Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 585
Filtrar
1.
Georgian Med News ; (350): 120-126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39089283

RESUMO

The relationship between Helicobacter pylori infection and gallbladder diseases, particularly cholecystitis and gallbladder polyps, remains unclear. This study aimed to investigate the presence of H. pylori in gallbladder tissues and its potential role in gallbladder pathologies, as well as to examine the expression of chemokines CXCL2 and CXCL5 in these conditions. MATERIAL AND METHODS: A total of 137 laparoscopically excised gallbladders were analysed through histological examination, PCR for H. pylori-specific DNA, and quantitative real-time PCR for CXCL2 and CXCL5 gene expression. The study cohort included patients with acute calculous cholecystitis, chronic calculous cholecystitis, and gallbladder polyps. RESULTS: H. pylori was detected in 30.7% of cases by histological methods and 42.3% by PCR. Elevated expression of CXCL2 and CXCL5 was observed in 62% and 57.7% of cases, respectively, with a higher prevalence in acute cholecystitis compared to chronic conditions. However, no statistically significant association was found between H. pylori presence and the forms of cholecystitis, as well as between H. pylori presence and chemokine expression in gallbladder. CONCLUSIONS: The study did not establish a direct link between the presence of H. pylori infection and forms of gallbladder pathologies. The findings suggest that other factors other than H. pylori may contribute to the upregulation of CXCL2 and CXCL5 in gallbladder diseases. Further research is needed to elucidate the complex interactions between H. pylori, chemokines, and gallbladder pathologies.


Assuntos
Quimiocina CXCL2 , Quimiocina CXCL5 , Vesícula Biliar , Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/patogenicidade , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Masculino , Vesícula Biliar/microbiologia , Vesícula Biliar/patologia , Vesícula Biliar/cirurgia , Feminino , Pessoa de Meia-Idade , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Adulto , Colecistite/microbiologia , Colecistite/patologia , Colecistite/cirurgia , Pólipos/microbiologia , Pólipos/patologia , Doenças da Vesícula Biliar/microbiologia , Doenças da Vesícula Biliar/patologia , Doenças da Vesícula Biliar/cirurgia , Idoso
2.
Arch Dermatol Res ; 316(8): 523, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150635

RESUMO

Dermal papilla cells (DPCs) exhibit self-recovery ability, which may be involved in hair growth. Therefore, we tested whether DPCs subjected to temporary growth-inhibiting stress (testosterone, 17ß-estradiol, mitomycin C, or undernutrition) treatments exhibit self-recovery behavior that can activate hair follicle growth, and examined the changes in cell proliferation capacity and gene expression. Related proteins were identified and their relationships with the hair cycle was examined using a mouse model. Recovery-period DPCs (i.e., from day 3 after loading) were subjected to microarray analysis to detect genetic variations common to each stress treatment. Co-culture of recovery-period DPCs and outer root sheath cells (ORSCs) confirmed the promotion of ORSC proliferation, suggesting that the activation of hair follicle growth is promoted via signal transduction. Chitinase 3-like 1 (CHI3L1) and C-X-C motif chemokine 5 (CXCL5) exhibited ORSC proliferation-promoting effects. Measurement of protein content in the skin during each phase of the hair cycle in mice revealed that CHI3L1 and CXCL5 secretion increased immediately after anagen transition. In a hair-loss mouse model treated with testosterone or 17ß-estradiol, CHI3L1 and CXCL5 secretion was lower in treated telogen skin than in untreated skin. Our results suggest that CHI3L1 and CXCL5 secreted by recovery-state DPCs promote hair growth.


Assuntos
Proteína 1 Semelhante à Quitinase-3 , Folículo Piloso , Cabelo , Animais , Humanos , Masculino , Camundongos , Alopecia/metabolismo , Alopecia/patologia , Proliferação de Células , Células Cultivadas , Quimiocina CXCL5/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Técnicas de Cocultura , Modelos Animais de Doenças , Estradiol/metabolismo , Estradiol/farmacologia , Cabelo/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Camundongos Endogâmicos C57BL , Mitomicina/farmacologia , Transdução de Sinais , Testosterona/metabolismo , Testosterona/farmacologia
3.
PLoS One ; 19(7): e0305816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39038020

RESUMO

Erythroid cells, serving as progenitors and precursors to erythrocytes responsible for oxygen transport, were shown to exhibit an immunosuppressive and immunoregulatory phenotype. Previous investigations from our research group have revealed an antimicrobial gene expression profile within murine bone marrow erythroid cells which suggested a role for erythroid cells in innate immunity. In the present study, we focused on elucidating the characteristics of human bone marrow erythroid cells through comprehensive analyses, including NanoString gene expression profiling utilizing the Immune Response V2 panel, a BioPlex examination of chemokine and TGF-beta family proteins secretion, and analysis of publicly available single-cell RNA-seq data. Our findings demonstrate that an erythroid cell subpopulation manifests a myeloid-like gene expression signature comprised of antibacterial immunity and neutrophil chemotaxis genes which suggests an involvement of human erythroid cells in the innate immunity. Furthermore, we found that human erythroid cells secreted CCL22, CCL24, CXCL5, CXCL8, and MIF chemokines. The ability of human erythroid cells to express these chemokines might facilitate the restriction of immune cells in the bone marrow under normal conditions or contribute to the ability of erythroid cells to induce local immunosuppression by recruiting immune cells in their immediate vicinity in case of extramedullary hematopoiesis.


