Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.547
Filtrar
1.
Front Immunol ; 15: 1405622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827741

RESUMO

Background: Severe acute pancreatitis (SAP) is an inflammatory disorder affecting the gastrointestinal system. Intestinal injury plays an important role in the treatment of severe acute pancreatitis. In this study, we mainly investigated the role of S1PR2 in regulating macrophage pyroptosis in the intestinal injury of severe acute pancreatitis. Methods: The SAP model was constructed using cerulein and lipopolysaccharide, and the expression of S1PR2 was inhibited by JTE-013 to detect the degree of pancreatitis and intestinal tissue damage in mice. Meanwhile, the level of pyroptosis-related protein was detected by western blot, the level of related mRNA was detected by PCR, and the level of serum inflammatory factors was detected by ELISA. In vitro experiments, LPS+ATP was used to construct the pyroptosis model of THP-1. After knockdown and overexpression of S1PR2, the pyroptosis proteins level was detected by western blot, the related mRNA level was detected by PCR, and the level of cell supernatant inflammatory factors were detected by ELISA. A rescue experiment was used to verify the sufficient necessity of the RhoA/ROCK pathway in S1PR2-induced pyroptosis. Meanwhile, THP-1 and FHC were co-cultured to verify that cytokines released by THP-1 after damage could regulate FHC damage. Results: Our results demonstrated that JTE-013 effectively attenuated intestinal injury and inflammation in mice with SAP. Furthermore, we observed a significant reduction in the expression of pyroptosis-related proteins within the intestinal tissue of SAP mice upon treatment with JTE-013. We confirmed the involvement of S1PR2 in THP-1 cell pyroptosis in vitro. Specifically, activation of S1PR2 triggered pyroptosis in THP-1 cells through the RhoA/ROCK signaling pathway. Moreover, it was observed that inflammatory factors released during THP-1 cell pyroptosis exerted an impact on cohesin expression in FHC cells. Conclusion: The involvement of S1PR2 in SAP-induced intestinal mucosal injury may be attributed to its regulation of macrophage pyroptosis.


Assuntos
Modelos Animais de Doenças , Macrófagos , Pancreatite , Piroptose , Receptores de Esfingosina-1-Fosfato , Animais , Camundongos , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Pancreatite/metabolismo , Pancreatite/imunologia , Pancreatite/patologia , Pancreatite/induzido quimicamente , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Masculino , Transdução de Sinais , Camundongos Endogâmicos C57BL , Proteína rhoA de Ligação ao GTP/metabolismo , Células THP-1 , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/patologia , Intestinos/imunologia , Citocinas/metabolismo , Lipopolissacarídeos , Pirazóis , Piridinas
2.
J Neuroimmune Pharmacol ; 19(1): 19, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753217

RESUMO

Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti­inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.


Assuntos
AVC Isquêmico , Microglia , NF-kappa B , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Microglia/metabolismo , NF-kappa B/metabolismo , Humanos , Quinases Associadas a rho/metabolismo , Animais , Proteína rhoA de Ligação ao GTP/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/imunologia , AVC Isquêmico/patologia , Transdução de Sinais/fisiologia , Polaridade Celular/fisiologia , Polaridade Celular/efeitos dos fármacos
3.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767371

RESUMO

The mammary gland is a fundamental structure of the breast and plays an essential role in reproduction. Human mammary epithelial cells (HMECs), which are the origin cells of breast cancer and other breast-related inflammatory diseases, have garnered considerable attention. However, isolating and culturing primary HMECs in vitro for research purposes has been challenging due to their highly differentiated, keratinized nature and their short lifespan. Therefore, developing a simple and efficient method to isolate and culture HMECs is of great scientific value for the study of breast biology and breast-related diseases. In this study, we successfully isolated primary HMECs from small amounts of mammary tissue by digestion with a mixture of enzymes combined with an initial culture in 5% fetal bovine serum-DMEM containing the Rho-associated kinase (ROCK) inhibitor Y-27632, followed by culture expansion in serum-free keratinocyte medium. This approach selectively promotes the growth of epithelial cells, resulting in an optimized cell yield. The simplicity and convenience of this method make it suitable for both laboratory and clinical research, which should provide valuable insights into these important areas of study.


