had lower energy (ATP) and redox state (NADH/NAD+ ratio). Thus, reduced hepatic oxidative metabolism may make carbons available for increased HGP, but also produces nutrient and energetic stress in FGR liver. Intrinsic programming of these pathways regulating HGP in the FGR fetus may underlie increased HGP and T2D risk postnatally.


Assuntos
Retardo do Crescimento Fetal , Feto , Glucose , Fígado , Oxirredução , Animais , Fígado/metabolismo , Retardo do Crescimento Fetal/metabolismo , Glucose/metabolismo , Ovinos , Feminino , Feto/metabolismo , Gravidez , Gluconeogênese , Hepatócitos/metabolismo , Ácido Láctico/metabolismo , Modelos Animais de Doenças , Consumo de Oxigênio , Ácido Pirúvico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo
11.
Acta Neurochir (Wien) ; 166(1): 190, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653934

RESUMO

BACKGROUND: Cerebral perfusion pressure (CPP) management in the developing child with traumatic brain injury (TBI) is challenging. The pressure reactivity index (PRx) may serve as marker of cerebral pressure autoregulation (CPA) and optimal CPP (CPPopt) may be assessed by identifying the CPP level with best (lowest) PRx. To evaluate the potential of CPPopt guided management in children with severe TBI, cerebral microdialysis (CMD) monitoring levels of lactate and the lactate/pyruvate ratio (LPR) (indicators of ischemia) were related to actual CPP levels, autoregulatory state (PRx) and deviations from CPPopt (ΔCPPopt). METHODS: Retrospective study of 21 children ≤ 17 years with severe TBI who had both ICP and CMD monitoring were included. CPP, PRx, CPPopt and ΔCPPopt where calculated, dichotomized and compared with CMD lactate and lactate-pyruvate ratio. RESULTS: Median age was 16 years (range 8-17) and median Glasgow coma scale motor score 5 (range 2-5). Both lactate (p = 0.010) and LPR (p = < 0.001) were higher when CPP ≥ 70 mmHg than when CPP < 70. When PRx ≥ 0.1 both lactate and LPR were higher than when PRx < 0.1 (p = < 0.001). LPR was lower (p = 0.012) when CPPopt ≥ 70 mmHg than when CPPopt < 70, but there were no differences in lactate levels. When ΔCPPopt > 10 both lactate (p = 0.026) and LPR (p = 0.002) were higher than when ΔCPPopt < -10. CONCLUSIONS: Increased levels of CMD lactate and LPR in children with severe TBI appears to be related to disturbed CPA (PRx). Increased lactate and LPR also seems to be associated with actual CPP levels ≥ 70 mmHg. However, higher lactate and LPR values were also seen when actual CPP was above CPPopt. Higher CPP appears harmful when CPP is above the upper limit of pressure autoregulation. The findings indicate that CPPopt guided CPP management may have potential in pediatric TBI.


Assuntos
Lesões Encefálicas Traumáticas , Circulação Cerebrovascular , Homeostase , Pressão Intracraniana , Ácido Láctico , Humanos , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/metabolismo , Criança , Adolescente , Homeostase/fisiologia , Feminino , Masculino , Estudos Retrospectivos , Pressão Intracraniana/fisiologia , Circulação Cerebrovascular/fisiologia , Ácido Láctico/metabolismo , Ácido Láctico/análise , Microdiálise/métodos , Ácido Pirúvico/metabolismo , Ácido Pirúvico/análise , Encéfalo/metabolismo , Encéfalo/fisiopatologia
12.
Meat Sci ; 213: 109510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598967