Assuntos
Células Eritroides , Monócitos , Humanos , Monócitos/metabolismo , Monócitos/citologia , Monócitos/imunologia , Células Eritroides/metabolismo , Células Eritroides/citologia , Imunidade Inata , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Transcriptoma , Perfilação da Expressão Gênica , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Células Mieloides/metabolismo , Quimiocinas/metabolismo , Quimiocinas/genética , Interleucina-8 , Oxirredutases Intramoleculares
4.
J Exp Clin Cancer Res ; 43(1): 202, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034411

RESUMO

BACKGROUND: Lung cancer remains one of the most prevalent cancer types worldwide, with a high mortality rate. Upregulation of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) may represent a key mechanism for evading immune surveillance. Immune checkpoint blockade (ICB) antibodies against PD-1 or PD-L1 are therefore widely used to treat patients with lung cancer. However, the mechanisms by which lung cancer and neutrophils in the microenvironment sustain PD-L1 expression and impart stronger inhibition of CD8+ T cell function remain unclear. METHODS: We investigated the role and underlying mechanism by which PD-L1+ lung cancer and PD-L1+ neutrophils impede the function of CD8+ T cells through magnetic bead cell sorting, quantitative real-time polymerase chain reaction (RT-PCR), western blotting, enzyme-linked immunosorbent assays, confocal immunofluorescence, gene silencing, flow cytometry, etc. In vivo efficacy and safety studies were conducted using (Non-obeseDiabetes/severe combined immune deficiency) SCID/NOD mice. Additionally, we collected clinical and prognostic data from 208 patients who underwent curative lung cancer resection between 2017 and 2018. RESULTS: We demonstrated that C-X-C motif chemokine ligand 5 (CXCL5) is markedly overexpressed in lung cancer cells and is positively correlated with a poor prognosis in patients with lung cancer. Mechanistically, CXCL5 activates the phosphorylation of the Paxillin/AKT signaling cascade, leading to upregulation of PD-L1 expression and the formation of a positive feedback loop. Moreover, CXCL5 attracts neutrophils, compromising CD8+ T cell-dependent antitumor immunity. These PD-L1+ neutrophils aggravate CD8+ T cell exhaustion following lung cancer domestication. Combined treatment with anti-CXCL5 and anti-PD-L1 antibodies significantly inhibits tumor growth in vivo. CONCLUSIONS: Our findings collectively demonstrate that CXCL5 promotes immune escape through PD-L1 upregulation in lung cancer and neutrophils chemotaxis through autocrine and paracrine mechanisms. CXCL5 may serve as a potential therapeutic target in synergy with ICBs in lung cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Quimiocina CXCL5 , Neoplasias Pulmonares , Neutrófilos , Proteínas Proto-Oncogênicas c-akt , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Animais , Neutrófilos/metabolismo , Neutrófilos/imunologia , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Transdução de Sinais , Regulação para Cima , Feminino , Masculino , Quimiotaxia , Camundongos Endogâmicos NOD , Camundongos SCID
5.
Pathol Res Pract ; 261: 155474, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067172

RESUMO

BACKGROUND: C-X-C motif chemokine ligand 5 (CXCL5) is a chemokine molecule that is secreted by immune cells in attracting granulocytes. Studies showed that CXCL5 was related to the progression of papillary thyroid carcinoma (PTC) tumor cells. However, the in vivo effects of CXCL5 on PTC tumor cells and their microenvironment have not been elucidated. The present study aimed to investigate the biological effects of CXCL5 on tumor cells, microenvironment, and clinical progression of PTC. MATERIALS AND METHODS: The PTC patients from The Human Cancer Genome Atlas (TCGA) - thyroid carcinoma (THCA) were retrieved. There were a total of 500 patients who met the criteria of our study. Differential expression (DEA) and pathway analyses were used to explore the biological effects of CXCL5 gene expression. RESULTS: In DEA, we found that CXCL5 was mostly associated with PBPP, SLC11A1, and MRC1 (adjusted p<0.001). Samples with CXCL5 FPKM≥1 were related to a different immune profile (p<0.001). In pathway analyses, samples with higher CXCL5 expression possessed higher activities of RAS-RAF, NF-kB, PRC2, IL2, IL5, and Wnt pathways (adjusted p<0.001). In microenvironment analysis, CXCL5 was highly correlated with the activity of macrophage (Rho=0.76; adjusted p<0.001). Clinically, high level of CXCL5 expression was an indicator of tumor stages (p<0.001), nodal metastasis (AUC=0.68), and prognosis (p=0.001). CONCLUSION: CXCL5 was a significant biomarker of PTC. CXCL5 was highly associated with tumor immunology and microenvironment. Samples with higher CXCL5 expression had more advanced disease status and worse prognosis. CXCL5 target therapy is potentially helpful in advanced PTC.