Assuntos
Técnicas de Cultura de Células , Células Epiteliais , Glândulas Mamárias Humanas , Humanos , Células Epiteliais/citologia , Feminino , Glândulas Mamárias Humanas/citologia , Técnicas de Cultura de Células/métodos , Amidas/farmacologia , Piridinas/farmacologia , Técnicas Citológicas/métodos , Quinases Associadas a rho/antagonistas & inibidores
4.
Sci Rep ; 14(1): 10393, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710741

RESUMO

The transforming growth factor (TGF)-ß3 is a well-known inducer for tenogenic differentiation, signaling via the Smad2/3 pathway. Furthermore, other factors like extracellular matrix or mechanical force can induce tenogenic differentiation and possibly alter the response to TGF-ß3 by signaling via the Rho/ROCK pathway. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-ß3/Smad signaling in tenogenic differentiation, with the Smad2/3 molecule hypothesized as a possible interface. Cultured as monolayers or on collagen I matrices, mesenchymal stromal cells (MSC) were treated with the ROCK inhibitor Y-27632 (10 µM), TGF-ß3 (10 ng/ml) or both combined. Control cells were cultured accordingly, without Y-27632 and/or without TGF-ß3. At different time points, MSC were analyzed by real-time RT-PCR, immunofluorescence, and Western blot. Cultivation of MSC on collagen matrices and ROCK inhibition supported tenogenic differentiation and fostered the effect of TGF-ß3. The phosphorylation of the linker region of Smad2 was reduced by cultivation on collagen matrices, but not by ROCK inhibition. The latter, however, led to increased phosphorylation of the linker region of Smad3. In conclusion, collagen matrices and the Rho/ROCK signaling pathway influence the TGF-ß3/Smad2/3 pathway by regulating different phosphorylation sites of the Smad linker region.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta3 , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Fosforilação , Diferenciação Celular/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Crescimento Transformador beta3/metabolismo , Células Cultivadas , Piridinas/farmacologia , Amidas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
5.
Epigenetics ; 19(1): 2348840, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38716769

RESUMO

To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- ß signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.


Assuntos
Adenosina , Síndrome de Exfoliação , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Síndrome de Exfoliação/genética , Síndrome de Exfoliação/metabolismo , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Idoso , Humor Aquoso/metabolismo , Redes Reguladoras de Genes , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação de DNA , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo
6.
Sci Rep ; 14(1): 12314, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811617

RESUMO

Epithelial tissue forms and maintains a critical barrier function in the body. A novel culture design aimed at promoting uniform maturation of epithelial cells using liquid materials is described. Culturing Madin-Darby canine kidney (MDCK) cells at the liquid-liquid interface yielded reduced migration and stimulated active cell growth. Similar to solid-liquid interfaces, cells cultured on a fibronectin-coated liquid-liquid interface exhibited active migration and growth, ultimately reaching a confluent state. These cells exhibited reduced stress fiber formation and adopted a cobblestone-like shape, which led to their even distribution in the culture vessel. To inhibit stress fiber formation and apoptosis, the exposure of cells on liquid-liquid interfaces to Y27632, a specific inhibitor of the Rho-associated protein kinase (ROCK), facilitated tight junction formation (frequency of ZO-2-positive cells, FZ = 0.73). In Y27632-exposed cells on the liquid-liquid interface, the value obtained by subtracting the standard deviation of the ratio of nucleus densities in each region that compartmentalized a culture vessel from 1, denoted as HLN, was 0.93 ± 0.01, indicated even cell distribution in the culture vessel at t = 72 h. The behavior of epithelial cells on liquid-liquid interfaces contributes to the promotion of their uniform maturation.