RESUMO

This research aimed to explore the potential influence of mitochondria on the rate of anaerobic glycolysis. We hypothesized that mitochondria could reduce the rate of anaerobic glycolysis and pH decline by metabolizing a portion of glycolytic pyruvate. We utilized an in vitro model and incorporated CPI-613 and Avidin to inhibit pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC), respectively. Four treatments were tested: 400 µM CPI-613, 1.5 U/ml Avidin, 400 µM CPI-613 + 1.5 U/ml Avidin, or control. Glycolytic metabolites and pH of the in vitro model were evaluated throughout a 1440-min incubation period. CPI-613-containing treatments, with or without Avidin, decreased pH levels and increased glycogen degradation and lactate accumulation compared to the control and Avidin treatments (P < 0.05), indicating increased glycolytic flux. In a different experiment, two treatments, 400 µM CPI-613 or control, were employed to track the fates of pyruvate using [13C6]glucose. CPI-613 reduced the contribution of glucose carbon to tricarboxylic acid cycle intermediates compared to control (P < 0.05). To test whether the acceleration of acidification in reactions containing CPI-613 was due to an increase in the activity of key enzymes of glycogenolysis and glycolysis, we evaluated the activities of glycogen phosphorylase, phosphofructokinase, and pyruvate kinase in the presence or absence of 400 µM CPI-613. The CPI-613 treatment did not elicit an alteration in the activity of these three enzymes. These findings indicate that inhibiting PDH increases the rate of anaerobic glycolysis and pH decline, suggesting that mitochondria are potential regulators of postmortem metabolism.


Assuntos
Glicogênio , Glicólise , Complexo Piruvato Desidrogenase , Complexo Piruvato Desidrogenase/metabolismo , Animais , Concentração de Íons de Hidrogênio , Anaerobiose , Glicogênio/metabolismo , Mudanças Depois da Morte , Mitocôndrias/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Piruvato Carboxilase/metabolismo
13.
Korean J Radiol ; 25(5): 459-472, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685736

RESUMO

Hyperpolarized (HP) carbon-13 (13C) MRI represents an innovative approach for noninvasive, real-time assessment of dynamic metabolic flux, with potential integration into routine clinical MRI. The use of [1-13C]pyruvate as a probe and its conversion to [1-13C]lactate constitute an extensively explored metabolic pathway. This review comprehensively outlines the establishment of HP 13C-MRI, covering multidisciplinary team collaboration, hardware prerequisites, probe preparation, hyperpolarization techniques, imaging acquisition, and data analysis. This article discusses the clinical applications of HP 13C-MRI across various anatomical domains, including the brain, heart, skeletal muscle, breast, liver, kidney, pancreas, and prostate. Each section highlights the specific applications and findings pertinent to these regions, emphasizing the potential versatility of HP 13C-MRI in diverse clinical contexts. This review serves as a comprehensive update, bridging technical aspects with clinical applications and offering insights into the ongoing advancements in HP 13C-MRI.


Assuntos
Isótopos de Carbono , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Músculo Esquelético/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Ácido Pirúvico , Fígado/diagnóstico por imagem
14.
Sci Rep ; 14(1): 7388, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548829

RESUMO

Intrahospital transfer (IHT), a routine in the management of neurocritical patients requiring imaging or interventions, might affect brain metabolism. Studies about IHT effects using microdialysis (MD) have produced conflicting results. In these studies, only the most damaged hemisphere was monitored, and those may not reflect the impact of IHT on overall brain metabolism, nor do they address differences between the hemispheres. Herein we aimed to quantify the effect of IHT on brain metabolism by monitoring both hemispheres with bilateral MD. In this study, 27 patients with severe brain injury (10 traumatic brain injury and 17 subarachnoid hemorrhage patients) were included, with a total of 67 IHT. Glucose, glycerol, pyruvate and lactate were measured by MD in both hemispheres for 10 h pre- and post-IHT. Alterations in metabolite levels after IHT were observed on both hemispheres; although these changes were more marked in hemisphere A (most damaged) than B (less damaged). Our results suggest that brain metabolism is altered after an IHT of neurocritical ill patients particularly but not limited to the damaged hemisphere. Bilateral monitorization may be more sensitive than unilateral monitorization for detecting metabolic disturbances not directly related to the course of the disease.


Assuntos
Hemorragia Subaracnóidea , Humanos , Microdiálise/métodos , Hemorragia Subaracnóidea/terapia , Hemorragia Subaracnóidea/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Encéfalo/metabolismo
16.
Radiol Imaging Cancer ; 6(2): e230056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426887

RESUMO

Purpose To characterize the metabolomic profiles of two hepatocellular carcinoma (HCC) rat models, track evolution of these profiles to a stimulated tumor state, and assess their effect on lactate flux with hyperpolarized (HP) carbon 13 (13C) MRI. Materials and Methods Forty-three female adult Fischer rats were implanted with N1S1 or McA-RH7777 HCC tumors. In vivo lactate-to-pyruvate ratio (LPR) was measured with HP 13C MRI at 9.4 T. Ex vivo mass spectrometry was used to measure intratumoral metabolites, and Ki67 labeling was used to quantify proliferation. Tumors were first compared with three normal liver controls. The tumors were then compared with stimulated variants via off-target hepatic thermal ablation treatment. All comparisons were made using the Mann-Whitney test. Results HP 13C pyruvate MRI showed greater LPR in N1S1 tumors compared with normal liver (mean [SD], 0.564 ± 0.194 vs 0.311 ± 0.057; P < .001 [n = 9]), but not for McA-RH7777 (P = .44 [n = 8]). Mass spectrometry confirmed that the glycolysis pathway was increased in N1S1 tumors and decreased in McA-RH7777 tumors. The pentose phosphate pathway was also decreased only in McA-RH7777 tumors. Increased proliferation in stimulated N1S1 tumors corresponded to a net increase in LPR (six stimulated vs six nonstimulated, 0.269 ± 0.148 vs 0.027 ± 0.08; P = .009), but not in McA-RH7777 (eight stimulated vs six nonstimulated, P = .13), despite increased proliferation and metastases. Mass spectrometry demonstrated relatively increased lactate production with stimulation in N1S1 tumors only. Conclusion Two HCC subtypes showed divergent glycolytic dependency at baseline and during transformation to a high proliferation state. This metabolic heterogeneity in HCC should be considered with use of HP 13C MRI for diagnosis and tracking. Keywords: Molecular Imaging-Probe Development, Liver, Abdomen/GI, Oncology, Hepatocellular Carcinoma © RSNA, 2024 See also commentary by Ohliger in this issue.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Feminino , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Ácido Pirúvico/metabolismo , Imageamento por Ressonância Magnética , Ratos Endogâmicos F344 , Lactatos
17.
Anal Methods ; 16(14): 2077-2084, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38511294

RESUMO

Herein, we present a paper-based POCT sensor based on lactate dehydrogenase-mediated alginate gelation combined with visual distance reading and smartphone-assisted colorimetric dual-signal analysis to determine the concentration of L-lactate in yogurt samples. In this research, L-lactate was transformed into pyruvate by lactate dehydrogenase. Pyruvate then triggered the gelation of a sol mixture, increasing the viscosity (ηs) of the mixture, which was shown as a decrease in the diffusion diameter on the paper-based sensor. In addition, protons from pyruvate accelerated the degradation of Rhodamine B, causing color fading of the mixture, which was analyzed using RGB analysis application software. Under optimal experimental conditions, the linear ranges of visual distance reading and smartphone-assisted colorimetric analysis were 0.1-15 µM and 0.3-15 µM and the detection limits were 0.03 µM and 0.07 µM, respectively. As a proof-of-concept application, we exploited the paper-based sensor to determine the concentration of L-lactate in yogurt samples. The results from the dual-signal paper-based sensor were consistent with the ones from HPLC analysis. In short, this study developed a simple, convenient, cost-effective, and feasible method for the quantitative detection of L-lactate in real samples.