Assuntos
Quimiocina CXCL5 , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Microambiente Tumoral , Humanos , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Microambiente Tumoral/imunologia , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/imunologia , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/imunologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Adulto , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Transdução de Sinais , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
6.
Pathog Glob Health ; 118(5): 408-417, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38884301

RESUMO

Dengue fever poses a significant global health threat, with symptoms including dengue hemorrhagic fever and dengue shock syndrome. Each year, India experiences fatal dengue outbreaks with severe manifestations. The primary cause of severe inflammatory responses in dengue is a cytokine storm. Individuals with a secondary dengue infection of a different serotype face an increased risk of complications due to antibody-dependent enhancement. Therefore, it is crucial to identify potential risk factors and biomarkers for effective disease management. In the current study, we assessed the prevalence of dengue infection in and around Aligarh, India, and explored the role of cytokines, including CXCL5, CXCL9, and CCL17, in primary and secondary dengue infections, correlating them with various clinical indices. Among 1,500 suspected cases, 367 tested positive for dengue using Real-Time PCR and ELISA. In secondary dengue infections, the serum levels of CXCL5, CXCL9, and CCL17 were significantly higher than in primary infections (P < 0.05). Dengue virus (DENV)-2 showed the highest concentrations of CXCL5 and CCL17, whereas DENV-1 showed the highest concentrations of CXCL9. Early detection of these cytokines could serve as potential biomarkers for diagnosing severe dengue, and downregulation of these cytokines may prove beneficial for the treatment of severe dengue infections.


Assuntos
Biomarcadores , Quimiocina CCL17 , Quimiocina CXCL5 , Quimiocina CXCL9 , Dengue , Humanos , Biomarcadores/sangue , Dengue/diagnóstico , Dengue/imunologia , Dengue/sangue , Masculino , Adulto , Feminino , Índia/epidemiologia , Quimiocina CXCL5/sangue , Quimiocina CCL17/sangue , Quimiocina CXCL9/sangue , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Vírus da Dengue/imunologia , Ensaio de Imunoadsorção Enzimática , Criança , Reação em Cadeia da Polimerase em Tempo Real
7.
J Cell Biochem ; 125(8): e30617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924558

RESUMO

Ectopic calcification of myofibers is an early pathogenic feature in patients and animal models of Duchenne muscular dystrophy (DMD). In previous studies using the Dmdmdx-ßgeo mouse model, we found that the dystrophin-null phenotype exacerbates this abnormality and that mineralised myofibers are surrounded by macrophages. Furthermore, the P2X7 purinoceptor, functioning in immune cells offers protection against dystrophic calcification. In the present study, by exploring transcriptomic data from Dmdmdx mice, we hypothesised these effects to be mediated by C-X-C motif chemokine 5 (CXCL5) downstream of P2X7 activation. We found that CXCL5 is upregulated in the quadriceps muscles of Dmdmdx-ßgeo mice compared to wild-type controls. In contrast, at the cell level, dystrophic (SC5) skeletal muscle cells secreted less CXCL5 chemokine than wild-type (IMO) controls. Although release from IMO cells was increased by P2X7 activation, this could not explain the elevated CXCL5 levels observed in dystrophic muscle tissue. Instead, we found that CXCL5 is released by dystrophin-null macrophages in response to P2X7 activation, suggesting that macrophages are the source of CXCL5 in dystrophic muscles. The effects of CXCL5 upon mineralisation were investigated using the Alizarin Red assay to quantify calcium deposition in vitro. In basal (low phosphate) media, CXCL5 increased calcification in IMO but not SC5 myoblasts. However, in cultures treated in high phosphate media, to mimic dysregulated phosphate metabolism occurring in DMD, CXCL5 decreased calcification in both IMO and SC5 cells. These data indicate that CXCL5 is part of a homoeostatic mechanism regulating intracellular calcium, that CXCL5 can be released by macrophages in response to the extracellular ATP damage-associated signal, and that CXCL5 can be part of a damage response to protect against ectopic calcification. This mechanism is affected by DMD gene mutations.