Assuntos
Movimento Celular , Células Epiteliais , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Animais , Células Madin Darby de Rim Canino , Junções Íntimas/metabolismo , Proliferação de Células , Técnicas de Cultura de Células/métodos , Amidas/farmacologia , Piridinas/farmacologia , Apoptose , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Fibras de Estresse/metabolismo , Diferenciação Celular
7.
Aging (Albany NY) ; 16(10): 8732-8746, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38775730

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). This study focuses on deciphering the role of microRNA (miR)-101a-3p in the neuronal injury of PD and its regulatory mechanism. METHODS: We constructed a mouse model of PD by intraperitoneal injection of 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP), and used 1-methyl-4-phenylpyridinium (MPP+) to treat Neuro-2a cells to construct an in-vitro PD model. Neurological dysfunction in mice was evaluated by swimming test and traction test. qRT-PCR was utilized to examine miR-101a-3p expression and ROCK2 expression in mouse brain tissues and Neuro-2a cells. Western blot was conducted to detect the expression of α-synuclein protein and ROCK2 in mouse brain tissues and Neuro-2a cells. The targeting relationship between miR-101a-3p and ROCK2 was determined by dual-luciferase reporter gene assay. The apoptosis of neuro-2a cells was assessed by flow cytometry. RESULTS: Low miR-101a-3p expression and high ROCK2 expression were found in the brain tissues of PD mice and MPP+-treated Neuro-2a cells; PD mice showed decreased neurological disorders, and apoptosis of Neuro-2a cells was increased after MPP+ treatment, both of which were accompanied by increased accumulation of α-synuclein protein. After miR-101a-3p was overexpressed, the neurological function of PD mice was improved, and the apoptosis of Neuro-2a cells induced by MPP+ was alleviated, and the accumulation of α-synuclein protein was reduced; ROCK2 overexpression counteracted the protective effect of miR-101a-3p. Additionally, ROCK2 was identified as the direct target of miR-101a-3p. CONCLUSION: MiR-101a-3p can reduce neuronal apoptosis and neurological deficit in PD mice by inhibiting ROCK2 expression, suggesting that miR-101a-3p is a promising therapeutic target for PD.


Assuntos
Modelos Animais de Doenças , MicroRNAs , Quinases Associadas a rho , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Linhagem Celular Tumoral , Apoptose/genética , 1-Metil-4-fenilpiridínio/toxicidade
8.
J Clin Invest ; 134(10)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38747285

RESUMO

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Assuntos
Fibroblastos , Fibrose , Fator de Crescimento Transformador beta , Proteína Wnt-5a , Quinases Associadas a rho , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Animais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Camundongos , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/genética , Camundongos Knockout , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Sistema de Sinalização das MAP Quinases , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Transdução de Sinais , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/genética
9.
Cell Commun Signal ; 22(1): 257, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711089

RESUMO

Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor ß (TGF-ß)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-ß/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-ß/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.


Assuntos
Células-Tronco Mesenquimais , Hiperplasia Prostática , Fator de Crescimento Transformador beta , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Masculino , Hiperplasia Prostática/patologia , Hiperplasia Prostática/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Próstata/patologia , Próstata/metabolismo , Movimento Celular , Camundongos , Células Estromais/metabolismo , Células Estromais/patologia
10.
Matrix Biol ; 130: 36-46, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723870

RESUMO

Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.


Assuntos
Adipogenia , Fator de Crescimento do Tecido Conjuntivo , Lisofosfolipídeos , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Camundongos , Lisofosfolipídeos/metabolismo , Comunicação Celular , Transdução de Sinais , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Regulação da Expressão Gênica , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Diferenciação Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Humanos , Citoesqueleto de Actina/metabolismo
11.
Zool Res ; 45(3): 535-550, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38747058

RESUMO

Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.


Assuntos
Citoesqueleto de Actina , Caderinas , Espinhas Dendríticas , Protocaderinas , Quinases Associadas a rho , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Caderinas/metabolismo , Caderinas/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Regulação da Expressão Gênica , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Protocaderinas/genética , Protocaderinas/metabolismo
12.
Eur J Pharmacol ; 975: 176640, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750716

