Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.093
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 77, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769475

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) significantly influence the progression, metastasis, and recurrence of esophageal squamous cell carcinoma (ESCC). The aberrant expression of long noncoding RNAs (lncRNAs) in ESCC has been established, yet the role of lncRNAs in TAM reprogramming during ESCC progression remains largely unexplored. METHODS: ESCC TAM-related lncRNAs were identified by intersecting differentially expressed lncRNAs with immune-related lncRNAs and performing immune cell infiltration analysis. The expression profile and clinical relevance of LINC00330 were examined using the TCGA database and clinical samples. The LINC00330 overexpression and interference sequences were constructed to evaluate the effect of LINC00330 on ESCC progression. Single-cell sequencing data, CIBERSORTx, and GEPIA were utilized to analyze immune cell infiltration within the ESCC tumor microenvironment and to assess the correlation between LINC00330 and TAM infiltration. ESCC-macrophage coculture experiments were conducted to investigate the influence of LINC00330 on TAM reprogramming and its subsequent effect on ESCC progression. The interaction between LINC00330 and C-C motif ligand 2 (CCL2) was confirmed through transcriptomic sequencing, subcellular localization analysis, RNA pulldown, silver staining, RNA immunoprecipitation, and other experiments. RESULTS: LINC00330 is significantly downregulated in ESCC tissues and strongly associated with poor patient outcomes. Overexpression of LINC00330 inhibits ESCC progression, including proliferation, invasion, epithelial-mesenchymal transition, and tumorigenicity in vivo. LINC00330 promotes TAM reprogramming, and LINC00330-mediated TAM reprogramming inhibits ESCC progression. LINC00330 binds to the CCL2 protein and inhibits the expression of CCL2 and downstream signaling pathways. CCL2 is critical for LINC00330-mediated TAM reprogramming and ESCC progression. CONCLUSIONS: LINC00330 inhibited ESCC progression by disrupting the CCL2/CCR2 axis and its downstream signaling pathways in an autocrine fashion; and by impeding CCL2-mediated TAM reprogramming in a paracrine manner. The new mechanism of TAM reprogramming mediated by the LINC00330/CCL2 axis may provide potential strategies for targeted and immunocombination therapies for patients with ESCC.


Assuntos
Quimiocina CCL2 , Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Microambiente Tumoral , Macrófagos Associados a Tumor , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Animais , Camundongos , Feminino , Proliferação de Células/genética
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732210

RESUMO

Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.


Assuntos
Angiotensina II , Quimiocina CCL2 , Doxorrubicina , Camundongos Knockout , Podócitos , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Podócitos/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Camundongos , Masculino , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Deleção de Genes , Modelos Animais de Doenças
3.
Arch Dermatol Res ; 316(5): 176, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758283

RESUMO

Psoriasis is a chronic immune mediated inflammatory skin disease with systemic manifestations. It has been reported that caloric restriction could improve severity of psoriasis patients. However, the mechanism of intermittent fasting effects on psoriasis has not been investigated. Caloric restriction is known to reduce the number of circulating inflammatory monocytes in a CCL2-dependent manner. However, it is still unknown whether caloric restriction can improve psoriasis by regulating monocytes through CCL2. In this study, we used imiquimod (IMQ)-induced psoriasis-like mouse model to explore the effects and the mechanisms of intermittent fasting on psoriasis-like dermatitis. We found that intermittent fasting could significantly improve IMQ-induced psoriasis-like dermatitis, and reduce the number of γδT17 cells and IL-17 production in draining lymph nodes and psoriatic lesion via inhibiting proliferation and increasing death of γδT17 cells. Furthermore, intermittent fasting could significantly decrease monocytes in blood, and this was associated with decreased monocytes, macrophages and DC in psoriasis-like skin inflammation. Reduced monocytes in circulation and increased monocytes in BM of fasting IMQ-induced psoriasis-like mice is through reducing the production of CCL2 from BM to inhibit monocyte egress to the periphery. Our above data shads light on the mechanisms of intermittent fasting on psoriasis.