Assuntos
Quimiocina CXCL5 , Modelos Animais de Doenças , Distrofia Muscular de Duchenne , Receptores Purinérgicos P2X7 , Animais , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Camundongos , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Calcinose/metabolismo , Calcinose/patologia , Calcinose/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos Endogâmicos mdx , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Knockout
8.
Cell Mol Gastroenterol Hepatol ; 18(2): 101351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38724007

RESUMO

BACKGROUND & AIMS: Both nonalcoholic fatty liver disease (NAFLD) and colorectal cancer (CRC) are prevalent worldwide. The effects of concomitant NAFLD on the risk of colorectal liver metastasis (CRLM) and its mechanisms have not been definitively elucidated. METHODS: We observed the effect of concomitant NAFLD on CRLM in the mouse model and explored the underlying mechanisms of specific myeloid-derived suppressor cells (MDSCs) recruitment and then tested the therapeutic application based on the mechanisms. Finally we validated our findings in the clinical samples. RESULTS: Here we prove that in different mouse models, NAFLD induces F4/80+ Kupffer cells to secret chemokine CXCL5 and then recruits CXCR2+ MDSCs to promote the growth of CRLM. CRLM with NAFLD background is refractory to the anti-PD-1 monoclonal antibody treatment, but when combined with Reparixin, an inhibitor of CXCR1/2, dual therapy cures the established CRLM in mice with NAFLD. Our clinical studies also indicate that fatty liver diseases increase the infiltration of CXCR2+ MDSCs, as well as the hazard of liver metastases in CRC patients. CONCLUSIONS: Collectively, our findings highlight the significance of selective CXCR2+/CD11b+/Gr-1+ subset myeloid cells in favoring the development of CRLM with NAFLD background and identify a pharmaceutical medicine that is already available for the clinical trials and potential treatment.


Assuntos
Quimiocina CXCL5 , Neoplasias Colorretais , Modelos Animais de Doenças , Neoplasias Hepáticas , Células Supressoras Mieloides , Hepatopatia Gordurosa não Alcoólica , Receptor de Morte Celular Programada 1 , Receptores de Interleucina-8B , Animais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Camundongos , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Humanos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Células Supressoras Mieloides/imunologia , Quimiocina CXCL5/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Masculino , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Feminino , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Camundongos Endogâmicos C57BL , Sulfonamidas
9.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805014

RESUMO

Phenotypic plasticity is a rising cancer hallmark, and lung adeno-to-squamous transition (AST) triggered by LKB1 inactivation is significantly associated with drug resistance. Mechanistic insights into AST are urgently needed to identify therapeutic vulnerability in LKB1-deficient lung cancer. Here, we find that ten-eleven translocation (TET)-mediated DNA demethylation is elevated during AST in KrasLSL-G12D/+; Lkb1L/L (KL) mice, and knockout of individual Tet genes reveals that Tet2 is required for squamous transition. TET2 promotes neutrophil infiltration through STAT3-mediated CXCL5 expression. Targeting the STAT3-CXCL5 nexus effectively inhibits squamous transition through reducing neutrophil infiltration. Interestingly, tumor-infiltrating neutrophils are laden with triglycerides and can transfer the lipid to tumor cells to promote cell proliferation and squamous transition. Pharmacological inhibition of macropinocytosis dramatically inhibits neutrophil-to-cancer cell lipid transfer and blocks squamous transition. These data uncover an epigenetic mechanism orchestrating phenotypic plasticity through regulating immune microenvironment and metabolic communication, and identify therapeutic strategies to inhibit AST.


Assuntos
Quimiocina CXCL5 , Proteínas de Ligação a DNA , Dioxigenases , Neoplasias Pulmonares , Neutrófilos , Proteínas Proto-Oncogênicas , Fator de Transcrição STAT3 , Animais , Neutrófilos/metabolismo , Fator de Transcrição STAT3/metabolismo , Camundongos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Humanos , Dioxigenases/metabolismo , Pinocitose , Linhagem Celular Tumoral , Infiltração de Neutrófilos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
10.
J Periodontal Res ; 59(4): 698-711, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38699841