RESUMO

Anti-partial epithelial-mesenchymal transition (pEMT) treatment of renal tubular epithelial cells (TECs) represents a promising therapeutic approach. Hyperuricemia nephropathy (HN) arises as a consequence of hyperuricemia (HUA)-induced tubulointerstitial fibrosis (TIF). Studies have suggested that the Ras homolog member A (RhoA)/Rho-associated kinase (ROCK) pathway is a crucial signaling transduction system in renal fibrosis. Fasudil, a RhoA/ROCK inhibitor, has exhibited the potential to prevent fibrosis progress. However, its impact on the pEMT of TECs in HN remains unclear. Here, an HN rat model and an uric acid (UA)-stimulated human kidney 2 (HK2) cell model were established and treated with Fasudil to explore its effects. Furthermore, the underlying mechanism of action involved in the attenuation of pEMT in TECs by Fasudil during HN was probed by using multiple molecular approaches. The HN rat model exhibited significant renal dysfunction and histopathological damage, whereas in vitro and in vivo experiments further confirmed the pEMT status accompanied by RhoA/ROCK pathway activation and oxidative stress in tubular cells exposed to UA. Notably, Fasudil ameliorated these pathological changes, and this was consistent with the trend of ROCK silencing in vitro. Mechanistically, we identified the Neh2 domain of nuclear factor erythroid 2-related factor 2 (Nrf2) as a target of Fasudil for the first time. Fasudil targets Nrf2 activation and antagonizes oxidative stress to attenuate the pEMT of TECs in HN. Our findings suggest that Fasudil attenuates oxidative stress-induced pEMT of TECs in HN by targeting Nrf2 activation. Thus, Fasudil is a potential therapeutic agent for the treatment of HN.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina , Células Epiteliais , Transição Epitelial-Mesenquimal , Hiperuricemia , Nefropatias , Túbulos Renais , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Humanos , Ratos , Masculino , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Linhagem Celular , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Nefropatias/metabolismo , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Ratos Sprague-Dawley , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos
13.
Biochem Biophys Res Commun ; 721: 150144, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38781661

RESUMO

Cell polarization can be guided by substrate topology through space constraints and adhesion induction, which are part of cellular mechanosensing pathways. Here, we demonstrated that protein tyrosine phosphatase Shp2 plays a crucial role in mediating the response of cells to substrate spatial cues. When compared to cells spreading on surfaces coated uniformly with fibronectin (FN), cells attached to 10 µm-width FN-strip micropattern (MP), which provides spatial cues for uniaxial spreading, exhibited elongated focal adhesions (FAs) and aligned stress fibers in the direction of the MP. As a result of uniaxial cell spreading, nuclei became elongated, dependent on ROCK-mediated actomyosin contractility. Additionally, intracellular viscoelasticity also increased. Shp2-deficient cells did not display elongated FAs mediated by MP, well-aligned stress fibers, or changes in nuclear shape and intracellular viscoelasticity. Overall, our data suggest that Shp2 is involved in regulating FAs and the actin cytoskeleton to modulate nuclear shape and intracellular physical properties in response to substrate spatial cues.


Assuntos
Núcleo Celular , Elasticidade , Adesões Focais , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Viscosidade , Núcleo Celular/metabolismo , Animais , Adesões Focais/metabolismo , Camundongos , Fibronectinas/metabolismo , Humanos , Adesão Celular , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Mecanotransdução Celular/fisiologia , Quinases Associadas a rho/metabolismo
14.
Cell Rep ; 43(5): 114208, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728139

RESUMO

Skin damage requires efficient immune cell responses to restore organ function. Epidermal-resident immune cells known as Langerhans cells use dendritic protrusions to surveil the skin microenvironment, which contains keratinocytes and peripheral axons. The mechanisms governing Langerhans cell dendrite dynamics and responses to tissue damage are poorly understood. Using skin explants from adult zebrafish, we show that Langerhans cells maintain normal surveillance following axonal degeneration and use their dendrites to engulf small axonal debris. By contrast, a ramified-to-rounded shape transition accommodates the engulfment of larger keratinocyte debris. We find that Langerhans cell dendrites are populated with actin and sensitive to a broad-spectrum actin inhibitor. We show that Rho-associated kinase (ROCK) inhibition leads to elongated dendrites, perturbed clearance of large debris, and reduced Langerhans cell migration to epidermal wounds. Our work describes the dynamics of Langerhans cells and involvement of the ROCK pathway in immune cell responses.