Assuntos
Quimiocina CCL2 , Modelos Animais de Doenças , Jejum , Imiquimode , Monócitos , Psoríase , Animais , Psoríase/imunologia , Psoríase/induzido quimicamente , Psoríase/patologia , Monócitos/imunologia , Monócitos/metabolismo , Camundongos , Jejum/sangue , Quimiocina CCL2/metabolismo , Células Th17/imunologia , Interleucina-17/metabolismo , Pele/patologia , Pele/imunologia , Humanos , Camundongos Endogâmicos C57BL , Masculino , Proliferação de Células , Restrição Calórica , Jejum Intermitente
4.
Bull Exp Biol Med ; 176(5): 607-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38730105

RESUMO

The study presents the killer functions of circulating neutrophils: myeloperoxidase activity, the ability to generate ROS, phagocytic activity, receptor status, NETosis, as well as the level of cytokines IL-2, IL-4, IL-6, IL-17A, and IL-18, granulocyte CSF, monocyte chemotactic protein 1, and neutrophil elastase in the serum of patients with uterine myoma and endometrial cancer (FIGO stages I-III). The phagocytic ability of neutrophils in uterine myoma was influenced by serum levels of granulocyte CSF and IL-2 in 54% of the total variance. The degranulation ability of neutrophils in endometrial cancer was determined by circulating IL-18 in 50% of the total variance. In uterine myoma, 66% of the total variance in neutrophil myeloperoxidase activity was explained by a model dependent on blood levels of IL-17A, IL-6, and IL-4. The risk of endometrial cancer increases when elevated levels of monocyte chemotactic protein 1 in circulating neutrophils are associated with reduced ability to capture particles via extracellular traps (96% probability).


Assuntos
Quimiocina CCL2 , Neoplasias do Endométrio , Interleucina-17 , Interleucina-6 , Neutrófilos , Humanos , Feminino , Neutrófilos/metabolismo , Neutrófilos/imunologia , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/sangue , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Interleucina-6/sangue , Quimiocina CCL2/sangue , Interleucina-17/sangue , Pessoa de Meia-Idade , Interleucina-4/sangue , Peroxidase/sangue , Peroxidase/metabolismo , Interleucina-18/sangue , Neoplasias Uterinas/sangue , Neoplasias Uterinas/imunologia , Neoplasias Uterinas/patologia , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fagocitose , Leiomioma/sangue , Leiomioma/imunologia , Leiomioma/patologia , Leiomioma/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Elastase de Leucócito/sangue , Elastase de Leucócito/metabolismo , Adulto , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Espécies Reativas de Oxigênio/metabolismo , Idoso , Interleucina-2
5.
J Transl Med ; 22(1): 421, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702780

RESUMO

INTRODUCTION: Immune checkpoint inhibitors (ICIs) induce acute interstitial nephritis (AIN) in 2-5% of patients, with a clearly higher incidence when they are combined with platinum derivatives. Unfortunately, suitable disease models and non-invasive biomarkers are lacking. To fill this gap in our understanding, we investigated the renal effects of cisplatin and anti-PD-L1 antibodies in mice, assessing PD-1 renal expression and cytokine levels in mice with AIN, and then we compared these findings with those in AIN-diagnosed cancer patients. METHODS: Twenty C57BL6J mice received 200 µg of anti-PD-L1 antibody and 5 mg/kg cisplatin intraperitoneally and were compared with those receiving cisplatin (n = 6), anti-PD-L1 (n = 7), or saline (n = 6). After 7 days, the mice were euthanized. Serum and urinary concentrations of TNFα, CXCL10, IL-6, and MCP-1 were measured by Luminex. The kidney sections were stained to determine PD-1 tissue expression. Thirty-nine cancer patients with AKI were enrolled (AIN n = 33, acute tubular necrosis (ATN) n = 6), urine MCP-1 (uMCP-1) was measured, and kidney sections were stained to assess PD-1 expression. RESULTS: Cisplatin and anti PD-L1 treatment led to 40% AIN development (p = 0.03) in mice, accompanied by elevated serum creatinine and uMCP1. AIN-diagnosed cancer patients also had higher uMCP1 levels than ATN-diagnosed patients, confirming our previous findings. Mice with AIN exhibited interstitial PD-1 staining and stronger glomerular PD-1 expression, especially with combination treatment. Conversely, human AIN patients only showed interstitial PD-1 positivity. CONCLUSIONS: Only mice receiving cisplatin and anti-PDL1 concomitantly developed AIN, accompanied with a more severe kidney injury. AIN induced by this drug combination was linked to elevated uMCP1, consistently with human AIN, suggesting that uMCP1 can be potentially used as an AIN biomarker.


Assuntos
Quimiocina CCL2 , Cisplatino , Inibidores de Checkpoint Imunológico , Camundongos Endogâmicos C57BL , Nefrite Intersticial , Receptor de Morte Celular Programada 1 , Animais , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Nefrite Intersticial/urina , Nefrite Intersticial/patologia , Nefrite Intersticial/induzido quimicamente , Quimiocina CCL2/urina , Quimiocina CCL2/metabolismo , Cisplatino/efeitos adversos , Humanos , Masculino , Feminino , Glomérulos Renais/patologia , Glomérulos Renais/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Camundongos , Pessoa de Meia-Idade , Idoso , Doença Aguda
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 644-651, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708496

RESUMO

OBJECTIVE: To observe the effect of Shenqi Chongcao (SQCC) Formula on the ASS1/src/STAT3 signaling pathway in a rat model of lung fibrosis and explore its therapeutic mechanism. METHODS: A total of 120 male SD rats were divided equally into 5 groups, including a blank control group with saline treatment and 4 groups of rat models of idiopathic pulmonary fibrosis induced by intratracheal instillation of bleomycin. One day after modeling, the rat models were treated with daily gavage of 10 mL/kg saline, SQCC decoction (0.423 g/kg), pirfenidone (10 mL/kg), or intraperitoneal injection of arginine deiminase (ADI; 2.25 mg/kg, every 3 days) for 28 days. After the treatments, the lung tissues of the rats were collected for calculating the lung/body weight ratio, observing histopathology using HE and Masson staining, and analyzing the inflammatory cells in BALF using Giemsa staining. Serum chemokine ligand 2 (CCL2) and transforming growth factor-ß1 (TGF-ß1) levels were measured with ELISA. The protein expressions of src, p-srcTry529, STAT3, and p-STAT3Try705 and the mRNA expressions of ASS1, src and STAT3 in the lung tissues were detected using Western blotting and RT-qPCR. RESULTS: The neutrophil, macrophage and lymphocyte counts and serum levels of CCL2 and TGF-ß1 were significantly lower in SQCC, pirfenidone and ADI treatment groups than in the model group at each time point of measurement (P < 0.05). P-srcTry529 and p-STAT3Try705 protein expression levels and ASS1, src, and STAT3 mRNA in the lung tissues were also significantly lower in the 3 treatment groups than in the model group (P < 0.05). CONCLUSION: SQCC Formula can alleviate lung fibrosis in rats possibly by activating the ASS1/src/STAT3 signaling pathway in the lung tissues.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Fator de Transcrição STAT3/metabolismo , Ratos , Masculino , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Bleomicina , Quimiocina CCL2/metabolismo , Quinases da Família src/metabolismo
7.
Front Cell Infect Microbiol ; 14: 1322882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694517

RESUMO

COVID-19 has a broad clinical spectrum, ranging from asymptomatic-mild form to severe phenotype. The severity of COVID-19 is a complex trait influenced by various genetic and environmental factors. Ethnic differences have been observed in relation to COVID-19 severity during the pandemic. It is currently unknown whether genetic variations may contribute to the increased risk of severity observed in Latin-American individuals The aim of this study is to investigate the potential correlation between gene variants at CCL2, OAS1, and DPP9 genes and the severity of COVID-19 in a population from Quito, Ecuador. This observational case-control study was conducted at the Carrera de Biologia from the Universidad Central del Ecuador and the Hospital Quito Sur of the Instituto Ecuatoriano de Seguridad Social (Quito-SUR-IESS), Quito, Ecuador. Genotyping for gene variants at rs1024611 (A>G), rs10774671 (A>G), and rs10406145 (G>C) of CCL2, OAS1, and DPP9 genes was performed on 100 COVID-19 patients (43 with severe form and 57 asymptomatic-mild) using RFLP-PCR. The genotype distribution of all SNVs throughout the entire sample of 100 individuals showed Hardy Weinberg equilibrium (P=0.53, 0.35, and 0.4 for CCL2, OAS1, and DPP9, respectively). The HWE test did not find any statistically significant difference in genotype distribution between the study and control groups for any of the three SNVs. The multivariable logistic regression analysis showed that individuals with the GG of the CCL2 rs1024611 gene variant had an increased association with the severe COVID-19 phenotype in a recessive model (P = 0.0003, OR = 6.43, 95% CI 2.19-18.89) and for the OAS1 rs10774671 gene variant, the log-additive model showed a significant association with the severe phenotype of COVID-19 (P=0.0084, OR=3.85, 95% CI 1.33-11.12). Analysis of haplotype frequencies revealed that the coexistence of GAG at CCL2, OAS1, and DPP9 variants, respectively, in the same individual increased the presence of the severe COVID-19 phenotype (OR=2.273, 95% CI: 1.271-4.068, P=0.005305). The findings of the current study suggests that the ethnic background affects the allele and genotype frequencies of genes associated with the severity of COVID-19. The experience with COVID-19 has provided an opportunity to identify an ethnicity-based approach to recognize genetically high-risk individuals in different populations for emerging diseases.


Assuntos
2',5'-Oligoadenilato Sintetase , COVID-19 , Quimiocina CCL2 , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , Equador/epidemiologia , Feminino , Masculino , Estudos de Casos e Controles , Adulto , 2',5'-Oligoadenilato Sintetase/genética , COVID-19/genética , Pessoa de Meia-Idade , Quimiocina CCL2/genética , SARS-CoV-2/genética , Predisposição Genética para Doença , Genótipo , Frequência do Gene , Idoso , Adulto Jovem
8.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732029

RESUMO

Neointimal hyperplasia is the main cause of vascular graft failure in the medium term. Vitamin D receptor activation modulates the biology of vascular smooth muscle cells and has been reported to protect from neointimal hyperplasia following endothelial injury. However, the molecular mechanisms are poorly understood. We have now explored the impact of the selective vitamin D receptor activator, paricalcitol, on neointimal hyperplasia, following guidewire-induced endothelial cell injury in rats, and we have assessed the impact of paricalcitol or vehicle on the expression of key cell stress factors. Guidewire-induced endothelial cell injury caused neointimal hyperplasia and luminal stenosis and upregulated the expression of the growth factor growth/differentiation factor-15 (GDF-15), the cytokine receptor CD74, NFκB-inducing kinase (NIK, an upstream regulator of the proinflammatory transcription factor NFκB) and the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Immunohistochemistry confirmed the increased expression of the cellular proteins CD74 and NIK. Paricalcitol (administered in doses of 750 ng/kg of body weight, every other day) had a non-significant impact on neointimal hyperplasia and luminal stenosis. However, it significantly decreased GDF-15, CD74, NIK and MCP-1/CCL2 mRNA expression, which in paricalcitol-injured arteries remained within the levels found in control vehicle sham arteries. In conclusion, paricalcitol had a dramatic effect, suppressing the stress response to guidewire-induced endothelial cell injury, despite a limited impact on neointimal hyperplasia and luminal stenosis. This observation identifies novel molecular targets of paricalcitol in the vascular system, whose differential expression cannot be justified as a consequence of improved tissue injury.


Assuntos
Anti-Inflamatórios , Quimiocina CCL2 , Ergocalciferóis , Hiperplasia , Animais , Ratos , Ergocalciferóis/farmacologia , Masculino , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Anti-Inflamatórios/farmacologia , Neointima/metabolismo , Neointima/patologia , Neointima/tratamento farmacológico , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Túnica Íntima/patologia , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II
9.
J Neurol Sci ; 460: 123016, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636323

RESUMO

BACKGROUND: Concussion leads to persistent post-concussion symptoms (PPCS) in up to one-third of those affected. While previous research has linked the initial trauma to elevated serum levels of neurofilament light chain (NFL), inflammatory markers, and neurotoxic metabolites within the kynurenine pathway, few studies have explored their relevance in PPCS. This study aims to investigate these biomarkers in PPCS patients, elucidating their relevance in the prolonged phase of concussion. METHODS: Serum samples from 86 PPCS individuals aged 18-30 years, 2-6 months post-trauma were analyzed, with 54 providing follow-up samples after seven months. NFL was measured using single-molecule array (Simoa) technology, 13 inflammatory markers via a Luminex immunoassay, and five kynurenine metabolites using liquid chromatography-mass spectrometry. A control group of 120 healthy anonymous blood donors was recruited for comparison. RESULTS: No significant NFL differences were found in PPCS participants compared with healthy individuals (p = 0.22). Intriguingly, a subset (9.3%) of PPCS participants initially exhibited abnormally high NFL levels (>9.7 pg/mL), which normalized upon follow-up (p = 0.032). Additionally, serum levels of the inflammatory markers, monocyte chemoattractant protein-1 (MCP-1/CCL2), and eotaxin-1/CCL11 were 25-40% lower than in healthy individuals (p ≤ 0.001). As hypothesized, PPCS participants exhibited a 22% reduction in the ratio of kynurenic acid to quinolinic acid (neuroprotective index) (p < 0.0001), indicating a shift towards the formation of neurotoxic metabolites. CONCLUSION: NFL may serve as a biomarker to monitor recovery, and future studies should investigate the potential therapeutic benefits of modulating the kynurenine pathway to improve PPCS.


Assuntos
Biomarcadores , Cinurenina , Proteínas de Neurofilamentos , Síndrome Pós-Concussão , Humanos , Cinurenina/sangue , Adulto , Masculino , Feminino , Proteínas de Neurofilamentos/sangue , Adulto Jovem , Adolescente , Biomarcadores/sangue , Síndrome Pós-Concussão/sangue , Estudos de Coortes , Quimiocina CCL2/sangue , Seguimentos
10.
Adv Drug Deliv Rev ; 209: 115318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643840

RESUMO

The communication between cells and their microenvironment represents an intrinsic and essential attribute that takes place in several biological processes, including tissue homeostasis and tissue repair. Among these interactions, inflammation is certainly a central biological response that occurs through cytokines and the crosstalk with their respective receptors. In particular, the interaction between CCL2 and its main receptor, CCR2, plays a pivotal role in both harmful and protective inflammatory states, including cancer-mediated inflammation. The activation of the CCL2/CCR2 axis was shown to dictate the migration of macrophages with immune-suppressive phenotype and to aggravate the progression of different cancer types. In addition, this interaction mediates metastasis formation, further limiting the potential therapeutic outcome of anti-cancer drugs. Attempts to inhibit pharmacologically the CCL2/CCR2 axis have yet to show its anti-cancer efficacy as a single agent, but it sheds light on its role as a powerful tool to selectively alleviate pro-tumorigenic and anti-repair inflammation. In this review, we will elucidate the role of CCL2/CCR2 axis in promoting cancer inflammation by activating the host pro-tumorigenic phenotype. Moreover, we will provide some insight into the potential therapeutic benefit of targeting the CCL2/CCR2 axis for cancer and inflammation using novel delivery systems, aiming to sensitize non-responders to currently approved immunotherapies and offer new combinatory approaches.


Assuntos
Quimiocina CCL2 , Inflamação , Nanomedicina , Neoplasias , Receptores CCR2 , Humanos , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL2/antagonistas & inibidores , Animais , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos
11.
EMBO Rep ; 25(5): 2375-2390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594391

RESUMO

Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.


Assuntos
Quimiocina CCL2 , Gânglios Espinais , Neuralgia , Neurônios , Neurotrofina 3 , Paclitaxel , Receptor trkC , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Neuralgia/genética , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Feminino , Receptor trkC/metabolismo , Receptor trkC/genética , Antineoplásicos/efeitos adversos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
12.
Cancer Cell ; 42(5): 885-903.e4, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38608702

RESUMO

With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.


Assuntos
Caquexia , Citocina TWEAK , Macrófagos , Neoplasias Pancreáticas , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/complicações , Citocina TWEAK/metabolismo , Animais , Humanos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Quimiocina CCL5/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Fatores de Necrose Tumoral/metabolismo , Receptores CCR2/metabolismo , Quimiocina CCL2/metabolismo , Camundongos Endogâmicos C57BL
13.
Int Immunopharmacol ; 133: 111877, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608440

RESUMO

The gut microbiome plays an important role in tumor growth by regulating immune cell function. However, the role of the gut microbiome-mediated monocytes in liver metastasis remains unclear. In this study, we found that fecal microbiome transplantation (FMT) from the stool of patients with liver metastasis (LM) significantly promoted liver metastasis compared with healthy donors (HD). Monocytes were upregulated in liver tissues by the CCL2/CCR2 axis in LM patients' stool transplanted mouse model. CCL2/CCR2 inhibition and monocyte depletion significantly suppress liver metastasis. FMT using LM patients' stool enhanced the plasma lipopolysaccharides (LPS) concentration. The LPS/TLR4 signaling pathway is crucial for gut microbiome-mediated liver metastasis. These results indicated that monocytes contribute to liver metastasis via the CCL2/CCR2 axis.


Assuntos
Quimiocina CCL2 , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Neoplasias Hepáticas , Monócitos , Receptores CCR2 , Receptor 4 Toll-Like , Microbioma Gastrointestinal/imunologia , Animais , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/imunologia , Monócitos/imunologia , Quimiocina CCL2/metabolismo , Camundongos , Receptores CCR2/metabolismo , Receptor 4 Toll-Like/metabolismo , Masculino , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos C57BL , Feminino , Transdução de Sinais , Linhagem Celular Tumoral , Fígado/patologia , Fígado/imunologia , Fígado/metabolismo
14.
Cytokine ; 179: 156622, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648681

RESUMO

Tuberculosis is caused by Mycobacterium tuberculosis (M tb), which is recognized by macrophages and produces inflammatory cytokines, and chemokines at the site of infection. The present study was proposed to understand the interaction of M tb antigens, cytokines, and chemokines. We have evaluated the chemokine MCP-1 levels and its expression in PBMCs stimulated with M tb antigens Ag85A, ESAT6 and recombinant cytokines rhTNF-α, rhIFN-γ, rhTGF-ß, and rhIL-10 in active pulmonary TB (APTB) patients, household contacts (HHC) at 0 months, 6 months and healthy controls (HC). We have observed low levels of MCP-1 with Ag85A, ESAT6, and rhTNF-α stimulations in APTB 0M compared to HHC and HC (p < 0.0067, p < 0.0001, p < 0.01, p < 0.005, p < 0.0065, p < 0.0001) and significantly increased after treatment with rhTNF-α. The MCP-1 levels with rhIFN-γ were high in APTB, HHC at 0 M and significant between APTB 0 M vs. 6 M, HHC vs. HC, and HHC 0M vs. 6M (p < 0.0352, p < 0.0252, p < 0.00062). The rhTGF-ß, rhIL-10 induced high MCP-1 levels in APTB, HHC compared to HC (p < 0.0414, p < 0.0312, p < 0.004, p < 0.0001) and significantly decreased after treatment with rhIL-10 (p < 0.0001). The MCP-1 expression was low with all the stimulations in APTB 0M when compared to HC and after treatment. Whereas, HHC shown low MCP-1 expression with rhTNF-α, rhIFN-γ and Ag85A and high with rhTGF-ß, rhIL-10 and ESAT6. In conclusion, the study determined the differential expression and production of MCP-1 with M tb antigens and recombinant cytokines. Further, cohort studies are required to study these interaction to identify the high risk individuals, which might help for TB control.


Assuntos
Antígenos de Bactérias , Quimiocina CCL2 , Citocinas , Mycobacterium tuberculosis , Proteínas Recombinantes , Humanos , Antígenos de Bactérias/imunologia , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Masculino , Mycobacterium tuberculosis/imunologia , Feminino , Proteínas Recombinantes/imunologia , Adulto , Citocinas/metabolismo , Proteínas de Bactérias/imunologia , Pessoa de Meia-Idade , Interferon gama/imunologia , Interferon gama/metabolismo , Tuberculose Pulmonar/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-10/metabolismo , Interleucina-10/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Tuberculose/imunologia , Fator de Crescimento Transformador beta/imunologia
15.
Transpl Int ; 37: 12556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650846

RESUMO

Macrophages contribute to post-transplant lung rejection. Disulfiram (DSF), an anti-alcoholic drug, has an anti-inflammatory effect and regulates macrophage chemotactic activity. Here, we investigated DSF efficacy in suppressing acute rejection post-lung transplantation. Male Lewis rats (280-300 g) received orthotopic left lung transplants from Fisher 344 rats (minor histocompatibility antigen-mismatched transplantation). DSF (0.75 mg/h) monotherapy or co-solvent only (50% hydroxypropyl-ß-cyclodextrin) as control was subcutaneously administered for 7 days (n = 10/group). No post-transplant immunosuppressant was administered. Grades of acute rejection, infiltration of immune cells positive for CD68, CD3, or CD79a, and gene expression of monocyte chemoattractant protein and pro-inflammatory cytokines in the grafts were assessed 7 days post-transplantation. The DSF-treated group had significantly milder lymphocytic bronchiolitis than the control group. The infiltration levels of CD68+ or CD3+ cells to the peribronchial area were significantly lower in the DSF than in the control groups. The normalized expression of chemokine ligand 2 and interleukin-6 mRNA in allografts was lower in the DSF than in the control groups. Validation assay revealed interleukin-6 expression to be significantly lower in the DSF than in the control groups. DSF can alleviate acute rejection post-lung transplantation by reducing macrophage accumulation around peripheral bronchi and suppressing pro-inflammatory cytokine expression.


Assuntos
Dissulfiram , Rejeição de Enxerto , Transplante de Pulmão , Macrófagos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Animais , Transplante de Pulmão/efeitos adversos , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/imunologia , Masculino , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Aloenxertos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Quimiocina CCL2/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos
16.
Nano Lett ; 24(17): 5301-5307, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625005

RESUMO

The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Quimiocina CCL2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/urina , Nefropatias Diabéticas/diagnóstico , Técnicas Biossensoriais/métodos , Quimiocina CCL2/urina , Biomarcadores/urina , Limite de Detecção , Técnicas Eletroquímicas/métodos
17.
Medicine (Baltimore) ; 103(17): e37983, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669375

RESUMO

The purpose of this study is to investigate the serum inflammatory factors in patients with high-altitude polycythemia (HAPC) and their correlation with cognitive function. The subjects were recruited and placed into a HAPC group and control group. Serum samples were collected, and inflammatory factors (interleukin-1beta [IL-1ß], monocyte chemoattractant protein-1 [MCP-1], and tumor necrosis factor-alpha [TNF-α]) were measured using ELISA kits. The mini-mental State Examination (MMSE) was used to assess cognitive function. According to the MMSE scores, HAPC group was further divided into normal cognitive function group (HNCF) and cognitive dysfunction group (HCDF). In comparison with the control group, the MMSE scores in the HAPC group were significantly low (P < .05), whereas the serum levels of IL-1ß, MCP-1, and TNF-α were significantly high (P < .01). Among the HAPC group (n = 60), 21 belonged to the HCDF and 39 belonged to the HNCF. Compared with the HNCF, the IL-1ß, MCP-1, and TNF-α in the HCDF were significantly increased (P < .01). The Pearson correlation analysis showed that inflammatory factors were positively correlated with hemoglobin, and negatively correlated with MMSE. Serum inflammatory cytokines IL-1, MCP-1, and TNF-α were increased in HAPC, and HAPC exhibited cognitive dysfunction. Considering chronic hypoxia environment influences the change of the red blood cell metabolic and inflammatory factor, red blood cells and inflammatory factor in plateau is likely to be affected by patients with vascular lesions, increase cognitive impairment.


Assuntos
Altitude , Quimiocina CCL2 , Cognição , Interleucina-1beta , Policitemia , Fator de Necrose Tumoral alfa , Humanos , Policitemia/sangue , Masculino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Feminino , Cognição/fisiologia , Interleucina-1beta/sangue , Adulto , Fator de Necrose Tumoral alfa/sangue , Quimiocina CCL2/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/etiologia , Doença da Altitude/sangue , Inflamação/sangue
18.
Neuromolecular Med ; 26(1): 16, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668900

RESUMO

Toll-like receptor (TLR) 7 plays an important role in recognizing virus-derived nucleic acids. TLR7 signaling in astrocytes and microglia is critical for activating immune responses against neurotrophic viruses. Neurons express TLR7, similar to glial cells; however, the role of neuronal TLR7 has not yet been fully elucidated. This study sought to determine whether resiquimod, the TLR7/8 agonist, induces the expression of inflammatory chemokines in SH-SY5Y human neuroblastoma cells. Immunofluorescence microscopy revealed that TLR7 was constitutively expressed in SH-SY5Y cells. Stimulation with resiquimod induced C-C motif chemokine ligand 2 (CCL2) expression, accompanied by the activation of nuclear factor-kappa B (NF-κB) in SH-SY5Y cells. Resiquimod increased mRNA levels of C-X-C motif chemokine ligand 8 (CXCL8) and CXCL10, while the increase was slight at the protein level. Knockdown of NF-κB p65 eliminated resiquimod-induced CCL2 production. This study provides novel evidence that resiquimod has promising therapeutic potential against central nervous system viral infections through its immunostimulatory effects on neurons.


Assuntos
Quimiocina CCL2 , Quimiocina CXCL10 , Imidazóis , Interleucina-8 , Receptor 7 Toll-Like , Fator de Transcrição RelA , Humanos , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/biossíntese , Quimiocina CXCL10/genética , Quimiocina CXCL10/biossíntese , Imidazóis/farmacologia , Interleucina-8/genética , Interleucina-8/biossíntese , Neuroblastoma , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
19.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673763

RESUMO

Chronic ethanol exposure often triggers neuroinflammation in the brain's reward system, potentially promoting the drive for ethanol consumption. A main marker of neuroinflammation is the microglia-derived monocyte chemoattractant protein 1 (MCP1) in animal models of alcohol use disorder in which ethanol is forcefully given. However, there are conflicting findings on whether MCP1 is elevated when ethanol is taken voluntarily, which challenges its key role in promoting motivation for ethanol consumption. Here, we studied MCP1 mRNA levels in areas implicated in consumption motivation-specifically, the prefrontal cortex, hippocampus, and striatum-as well as in the cerebellum, a brain area highly sensitive to ethanol, of C57BL/6 mice subjected to intermittent and voluntary ethanol consumption for two months. We found a significant increase in MCP1 mRNA levels in the cerebellum of mice that consumed ethanol compared to controls, whereas no significant changes were observed in the prefrontal cortex, hippocampus, or striatum or in microglia isolated from the hippocampus and striatum. To further characterize cerebellar neuroinflammation, we measured the expression changes in other proinflammatory markers and chemokines, revealing a significant increase in the proinflammatory microRNA miR-155. Notably, other classical proinflammatory markers, such as TNFα, IL6, and IL-1ß, remained unaltered, suggesting mild neuroinflammation. These results suggest that the onset of neuroinflammation in motivation-related areas is not required for high voluntary consumption in C57BL/6 mice. In addition, cerebellar susceptibility to neuroinflammation may be a trigger to the cerebellar degeneration that occurs after chronic ethanol consumption in humans.


Assuntos
Consumo de Bebidas Alcoólicas , Cerebelo , Quimiocina CCL2 , Corpo Estriado , Etanol , Hipocampo , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/patologia , Camundongos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Cerebelo/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Masculino , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/efeitos dos fármacos , Etanol/efeitos adversos , Consumo de Bebidas Alcoólicas/efeitos adversos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/induzido quimicamente
20.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674048

RESUMO

Inflammation processes of the central nervous system (CNS) play a vital role in the pathogenesis of several neurological and psychiatric disorders like depression. These processes are characterized by the activation of glia cells, such as microglia. Clinical studies showed a decrease in symptoms associated with the mentioned diseases after the treatment with anti-inflammatory drugs. Therefore, the investigation of novel anti-inflammatory drugs could hold substantial potential in the treatment of disorders with a neuroinflammatory background. In this in vitro study, we report the anti-inflammatory effects of a novel hexacyclic peptide-peptoid hybrid in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The macrocyclic compound X15856 significantly suppressed Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compound are partially explained by the modulation of the phosphorylation of p38 mitogen-activated protein kinases (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC), and the nuclear factor (NF)-κB, respectively. Due to its remarkable anti-inflammatory properties, this compound emerges as an encouraging option for additional research and potential utilization in disorders influenced by inflammation, such as depression.


Assuntos
Anti-Inflamatórios , Lipopolissacarídeos , Microglia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Linhagem Celular , Peptoides/farmacologia , Peptoides/química , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Peptídeos/farmacologia , Peptídeos/química , Fator de Necrose Tumoral alfa/metabolismo , Quimiocina CXCL2/metabolismo , Citocinas/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL3/genética , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...