RESUMO

OBJECTIVE AND BACKGROUND: This research aimed to examine the role of C-X-C motif chemokine ligand 5 (CXCL5) and C-X-C motif chemokine ligand 8 (CXCL8; also known as IL-8) in neutrophilic inflammation triggered by peri-implantitis and to shed light on the underlying mechanisms that link them to the development of this condition. MATERIALS: This study included 40 patients who visited the Department of Periodontology at Kyungpook University Dental Hospital. They were divided into two groups based on their condition: healthy implant (HI) group (n = 20) and peri-implantitis (PI) group (n = 20). Biopsy samples of PI tissue were collected from the patients under local anesthesia. HI tissue was obtained using the same method during the second implant surgery. To construct libraries for control and test RNAs, the QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, Inc., Austria) was used according to the manufacturer's instructions. Samples were pooled based on representative cytokines obtained from RNA sequencing results and subjected to Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Hematoxylin and eosin staining, and immunohistochemistry (IHC) analysis were performed to visually assess expression levels and analyze tissue histology. Student's t-test was employed to conduct statistical analyses. RESULTS: Initially, heatmaps were used to examine gene expression variations between the HI and PI groups based on the results of RNA sequencing. Notably, among various cytokines, CXCL5 and CXCL8 had the highest expression levels in the PI group compared with the HI group, and they are known to be associated with inflammatory responses. In the gingival tissues, the expression of genes encoding cytokines such as interleukin (IL)-1ß, tumor necrosis factor-alpha (TNF)-α, interleukin (IL)-6, and CXCL5/CXCL8 was assessed via RT-qPCR. The mRNA expression level of CXCL5/CXCL8 significantly increased in the PI group compared with the HI group (p < .045). Contrarily, the mRNA expression level of interleukin 36 receptor antagonist (IL36RN) significantly decreased (p < .008). IHC enabled examination of the distribution and intensity of CXCL5/CXCL8 protein expression within the tissue samples. Specifically, increased levels of CXCL5/CXCL8 promote inflammatory responses, cellular proliferation, migration, and invasion within the peri-implant tissues. These effects are mediated through the activation of the PI3K/Akt/NF-κB signaling pathway. CONCLUSIONS: This study found that the PI sites had higher gene expression level of CXCL8/CXCL5 in the soft tissue than HI sites, which could help achieve more accurate diagnosis and treatment planning.


Assuntos
Quimiocina CXCL5 , Interleucina-8 , Neutrófilos , Peri-Implantite , Humanos , Peri-Implantite/patologia , Peri-Implantite/imunologia , Peri-Implantite/metabolismo , Interleucina-8/análise , Masculino , Neutrófilos/patologia , Feminino , Pessoa de Meia-Idade , Inflamação , Adulto
11.
Neuroreport ; 35(9): 549-557, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739900

RESUMO

Neuroinflammation after traumatic brain injury (TBI) exhibits a strong correlation with neurological impairment, which is a crucial target for improving the prognosis of TBI patients. The involvement of CXCL5/CXCR2 signaling in the regulation of neuroinflammation in brain injury models has been documented. Therefore, the effects of CXCL5 on post-TBI neuroinflammation and its potential mechanisms need to be explored. Following TBI, C57BL/6 mice were administered intraperitoneal injections of a CXCL5 neutralizing antibody (Nab-CXCL5) (5 mg/kg, 2 times/day). Subsequently, the effects on neuroinflammation, nerve injury, and neurological function were assessed. Nab-CXCL5 significantly reduced the release of inflammatory factors, inhibited the formation of inflammatory microglia and astrocytes, and reduced the infiltration of peripheral immune cells in TBI mice. Additionally, this intervention led to a reduction in neuronal impairment and facilitated the restoration of sensorimotor abilities, as well as improvements in learning and memory functions. Peripheral administration of the Nab-CXCL5 to TBI mice could suppress neuroinflammation, reduce neurological damage, and improve neurological function. Our data suggest that neutralizing antibodies against CXCL5 (Nab-CXCL5) may be a promising agent for treating TBI.


Assuntos
Lesões Encefálicas Traumáticas , Quimiocina CXCL5 , Doenças Neuroinflamatórias , Animais , Masculino , Camundongos , Anticorpos Neutralizantes/farmacologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Quimiocina CXCL5/metabolismo , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Recuperação de Função Fisiológica/efeitos dos fármacos
12.
Cancer Lett ; 590: 216866, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38589005

RESUMO

Bone metastasis is a common complication of certain cancers such as melanoma. The spreading of cancer cells into the bone is supported by changes in the bone marrow environment. The specific role of osteocytes in this process is yet to be defined. By RNA-seq and chemokines screening we show that osteocytes release the chemokine CXCL5 when they are exposed to melanoma cells. Osteocytes-mediated CXCL5 secretion enhanced the migratory and invasive behaviour of melanoma cells. When the expression of the CXCL5 receptor, CXCR2, was down-regulated in melanoma cells in vitro, we observed a significant decrease in melanoma cell migration in response to osteocytes. Furthermore, melanoma cells with down-regulated CXCR2 expression showed less bone metastasis and less bone loss in the bone metastasis model in vivo. Furthermore, when simultaneously down-regulating CXCL5 in osteocytes and CXCR2 in melanoma cells, melanoma progression was abrogated in vivo. In summary, these data suggest a significant role of osteocytes in bone metastasis of melanoma, which is mediated through the CXCL5-CXCR2 pathway.