Assuntos
Células de Langerhans , Peixe-Zebra , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Animais , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Movimento Celular , Forma Celular , Actinas/metabolismo , Queratinócitos/metabolismo , Dendritos/metabolismo
15.
Sci Rep ; 14(1): 9012, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641671

RESUMO

To better understand molecular aspects of equine endometrial function, there is a need for advanced in vitro culture systems that more closely imitate the intricate 3-dimensional (3D) in vivo endometrial structure than current techniques. However, development of a 3D in vitro model of this complex tissue is challenging. This study aimed to develop an in vitro 3D endometrial tissue (3D-ET) with an epithelial cell phenotype optimized by treatment with a Rho-associated protein kinase (ROCK) inhibitor. Equine endometrial epithelial (eECs) and mesenchymal stromal (eMSCs) cells were isolated separately, and eECs cultured in various concentrations of Rock inhibitor (0, 5, 10 µmol) in epithelial medium (EC-medium) containing 10% knock-out serum replacement (KSR). The optimal concentration of Rock inhibitor for enhancing eEC proliferation and viability was 10 µM. However, 10 µM Rock inhibitor in the 10% KSR EC-medium was able to maintain mucin1 (Muc1) gene expression for only a short period. In contrast, fetal bovine serum (FBS) was able to maintain Muc1 gene expression for longer culture durations. An in vitro 3D-ET was successfully constructed using a collagen-based scaffold to support the eECs and eMSCs. The 3D-ET closely mimicked in vivo endometrium by displaying gland-like eEC-derived structures positive for the endometrial gland marker, Fork headbox A2 (FOXA2), and by mimicking the 3D morphology of the stromal compartment. In addition, the 3D-ET expressed the secretory protein MUC1 on its glandular epithelial surface and responded to LPS challenge by upregulating the expression of the interleukin-6 (IL6) and prostaglandin F synthase (PGFS) genes (P < 0.01), along with an increase in their secretory products, IL-6 (P < 0.01) and prostaglandin F2alpha (PGF2α) (P < 0.001) respectively. In the future, this culture system can be used to study both normal physiology and pathological processes of the equine endometrium.


Assuntos
Engenharia Tecidual , Quinases Associadas a rho , Feminino , Animais , Cavalos , Células Cultivadas , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Colágeno/metabolismo , Dinoprosta/metabolismo
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 411-419, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597431

RESUMO

OBJECTIVE: To investigate the role of Rho/ROCK signaling pathway in mediating restraint stress-induced blood-brain barrier (BBB) injury in the amygdala of rats. METHODS: Sixty male SD rats were randomized equally into control group (with food and water deprivation for 6 h per day), restraint stress group (with restraint for 6 h per day), stress + fasudil treatment (administered by intraperitoneal injection at 1 mg/100 g 30 min before the 6-h restraint) group, and fasudil treatment alone group. The elevated plus-maze test was used to detect behavioral changes of the rats, serum corticosterone and S100B levels were determined with ELISA, and Evans Blue leakage in the brain tissue was examined to evaluate the changes in BBB permeability. The changes in expression levels of tight junction proteins in the amygdala were detected using immunofluorescence assay and Western blotting, and Rho/ROCK pathway activation was detected by Pull-down test and Western blotting. Ultrastructural changes of the cerebral microvascular endothelial cells were observed using transmission electron microscopy. RESULTS: Compared with those in the control group, the rats in restrain stress group and stress+fasudil group showed obvious anxiety-like behavior with significantly increased serum corticosterone level (P<0.001). Compared with those in the control group and stress+fasudil group, the rat models of restrain stress showed more obvious Evans Blue leakage and higher S100B expression (P<0.01) but lower expressions of tight junction proteins in the amygdala. Pull-down test and Western blotting confirmed that the expression levels of RhoA-GTP, ROCK2 and P-MLC 2 were significantly higher in stress group than in the control group and stress + fasudil group (P<0.05). Transmission electron microscopy revealed obvious ultrastructural changes in the cerebral microvascular endothelial cells in the rat models of restrain stress. CONCLUSION: Restraint stress induces BBB injury in the amygdala of rats by activating the Rho/ROCK signaling pathway.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Barreira Hematoencefálica , Células Endoteliais , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , Ratos Sprague-Dawley , Azul Evans/metabolismo , Corticosterona/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo
17.
J Int Med Res ; 52(4): 3000605241240938, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603613