Assuntos
Colorimetria , Leitura , Smartphone , Compostos Orgânicos , Ácido Pirúvico , Alginatos , L-Lactato Desidrogenase , Lactatos
18.
Biol Pharm Bull ; 47(4): 856-860, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38538325

RESUMO

The C3 carbon of glucose molecules becomes the C1 carbon of pyruvate molecules during glycolysis, and the C1 and C2 carbons of glucose molecules are metabolized in the tricarboxylic acid (TCA) cycle. Utilizing this position-dependent metabolism of C atoms in glucose molecules, [1-13C], [2-13C], and [3-13C]glucose breath tests are used to evaluate glucose metabolism. However, the effects of chronic ethanol consumption remain incompletely understood. Therefore, we evaluated glucose metabolism in ethanol-fed rats using [1-13C], [2-13C], and [3-13C]glucose breath tests. Ethanol-fed (ERs) and control rats (CRs) (n = 8 each) were used in this study, and ERs were prepared by replacing drinking water with a 16% ethanol solution. We administered 100 mg/kg of [1-13C], [2-13C], or [3-13C]glucose to rats and collected expired air (at 10-min intervals for 180 min). We compared the 13CO2 levels (Δ13CO2, ‰) of breath measured by IR isotope ratio spectrometry and area under the curve (AUC) values of the 13CO2 levels-time curve between ERs and CRs. 13CO2 levels and AUCs after administration of [1-13C]glucose and [2-13C]glucose were lower in ERs than in CRs. Conversely, the AUC for the [3-13C]glucose breath test showed no significant differences between ERs and CRs, although 13CO2 levels during the 110-120 min interval were significantly high in ERs. These findings indicate that chronic ethanol consumption diminishes glucose oxidation without concomitantly reducing glycolysis. Our study demonstrates the utility of 13C-labeled glucose breath tests as noninvasive and repeatable methods for evaluating glucose metabolism in various subjects, including those with alcoholism or diabetes.


Assuntos
Dióxido de Carbono , Glucose , Humanos , Ratos , Animais , Glucose/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Testes Respiratórios/métodos , Etanol , Ácido Pirúvico
19.
Nano Lett ; 24(14): 4091-4100, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38489158

RESUMO

Catalytic cancer therapy targets cancer cells by exploiting the specific characteristics of the tumor microenvironment (TME). TME-based catalytic strategies rely on the use of molecules already present in the TME. Amino groups seem to be a suitable target, given the abundance of proteins and peptides in biological environments. Here we show that catalytic CuFe2O4 nanoparticles are able to foster transaminations with different amino acids and pyruvate, another key molecule present in the TME. We observed a significant in cellulo decrease in glutamine and alanine levels up to 48 h after treatment. In addition, we found that di- and tripeptides also undergo catalytic transamination, thereby extending the range of the effects to other molecules such as glutathione disulfide (GSSG). Mechanistic calculations for GSSG transamination revealed the formation of an imine between the oxo group of pyruvate and the free -NH2 group of GSSG. Our results highlight transamination as alternative to the existing toolbox of catalytic therapies.


Assuntos
Aminoácidos , Neoplasias , Aminoácidos/química , Dissulfeto de Glutationa , Microambiente Tumoral , Aminas , Ácido Pirúvico , Catálise
20.
Cell Metab ; 36(5): 1088-1104.e12, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38447582

RESUMO

Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.


Assuntos
Acetil-CoA Carboxilase , Aminoácidos , Gluconeogênese , Fígado , Malonil Coenzima A , Camundongos Knockout , Oxirredução , Animais , Malonil Coenzima A/metabolismo , Fígado/metabolismo , Acetil-CoA Carboxilase/metabolismo , Camundongos , Aminoácidos/metabolismo , Masculino , Piruvato Carboxilase/metabolismo , Ciclo do Ácido Cítrico , Ácido Pirúvico/metabolismo , Camundongos Endogâmicos C57BL , Jejum/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...