Assuntos
Neoplasias Ósseas , Movimento Celular , Quimiocina CXCL5 , Melanoma , Osteócitos , Receptores de Interleucina-8B , Osteócitos/metabolismo , Osteócitos/patologia , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Animais , Melanoma/metabolismo , Melanoma/patologia , Melanoma/secundário , Melanoma/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Camundongos , Linhagem Celular Tumoral , Humanos , Transdução de Sinais , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL
13.
Nat Commun ; 15(1): 3263, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627393

RESUMO

Gouty arthritis evokes joint pain and inflammation. Mechanisms driving gout pain and inflammation remain incompletely understood. Here we show that CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to drive gout pain and inflammation. CXCL5 expression was increased in ankle joints of gout arthritis model mice, whereas CXCR2 showed expression in joint-innervating sensory neurons. CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to trigger TRPA1 activation, resulting in hyperexcitability and pain. Neuronal CXCR2 coordinates with neutrophilic CXCR2 to contribute to CXCL5-induced neutrophil chemotaxis via triggering CGRP- and substance P-mediated vasodilation and plasma extravasation. Neuronal Cxcr2 deletion ameliorates joint pain, neutrophil infiltration and gait impairment in model mice. We confirmed CXCR2 expression in human dorsal root ganglion neurons and CXCL5 level upregulation in serum from male patients with gouty arthritis. Our study demonstrates CXCL5-neuronal CXCR2-TRPA1 axis contributes to gouty arthritis pain, neutrophil influx and inflammation that expands our knowledge of immunomodulation capability of nociceptive sensory neurons.


Assuntos
Artrite Gotosa , Animais , Humanos , Masculino , Camundongos , Artralgia , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Inflamação , Nociceptividade , Nociceptores/metabolismo , Dor
14.
Cancer Immunol Immunother ; 73(6): 108, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642131

RESUMO

Tumor-associated macrophages (TAMs) are abundant in tumors and interact with tumor cells, leading to the formation of an immunosuppressive microenvironment and tumor progression. Although many studies have explored the mechanisms underlying TAM polarization and its immunosuppressive functions, understanding of its progression remains limited. TAMs promote tumor progression by secreting cytokines, which subsequently recruit immunosuppressive cells to suppress the antitumor immunity. In this study, we established an in vitro model of macrophage and non-small cell lung cancer (NSCLC) cell co-culture to explore the mechanisms of cell-cell crosstalk. We observed that in NSCLC, the C-X-C motif chemokine ligand 5 (CXCL5) was upregulated in macrophages because of the stimulation of A2AR by adenosine. Adenosine was catalyzed by CD39 and CD73 in macrophages and tumor cells, respectively. Nuclear factor kappa B (NFκB) mediated the A2AR stimulation of CXCL5 upregulation in macrophages. Additionally, CXCL5 stimulated NETosis in neutrophils. Neutrophil extracellular traps (NETs)-treated CD8+ T cells exhibited upregulation of exhaustion-related and cytosolic DNA sensing pathways and downregulation of effector-related genes. However, A2AR inhibition significantly downregulated CXCL5 expression and reduced neutrophil infiltration, consequently alleviating CD8+ T cell dysfunction. Our findings suggest a complex interaction between tumor and immune cells and its potential as therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiocina CXCL5 , Neoplasias Pulmonares , Macrófagos , Humanos , Adenosina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T CD8-Positivos , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Microambiente Tumoral , Regulação para Cima , Receptor A2A de Adenosina/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo
15.
Int J Rheum Dis ; 27(3): e15089, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439196

RESUMO

OBJECTIVE: To identify disease-specific serum chemokine profiles and potential anti-inflammatory chemokines in three rheumatic diseases. METHODS: The discovery cohort included 18 patients with rheumatoid arthritis (RA), 20 patients with primary Sjögren's syndrome (pSS), 24 patients with systemic lupus erythematosus (SLE) and 28 healthy subjects. Findings from the discovery cohort were validated in two replication cohorts, consisting of 23 patients with SLE matched with 23 healthy subjects and 62 patients with SLE, 16 patients with ANCA-associated vasculitis (AAV), and 32 healthy controls, respectively. Serum levels of chemokines were determined using multiplex assay or ELISA. RESULTS: In the discovery cohort, serum levels of multiple chemokines were increased in one or more diseases in comparison to healthy subjects, including CCL2, CCL20, CXCL9, CXCL10, and CXCL11 in SLE, CCL2, CCL4, and CXCL11 in pSS, and CCL2, CCL4, and CXCL9 in RA. Notably, serum levels of CCL3 (p = .0003) and CXCL5 (p = .0003) were decreased in SLE. The SLE-specific decrease in CXCL5 serum levels was confirmed in the two replication cohorts, with p = .0034 and p = .0006, respectively. Moreover, a positive correlation between serum levels of CXCL5 and circulating platelet counts (R = .71, p = .00018) in SLE observed in the discovery cohort was confirmed in both replication cohorts (R = .52, p = .011 and R = .49, p = .00005, respectively). CONCLUSION: In the present study, we demonstrate that serum levels of CXCL5 are decreased in patients with SLE and positively correlated with circulating platelet count. These findings suggest that platelet-associated CXCL5 is presumably involved in the development of SLE.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Artrite Reumatoide , Lúpus Eritematoso Sistêmico , Humanos , Contagem de Plaquetas , Ensaio de Imunoadsorção Enzimática , Lúpus Eritematoso Sistêmico/diagnóstico , Quimiocina CXCL5
16.
BMC Cancer ; 24(1): 140, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287266