RESUMO

OBJECTIVE: This study examined the effects of sildenafil on acute pulmonary embolism (APE) using a rat model. METHODS: Sprague-Dawley rats were randomly divided into the sham, pulmonary thromboembolism (PTE), and sildenafil groups. The sham and PTE groups received normal saline once daily via gavage for 14 consecutive days, whereas the sildenafil group received sildenafil (0.5 mg/kg/day) once daily via gavage for 14 consecutive days. Autologous emboli were prepared from blood samples collected from the left femoral artery of rats in each group on day 13, and autologous emboli were injected into the jugular vein cannula of rats in the PTE and sildenafil groups on day 14. Sham-treated rats received the same volume of saline. Right systolic ventricular pressure (RVSP) and mean pulmonary arterial pressure (MPAP) were used to assess pulmonary embolism, and western blotting and enzyme-linked immunosorbent assay were used to detect relevant markers. RESULTS: The Rho kinase signaling pathway was significantly activated in rats with APE, and sildenafil significantly inhibited this activation. CONCLUSIONS: Sildenafil protected against APE through inhibiting Rho kinase activity, thereby reducing pulmonary vasoconstriction and decreasing elevated pulmonary arterial pressure. These findings might provide new ideas for the clinical treatment of acute pulmonary thromboembolism.


Assuntos
Hominidae , Embolia Pulmonar , Ratos , Animais , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Quinases Associadas a rho , Ratos Sprague-Dawley , Embolia Pulmonar/tratamento farmacológico , Hemodinâmica , Artéria Pulmonar
18.
J Cell Mol Med ; 28(8): e18153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568071

RESUMO

The small GTPase RhoA and the downstream Rho kinase (ROCK) regulate several cell functions and pathological processes in the vascular system that contribute to the age-dependent risk of cardiovascular disease, including endothelial dysfunction, excessive permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, decreased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve and adaptive capacity with advanced age and is accompanied by a pro-inflammatory and pro-oxidative state that promotes vascular dysfunction and thrombosis. This review summarises the role of the RhoA/Rho kinase signalling pathway in endothelial dysfunction, the acquisition of the pro-thrombotic state and vascular ageing. We also discuss the possible role of RhoA/Rho kinase signalling as a promising therapeutic target for the prevention and treatment of age-related cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Trombose , Doenças Vasculares , Humanos , Quinases Associadas a rho/genética , Células Endoteliais
19.
ACS Biomater Sci Eng ; 10(5): 3069-3085, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38578110

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Drug delivery to the brain through the blood-brain barrier (BBB) is a significant challenge in PD treatment. Exosomes, which can efficiently traverse the BBB, which many drugs cannot penetrate, are ideal natural carriers for drug delivery. In this study, the BBB shuttle peptide was modified on the exosome surfaces. Three types of exosomes were constructed, each modified with a distinct peptide (RVG29, TAT, or Ang2) and loaded with miR-133b. The safety and brain-targeting capabilities of these peptide-modified exosomes were then evaluated. Finally, the mechanism by which RVG29-Exo-133b regulates the RhoA-ROCK signaling pathway was investigated. The findings indicate that the three peptide-modified exosomes were adequately tolerated, safe, and effectively assimilated in vivo and ex vivo, with RVG29 exhibiting superior targeting to the brain. Furthermore, RVG29-Exo-133b decreased the phosphorylation level of the Tau protein by targeting the RhoA-ROCK signaling pathway. It also enhanced the motor function in mice with PD, thereby reducing the degree of depression, improving dopaminergic neuron function, and attenuating 6-OHDA-induced nerve damage. In this study, we developed a stable drug delivery mechanism that targets the intracerebral region using exosomes. Furthermore, a novel strategy was developed to manage PD and can potentially serve as a preclinical basis for utilizing exosomes in the diagnosis and treatment of neurodegenerative conditions.


Assuntos
Exossomos , MicroRNAs , Doença de Parkinson , Transdução de Sinais , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP , Exossomos/metabolismo , Animais , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Humanos , Peptídeos/metabolismo , Barreira Hematoencefálica/metabolismo
20.
Zhen Ci Yan Jiu ; 49(4): 367-375, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649204

RESUMO

OBJECTIVES: To investigate the effect of electroacupuncture (EA) on Rho/Rho-associated coiled-coil-forming kinases (ROCK) signaling pathway of uterus tissue in rats with dysmenorrhea, so as to explore the underlying mechanism of EA treating primary dysmenorrhea (PD) and uterine smooth muscle spasm, and to observe whether there is a difference in the effect of meridian acupoints in Conception Vessel (CV) and Governer Vessel (GV). METHODS: Sixty female SD rats were randomly divided into saline, model, CV, GV, and non-acupoint groups, with 12 rats in each group. The dysmenorrhea model was established by subcutaneous injection of estradiol diphenhydrate combined with intraperitoneal injection of oxytocin (OT). EA (2 Hz) was applied to "Qihai" (CV6) and "Zhongji" (CV3) for CV group, "Mingmen" (GV4) and "Yaoshu" (GV2) for GV group, "non-acupoint 1" and "non-acupoint 3" on the left side for non-acupoint group, and manual acupuncture was applied to "Guanyuan" (CV4) for CV group, "Yaoyangguan" (GV3) for GV group, "non-acupoint 2" on the left side for non-acupoint group. The treatment was conducted for 20 min each time, once daily for 10 days. The writhing score was evaluated. The smooth myoelectric signals of rats' uterus in vivo were recorded by multi-channel physiological recorder. The uterine histopathological changes were observed by HE staining. The contents of prostaglandin F2α (PGF2α), OT and calcium ion (Ca2+) in uterine tissue of rats were detected by ELISA. The protein and mRNA expression levels of smooth muscle 22-α (SM22-α), RhoA and ROCKⅡ in uterine tissue were detected by Western blot and fluorescence quantitative PCR, respectively. RESULTS: Compared with the saline group, the writhing score of rats in the model group was increased (P<0.01), the amplitude voltage of uterine smooth muscle in vivo was elevated (P<0.01), the contents of PGF2α, OT and Ca2+, the protein and mRNA expression of SM22-α, RhoA and ROCK Ⅱ in uterine tissue were all increased (P<0.01). Compared with the model and the non-acupoint groups, the writhing scores of the CV and the GV groups were decreased (P<0.01, P<0.05), the amplitude voltage of uterine smooth muscle was decreased (P<0.01), the contents of PGF2α, OT and Ca2+ in uterine tissue were decreased (P<0.01, P<0.05), and the protein expression and mRNA expression of SM22-α, RhoA and ROCKⅡ in uterine tissue were decreased (P<0.01, P<0.05). HE staining showed extensive exfoliation of uterine intima with severe edema and increased glandular secretion in the model group, which was alleviated in the CV and GV groups. CONCLUSIONS: EA at acupoints of CV and GV can significantly reduce the writhing score, uterine smooth muscle amplitude voltage, pathological injury degree of uterus, and relieve spasm of uterine smooth muscle in dysmenorrhea rats, which may be related to its effect in regulating PGF2α and OT contents, inhibiting the Rho/ROCK signaling pathway, and reducing the SM22-α, RhoA, ROCKⅡ protein and mRNA expression, and Ca2+ content in uterine tissue.


Assuntos
Pontos de Acupuntura , Dismenorreia , Eletroacupuntura , Ratos Sprague-Dawley , Transdução de Sinais , Útero , Quinases Associadas a rho , Animais , Feminino , Dismenorreia/terapia , Dismenorreia/metabolismo , Dismenorreia/genética , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Ratos , Humanos , Útero/metabolismo , Músculo Liso/metabolismo , Espasmo/terapia , Espasmo/genética , Espasmo/metabolismo , Espasmo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...