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive brain cancer with a poor prognosis. Therefore, the correlative molecular markers and molecular mechanisms should be explored to assess the occurrence and treatment of glioma.WB and qPCR assays were used to detect the expression of CXCL5 in human GBM tissues. The relationship between CXCL5 expression and clinicopathological features was evaluated using logistic regression analysis, Wilcoxon symbolic rank test, and Kruskal-Wallis test. Univariate, multivariate Cox regression and Kaplan-Meier methods were used to assess CXCL5 and other prognostic factors of GBM. Gene set enrichment analysis (GSEA) was used to identify pathways associated with CXCL5. The correlation between CXCL5 and tumor immunoinfiltration was investigated using single sample gene set enrichment analysis (ssGSEA) of TCGA data. Cell experiments and mouse subcutaneous transplanted tumor models were used to evaluate the role of CXCL5 in GBM. WB, qPCR, immunofluorescence, and immunohistochemical assays showed that CXCL5 expression was increased in human GBM tissues. Furthermore, high CXCL5 expression was closely related to poor disease-specific survival and overall survival of GBM patients. The ssGSEA suggested that CXCL5 is closely related to the cell cycle and immune response through PPAR signaling pathway. GSEA also showed that CXCL5 expression was positively correlated with macrophage cell infiltration level and negatively correlated with cytotoxic cell infiltration level. CXCL5 may be associated with the prognosis and immunoinfiltration of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/patologia , Prognóstico , Processos Neoplásicos , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Quimiocina CXCL5/genética
17.
Autoimmunity ; 57(1): 2304820, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38269483

RESUMO

Circular RNA (circRNA) has been found to be differentially expressed and involved in regulating the processes of human diseases, including thoracic aortic dissection (TAD). However, the role and mechanism of circNRIP1 in the TAD process are still unclear. GEO database was used to screen the differentially expressed circRNA and mRNA in type A TAD patients and age-matched normal donors. Angiotensin II (Ang II)-induced human aortic vascular smooth muscle cells (HA-VSMCs) were used to construct TAD cell models. The expression levels of circNRIP1, NRIP1, CXC-motif chemokine 5 (CXCL5) and IGF2BP1 were detected by quantitative real-time PCR. Cell proliferation and migration were determined by EdU assay, transwell assay and wound healing assay. The protein levels of synthetic phenotype markers, contractile phenotype markers, CXCL5 and IGF2BP1 were tested by western blot analysis. The interaction between IGF2BP1 and circNRIP1/CXCL5 was confirmed by RIP assay, and CXCL5 mRNA stability was assessed by actinomycin D assay. CircNRIP1 was upregulated in TAD patients and Ang II-induced HA-VSMCs. Knockdown of circNRIP1 suppressed Ang II-induced proliferation, migration and phenotypic switch of HA-VSMCs. Also, high expression of CXCL5 was observed in TAD patients, and its knockdown could inhibit Ang II-induced HA-VSMCs proliferation, migration and phenotypic switch. Moreover, CXCL5 overexpression reversed the regulation of circNRIP1 knockdown on Ang II-induced HA-VSMCs functions. Mechanistically, circNRIP1 could competitively bind to IGF2BP1 and subsequently enhance CXCL5 mRNA stability. CircNRIP1 might contribute to TAD progression by promoting CXCL5 mRNA stability via recruiting IGF2BP1.


Assuntos
Angiotensina II , Músculo Liso Vascular , Humanos , Angiotensina II/farmacologia , Proliferação de Células , Quimiocina CXCL5/genética , Fenótipo , Estabilidade de RNA , RNA Circular/genética
18.
Sci Rep ; 13(1): 17688, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848726

RESUMO

Experts emphasize that colorectal cancer (CRC) incidence and mortality are increasing. That is why its early detection is of the utmost importance. Patients with cancer diagnosed in earlier stages have a better prognosis and a chance for faster implementation of treatment. Consequently, it is vital to search for new parameters that could be useful in its diagnosis. Therefore, we evaluated the usefulness of CXCL5, CXCL14 and CXCL16 in serum of 115 participants (75 CRC patients and 40 healthy volunteers). Concentrations of all parameters were measured using Luminex. CRP (C-reactive protein) levels were determined by immunoturbidimetry, while levels of classical tumor markers were measured using CMIA (Chemiluminescence Microparticle Immunoassay). Concentrations of CXCL5 were statistically higher in the CRC group when compared to healthy controls. The diagnostic sensitivity, specificity, positive and negative predictive value, and area under the ROC curve (AUC) of CXCL5 and CXCL14 were higher than those of CA 19-9. Obtained results suggest the usefulness of CXCL5 and CXCL16 in the determination of distant metastases and differentiation between TNM (Tumor-Node-Metastasis) stages, as well as the usefulness of CXCL14 and CRP combination in CRC detection (primary or recurrence). However, further studies concerning their role in CRC progression are crucial to confirm and explain their diagnostic utility and clinical application as biomarkers.


Assuntos
Neoplasias Colorretais , Humanos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Antígeno CA-19-9 , Quimiocina CXCL16 , Quimiocina CXCL5 , Quimiocinas CXC , Neoplasias Colorretais/sangue , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Prognóstico , Curva ROC
19.
J Proteomics ; 289: 104995, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37657716

RESUMO

Endometriosis is a gynecological disease related to menstruation that affects nearly 10% of reproductive-age women. However, so far, there are no reliable diagnostic biomarkers for endometriosis, causing a delay in diagnosis of 6.7 ± 6.2 years. Menstrual blood is a non-invasive source of endometrial tissue that can be analyzed for biomarkers of endometriosis. In this study, menstrual blood samples were collected from women with (n = 8) and without (n = 8) endometriosis. Data Independent Acquisition (DIA)-based mass spectrometry and bioinformatic analysis were used to quantify and identify differentially expressed proteins (DEPs) using the thresholds of fold change >1.5 and P value <0.05. A total of 95 DEPs were identified in menstrual blood from women with endometriosis compared to women without endometriosis, of which 64 were up-regulated and 31 were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to functionally annotate DEPs. Protein-protein interaction (PPI) network analysis was then conducted to identify hub genes and the MCODE plugin placed CXCL1, CXCL3, CXCL5, CCL18, and IL1RN in the most significant cluster network. The expression of the above candidate proteins was confirmed by enzyme-linked immunosorbent assay (ELISA), among which CXCL5 and IL1RN protein expression was increased in patients with endometriosis, indicating that CXCL5 and IL1RN in menstrual blood may be useful biomarkers to diagnose endometriosis from non-invasive samples. SIGNIFICANCE: Endometriosis is a common gynecological disease that causes discomfort in many women. Unfortunately, the diagnosis of endometriosis is frequently delayed due to a lack of reliable non-invasive biomarkers. To our knowledge, this is the first time that DIA-MS was used to characterize the proteome and identify the differentially expressed proteins in menstrual blood from women with endometriosis. The results, as confirmed by ELISA, showed that CXCL5 and IL1RN protein expression is significantly increased in patients with endometriosis, indicating that these proteins can be used as biomarkers for endometriosis. This study contributes to the identification of putative endometriosis biomarkers from non-invasive samples and lays the groundwork for future research into the roles of CXCL5 and IL1RN in the pathogenesis of endometriosis.


Assuntos
Endometriose , Humanos , Feminino , Endometriose/diagnóstico , Proteoma/metabolismo , Menstruação , Biomarcadores/análise , Mapas de Interação de Proteínas , Quimiocina CXCL5/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo
20.
Invest Ophthalmol Vis Sci ; 64(12): 11, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672286

RESUMO

Purpose: Circulating exosomes regulate immune responses and induce immune tolerance in immune-mediated diseases. This study aimed to investigate the role of circulating small extracellular vesicles (sEVs) derived from patients with Vogt-Koyanagi-Harada (VKH) syndrome, in T-cell responses. Methods: The sEVs were isolated from the plasma of healthy controls, patients with VKH, and other uveitis patients. The effects of autologous and allogeneic sEVs on the proliferation of circulating CD4+ T cells were evaluated. Microarray analysis of sEVs was performed to determine their differential miRNA expression profiles. The target genes of the candidate miRNA were predicted and verified. The role of both the candidate miRNA and target genes in T-cell proliferation was tested. Results: Plasma-derived sEVs from patients with VKH inhibited the proliferation of autologous CD4+ T cells. Among all the miRNAs that might be associated with inflammatory activity, we found that miR-410-3p had the largest number of T-cell proliferation target genes. MiR-410-3p mimics inhibited the proliferation of Jurkat cells and CD4+ T cells. C-X-C motif chemokine ligand 5 (CXCL5) was confirmed to be a potential target gene of miR-410-3p, and siRNA-mediated CXCL5 knockdown inhibited cell proliferation. Conclusions: Circulating sEVs exert an inhibitory effect on autologous CD4+ T cells mediated by miR-410-3p by targeting CXCL5, supporting the possibility of using autogenic sEVs to inhibit ocular inflammation.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Síndrome Uveomeningoencefálica , Humanos , Ativação Linfocitária , Proliferação de Células , Quimiocina CXCL5
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA