Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
eNeuro ; 10(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852780

RESUMO

It has been suggested that stochasticity acts in the formation of topographically ordered maps in the visual system through the opposing chemoaffinity and neural activity forces acting on the innervating nerve fibers being held in an unstable equilibrium. Evidence comes from the Islet2-EphA3 knock-in mouse, in which ∼50% of the retinal ganglion cells, distributed across the retina, acquire the EphA3 receptor, thus having an enhanced density of EphA which specifies retinotopic order along the rostrocaudal (RC) axis of the colliculus. Sampling EphA3 knock-in maps in heterozygotes at different positions along the mediolateral (ML) extent of the colliculus had found single 1D maps [as in wild types (WTs)], double maps (as in homozygous knock-ins) or both single and double maps. We constructed full 2D maps from the same mouse dataset. We found either single maps or maps where the visual field projects rostrally, with a part-projection more caudally to form a double map, the extent and location of this duplication varying considerably. Contrary to previous analyses, there was no strict demarcation between heterozygous and homozygous maps. These maps were replicated in a computational model where, as the level of EphA3 was increased, there was a smooth transition from single to double maps. Our results suggest that the diversity in these retinotopic maps has its origin in a variability over the retina in the effective amount of EphA3, such as through variability in gene expression or the proportion of EphA3+ retinal ganglion cells, rather than the result of competing mechanisms acting at the colliculus.


Assuntos
Colículos Superiores , Vias Visuais , Camundongos , Animais , Receptor EphA3/genética , Receptor EphA3/metabolismo , Colículos Superiores/metabolismo , Vias Visuais/fisiologia , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
2.
J Exp Clin Cancer Res ; 42(1): 164, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37434266

RESUMO

BACKGROUND: The receptor for advanced glycation-end products (RAGE) and its ligands have been implicated in obesity and associated inflammatory processes as well as in metabolic alterations like diabetes. In addition, RAGE-mediated signaling has been reported to contribute to the metastatic progression of breast cancer (BC), although mechanistic insights are still required. Here, we provide novel findings regarding the transcriptomic landscape and the molecular events through which RAGE may prompt aggressive features in estrogen receptor (ER)-positive BC. METHODS: MCF7 and T47D BC cells stably overexpressing human RAGE were used as a model system to evaluate important changes like cell protrusions, migration, invasion and colony formation both in vitro through scanning electron microscopy, clonogenic, migration and invasion assays and in vivo through zebrafish xenografts experiments. The whole transcriptome of RAGE-overexpressing BC cells was screened by high-throughput RNA sequencing. Thereafter, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses allowed the prediction of potential functions of differentially expressed genes (DEGs). Flow cytometry, real time-PCR, chromatin immunoprecipitation, immunofluorescence and western blot assays were performed to investigate the molecular network involved in the regulation of a novel RAGE target gene namely EphA3. The clinical significance of EphA3 was explored in the TCGA cohort of patients through the survivALL package, whereas the pro-migratory role of EphA3 signaling was ascertained in both BC cells and cancer-associated fibroblasts (CAFs). Statistical analysis was performed by t-tests. RESULTS: RNA-seq findings and GSEA analysis revealed that RAGE overexpression leads to a motility-related gene signature in ER-positive BC cells. Accordingly, we found that RAGE-overexpressing BC cells exhibit long filopodia-like membrane protrusions as well as an enhanced dissemination potential, as determined by the diverse experimental assays. Mechanistically, we established for the first time that EphA3 signaling may act as a physical mediator of BC cells and CAFs motility through both homotypic and heterotypic interactions. CONCLUSIONS: Our data demonstrate that RAGE up-regulation leads to migratory ability in ER-positive BC cells. Noteworthy, our findings suggest that EphA3 may be considered as a novel RAGE target gene facilitating BC invasion and scattering from the primary tumor mass. Overall, the current results may provide useful insights for more comprehensive therapeutic approaches in BC, particularly in obese and diabetic patients that are characterized by high RAGE levels.


Assuntos
Neoplasias da Mama , Receptor para Produtos Finais de Glicação Avançada , Receptor EphA3 , Animais , Feminino , Humanos , Neoplasias da Mama/genética , Receptor EphA3/genética , Transdução de Sinais , Peixe-Zebra/genética
3.
J Transl Med ; 21(1): 288, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118847

RESUMO

BACKGROUND: Circular RNAs (circRNAs) may regulate the onset and progression of human malignancies by competitively binding to microRNA (miRNA) sponges, thus regulating the downstream genes. However, aberrant circRNA expression patterns and their biological functions in prostate cancer (PCa) warrant further studies. Our research sought to shed further light on the possible role and molecular mechanism of circEPHA3 action in controlling the growth and metastasis of PCa cells. MATERIALS AND METHODS: circEPHA3 (has_circ_0066596) was initially screened from a previous circRNA microarray and identified following Actinomycin D and RNase R assays. Fluorescence in situ hybridization, biotin-coupled probe RNA pulldown, and dual-luciferase reporter gene assays were performed to examine the relationship between circEPHA3 and miR-513a-3p. The biological role of circEPHA3 in PCa was assessed by CCK8, wound healing, Transwell assays, and animal experiments. RESULTS: We identified a novel circular RNA, circEPHA3 (has_circ_0066596), which was down-regulated in high-grade PCa tissues and cell lines. The outcomes of CCK8, wound healing, Transwell assays, and animal experiments revealed that circEPHA3 prohibited the progression and metastasis of PCa in vivo and in vitro. Mechanistically, circEPHA3 was directly bound to miR-513a-3p and regulated the downstream gene, BMP2, thereby serving as a tumor suppressor in PCa. CONCLUSIONS: As a tumor suppressor, circEPHA3 inhibited the proliferation and metastasis of PCa cells through the miR-513a-3p/BMP2 axis, suggesting that circEPHA3 might be a potential therapeutic target for PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Animais , Humanos , Masculino , RNA Circular/genética , Hibridização in Situ Fluorescente , Neoplasias da Próstata/genética , RNA/genética , Bioensaio , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Receptor EphA3 , Proteína Morfogenética Óssea 2/genética
4.
Sci Rep ; 12(1): 3840, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264657

RESUMO

The EPHA3 protein tyrosine kinase, a member of the ephrin receptor family, regulates cell fate, cell motility, and cell-cell interaction. These cellular events are critical for tissue development, immunological responses, and the processes of tumorigenesis. Earlier studies revealed that signaling via the STK4-encoded MST1 serine-threonine protein kinase, a core component of the Hippo pathway, attenuated EPHA3 expression. Here, we investigated the mechanism by which MST1 regulates EPHA3. Our findings have revealed that the transcriptional regulators YAP1 and TEAD1 are crucial activators of EPHA3 transcription. Silencing YAP1 and TEAD1 suppressed the EPHA3 protein and mRNA levels. In addition, we identified putative TEAD enhancers in the distal EPHA3 promoter, where YAP1 and TEAD1 bind and promote EPHA3 expression. Furthermore, EPHA3 knockout by CRISPR/Cas9 technology reduced cell-cell interaction and cell motility. These findings demonstrate that EPHA3 is transcriptionally regulated by YAP1/TEAD1 of the Hippo pathway, suggesting that it is sensitive to cell contact-dependent interactions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Sinalização YAP , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptor EphA3/genética , Receptor EphA3/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945505

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant repair that diminishes lung function via mechanisms that remain poorly understood. CC chemokine receptor (CCR10) and its ligand CCL28 were both elevated in IPF compared with normal donors. CCR10 was highly expressed by various cells from IPF lungs, most notably stage-specific embryonic antigen-4-positive mesenchymal progenitor cells (MPCs). In vitro, CCL28 promoted the proliferation of CCR10+ MPCs while CRISPR/Cas9-mediated targeting of CCR10 resulted in the death of MPCs. Following the intravenous injection of various cells from IPF lungs into immunodeficient (NOD/SCID-γ, NSG) mice, human CCR10+ cells initiated and maintained fibrosis in NSG mice. Eph receptor A3 (EphA3) was among the highest expressed receptor tyrosine kinases detected on IPF CCR10+ cells. Ifabotuzumab-targeted killing of EphA3+ cells significantly reduced the numbers of CCR10+ cells and ameliorated pulmonary fibrosis in humanized NSG mice. Thus, human CCR10+ cells promote pulmonary fibrosis, and EphA3 mAb-directed elimination of these cells inhibits lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptor EphA3/metabolismo , Receptores CCR10/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Sistemas CRISPR-Cas , Quimiocinas CC/metabolismo , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Fibrose Pulmonar Idiopática/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
6.
Biomolecules ; 11(4)2021 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919657

RESUMO

EPHA3, a member of the EPH family, is overexpressed in various cancers. We demonstrated previously that EPHA3 is associated with radiation resistance in head and neck cancer via the PTEN/Akt/EMT pathway; the inhibition of EPHA3 significantly enhances the efficacy of radiotherapy in vitro and in vivo. In this study, we investigated the mechanisms of PTEN regulation through EPHA3-related signaling. Increased DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2) levels, along with increased histone H3 lysine 27 trimethylation (H3K27me3) levels, correlated with decreased levels of PTEN in radioresistant head and neck cancer cells. Furthermore, PTEN is regulated in two ways: DNMT1-mediated DNA methylation, and EZH2-mediated histone methylation through EPHA3/C-myc signaling. Our results suggest that EPHA3 could display a novel regulatory mechanism for the epigenetic regulation of PTEN in radioresistant head and neck cancer cells.


Assuntos
Repressão Epigenética , Neoplasias de Cabeça e Pescoço/genética , PTEN Fosfo-Hidrolase/genética , Tolerância a Radiação , Receptor EphA3/genética , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Código das Histonas , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Receptor EphA3/metabolismo
7.
Mol Pharm ; 18(3): 915-927, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417456

RESUMO

Glioblastoma multiforme (GBM) is a highly lethal and aggressive tumor of the brain that carries a poor prognosis. Temozolomide (TMZ) has been widely used as a first-line treatment for GBM. However, poor brain targeting, side effects, and drug resistance limit its application for the treatment of GBM. We designed a Temozolomide-conjugated gold nanoparticle functionalized with an antibody against the ephrin type-A receptor 3 (anti-EphA3-TMZ@GNPs) for targeted GBM therapy via intranasal administration. The system can bypass the blood-brain barrier and target active glioma cells to improve the glioma targeting of TMZ and enhance the treatment efficacy, while reducing the peripheral toxicity and drug resistance. The prepared anti-EphA3-TMZ@GNPs were 46.12 ± 2.0 nm and suitable for intranasal administration, which demonstrated high safety to the nasal mucosa in a toxicity assay. In vitro studies showed that anti-EphA3-TMZ@GNPs exhibited significantly enhanced cellular uptake and toxicity, and a higher cell apoptosis ratio has been seen compared with that of TMZ (54.9 and 14.1%, respectively) toward glioma cells (C6). The results from experiments on TMZ-resistant glioma cells (T98G) demonstrated that the IC50 of anti-EphA3-TMZ@GNPs (64.06 ± 0.16 µM) was 18.5-fold lower than that of TMZ. In addition, Western blot analysis also revealed that anti-EphA3-TMZ@GNPs effectively down-modulated expression of O6-methylguanine-DNA methyltransferase and increased chemosensitivity of T98G to TMZ. The antiglioma efficacy in vivo was investigated in orthotopic glioma-bearing rats, and the results demonstrated that the anti-EphA3-TMZ@GNPs prolonged the median survival time to 42 days and increased tumor-cell apoptosis dramatically compared with TMZ. In conclusion, anti-EphA3-TMZ@GNPs could serve as an intranasal drug delivery system for efficacious treatment of GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Ouro/química , Nanopartículas Metálicas/química , Receptor EphA3/metabolismo , Temozolomida/farmacologia , Administração Intranasal/métodos , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Eur Rev Med Pharmacol Sci ; 24(12): 6735-6743, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32633364

RESUMO

OBJECTIVE: The purpose of this study was to investigate the expression level of EphA3 in nasopharyngeal carcinoma (NPC) and its effect on the proliferative capacity of NPC. Meanwhile, the underlying mechanism by which EphA3 prompts NPC malignant progression was further explored. PATIENTS AND METHODS: In this study, the expression of EphA3 in 42 pairs of tumor tissue specimens and paracancerous ones collected from NPC patients was detected by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR), and the interplay between EphA3 expression and clinical indicators, as well as prognosis of NPC patients was analyzed. Meanwhile, qRT-PCR was also applied to further verify EphA expression in NPC cell lines. In addition, EphA knockdown model was constructed in NPC cell lines, CNE2, and 6-10B, and the impacts of EphA on NPC cell functions was assessed through Cell Counting Kit-8 (CCK-8), cell colony formation, as well as 5-Ethynyl-2'- deoxyuridine (EdU) assays. Finally, a potential interplay between EphA3 and FOG2 was also investigated. RESULTS: In this study, qRT-PCR results revealed that EphA3 expression levels in tumor tissues of patients with NPC were markedly higher than those in adjacent tissues. Compared with patients with low expression of EphA3, those with highly expressed EphA3 had a more advanced pathological stage. In addition, in vitro experiments showed that knocking down EphA3 notably attenuated the proliferation capacity of NPC cells. Subsequently, it was found that the expression of FOG2 in NPC cells was remarkably decreased both in NPC cell lines and tissues, which had a negative correlation with EphA3. Finally, cell recovery experiment revealed a mutual regulation between EphA3 and FOG2, which then together affected the malignant progression of NPC. CONCLUSIONS: EphA3 is significantly relevant to pathological staging and poor prognosis of patients with NPC and may enhance the proliferation ability of NPC cells by modulating FOG2.


Assuntos
Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/biossíntese , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Receptor EphA3/biossíntese , Fatores de Transcrição/biossíntese , Adulto , Linhagem Celular Transformada , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia
9.
Mol Biol Rep ; 47(7): 5523-5533, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32621117

RESUMO

The erythropoietin-producing human hepatocellular (Eph) receptors are transmembrane glycoprotein members of the tyrosine kinase receptors family. The Ephs may bind to various ephrin ligands resulting in the phosphorylation of their tyrosine kinase domain and the activation of the Eph receptor. In this review we focus on EphA3, one receptor of the 14 different Ephs, as it carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. The loss of EphA3 regulation is correlated with various human malignancies, the most notable being cancer. This receptor is overexpressed and/or mutated in multiple tumors, and is also associated with poor prognosis and decreased survival in patients. Here we highlight the role of EphA3 in normal and malignant tissues that are specific to cancer; these include hematologic disorders, gastric cancer, glioblastoma multiforme, colorectal cancer, lung cancer, renal cell carcinoma, and prostate cancer. Moreover, various anticancer agents against EphA3 have been developed to either inhibit its kinase domain activity or to function as agonists. Thus, we examine the most potent small molecule drugs and mAb-based therapeutics against EphA3 that are currently in pre-clinical or clinical stages.


Assuntos
Neoplasias/genética , Receptor EphA3/genética , Receptor EphA3/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma de Células Renais , Neoplasias Colorretais , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma , Humanos , Neoplasias Renais , Neoplasias Pulmonares , Masculino , Neoplasias/tratamento farmacológico , Fosforilação , Neoplasias da Próstata , Ligação Proteica , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
10.
BMC Cancer ; 20(1): 154, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093644

RESUMO

BACKGROUND: Cancer recurrence is one of the most concerning clinical problems of cholangiocarcinoma (CCA) patients after treatment. However, an identification of predictive factor on Opisthorchis viverrini (OV)-associated CCA recurrence is not well elucidated. In the present study, we aimed to investigate the correlation of twelve targeted protein kinases with CCA recurrence. METHODS: Twelve protein kinases, epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2, 3, 4 (HER2, HER3, HER4), vascular endothelial growth factor receptor 3 (VEGFR3), vascular endothelial growth factor-C (VEGF-C), erythropoietin-producing hepatocellular carcinoma receptor type-A3 (EphA3), EphrinA1, phosphor-serine/threonine kinase 1 (p-Akt1), serine/threonine kinase 1 (Akt1), beta-catenin and protein Wnt5a (Wnt5a) were examined using immunohistochemistry. Pre-operative serum tumor markers, CA19-9 and CEA were also investigated. RESULTS: Among twelve protein kinases, EGFR, HER4, and EphA3 were associated with tumor recurrence status, recurrence-free survival (RFS) and overall survival (OS). Multivariate cox regression demonstrated that EGFR, HER4, EphA3 or the panel of high expression of these proteins was an independent prognostic factor for tumor recurrence. The combination of high expression of these proteins with a high level of CA19-9 could improve the predictive ability on tumor recurrence. Moreover, the patients were stratified more accurately when analyzed using the combination of high expression of these proteins with primary tumor (T) or lymph node metastasis (N) status. CONCLUSION: EGFR, HER4, EphA3 or the panel of high expression of these proteins is an independent prognostic factor for post-operative CCA recurrence.


Assuntos
Neoplasias dos Ductos Biliares/cirurgia , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/cirurgia , Recidiva Local de Neoplasia/diagnóstico , Complicações Pós-Operatórias/diagnóstico , Animais , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Antígeno CA-19-9/sangue , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Receptores ErbB/metabolismo , Feminino , Humanos , Incidência , Metástase Linfática , Masculino , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/metabolismo , Estadiamento de Neoplasias , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/metabolismo , Intervalo Livre de Progressão , Receptor EphA3/metabolismo , Receptor ErbB-4/metabolismo , Tailândia/epidemiologia
11.
Curr Cancer Drug Targets ; 20(1): 76-83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31433759

RESUMO

BACKGROUND: Src associated with mitosis of 68 kDa (Sam68), is often highly expressed in human cancers. Overexpression of Sam68 has been shown to be correlated with poor survival prognosis in some cancer patients. However, little is known whether Sam68 plays a role in promoting metastasis in breast cancer. MATERIALS AND METHODS: The expression of Sam68 protein in breast cancer tissue was detected by immunohistochemistry. Trans-well assay, wound-healing, real-time PCR and Western blotting analysis were used to detect the effect of Sam68 on promoting EMT or metastasis of breast cancer. Next-generation RNA sequencing was used to analyze genes that may be regulated by Sam68. RESULTS: Sam68 plays a positive role in promoting breast cancer metastasis. Sam68 was found to be overexpressed in breast cancer along with lymph node metastasis. MMP-9 was also found to be overexpressed in breast cancer tissue and was correlated to the expression of Sam68 (P<0.01). Xenograft in NOD/SCID mice and in vitro experiments confirmed that the invasion and metastatic ability of breast cancer cells were regulated by Sam68. And EPHA3 could be up-regulated by Sam68 in breast cancer. CONCLUSION: High expression of Sam68 participates in breast cancer metastasis by up-regulating the EPHA3 gene.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Ligação a RNA/fisiologia , Receptor EphA3/fisiologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Receptor EphA3/genética
12.
Nat Commun ; 10(1): 5686, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831727

RESUMO

Diabetes mellitus affects one in eleven adults worldwide. Most suffer from Type 2 Diabetes which features elevated blood glucose levels and an inability to adequately secrete or respond to insulin. Insulin producing ß-cells have primary cilia which are implicated in the regulation of glucose metabolism, insulin signaling and secretion. To better understand how ß-cell cilia affect glucose handling, we ablate cilia from mature ß-cells by deleting key cilia component Ift88. Here we report that glucose homeostasis and insulin secretion deteriorate over 12 weeks post-induction. Cilia/basal body components are required to suppress spontaneous auto-activation of EphA3 and hyper-phosphorylation of EphA receptors inhibits insulin secretion. In ß-cells, loss of cilia/basal body function leads to polarity defects and epithelial-to-mesenchymal transition. Defective insulin secretion from IFT88-depleted human islets and elevated pEPHA3 in islets from diabetic donors both point to a role for cilia/basal body proteins in human glucose homeostasis.


Assuntos
Cílios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Endossomos/metabolismo , Glucose/metabolismo , Homeostase , Células Secretoras de Insulina/metabolismo , Receptores da Família Eph/metabolismo , Idoso , Animais , Glicemia , Teste de Tolerância a Glucose , Fatores de Troca do Nucleotídeo Guanina , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , Fosforilação , Receptor EphA3/genética , Receptor EphA3/metabolismo , Transdução de Sinais , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
Elife ; 82019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31577226

RESUMO

EphA/ephrin signaling regulates axon growth and guidance of neurons, but whether this process occurs also independently of ephrins is unclear. We show that presenilin-1 (PS1)/γ-secretase is required for axon growth in the developing mouse brain. PS1/γ-secretase mediates axon growth by inhibiting RhoA signaling and cleaving EphA3 independently of ligand to generate an intracellular domain (ICD) fragment that reverses axon defects in PS1/γ-secretase- and EphA3-deficient hippocampal neurons. Proteomic analysis revealed that EphA3 ICD binds to non-muscle myosin IIA (NMIIA) and increases its phosphorylation (Ser1943), which promotes NMIIA filament disassembly and cytoskeleton rearrangement. PS1/γ-secretase-deficient neurons show decreased phosphorylated NMIIA and NMIIA/actin colocalization. Moreover, pharmacological NMII inhibition reverses axon retraction in PS-deficient neurons suggesting that NMIIA mediates PS/EphA3-dependent axon elongation. In conclusion, PS/γ-secretase-dependent EphA3 cleavage mediates axon growth by regulating filament assembly through RhoA signaling and NMIIA, suggesting opposite roles of EphA3 on inhibiting (ligand-dependent) and promoting (receptor processing) axon growth in developing neurons.


Assuntos
Axônios/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Presenilina-1/metabolismo , Receptor EphA3/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo
14.
Biosci Rep ; 39(7)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31262977

RESUMO

Background: Endometriosis is a chronic fibrotic disease characterized by agonizing pelvic pain and low fertility, mainly affecting middle-aged women. The aim of the present study is to assess the potential effects of erythropoietin-producing hepatocellular carcinoma A3 (EPHA3) on endometriosis, with emphasis on the autophagy and apoptosis of macrophages via inhibition of the mammalian target of rapamycin (mTOR) signaling pathway.Methods: The mouse models of endometriosis were established followed by culturing the macrophages and macrophage transfection via the EPHA3 vector, siRNA EPHA3, and RAPA (an inhibitor of the mTOR signaling pathway). The expression of EPHA3, related factors in the mTOR signaling pathway, macrophage autophagy (autophagy-related gene 3 (Atg3), light chain 3-I (LC3-I), light chain 3-II (LC3-II) and Beclin1) and apoptosis (B-cell lymphoma-2 (bcl-2), bax and fas) were all detected and documented, respectively. The changes of autophagic lysosomes and the apoptosis of macrophages in each group following transfection were also inspected and detected.Results: The results of the in silico analysis ascertained EPHA3 to be a candidate gene of endometriosis. After successful modeling, the uterine tissues of endometriosis mice presented with a low expression of EPHA3 and activated mTOR signaling pathway. Overexpression of EPHA3 inhibited the activation of the mTOR signaling pathway, down-regulated bcl-2 expression, up-regulated the expression of Atg3, LC3-II/LC3-I, Beclin1, bax and fas, and also promoted the autophagy and apoptosis of macrophages in endometriosis mice.Conclusion: Altogether, EPHA3 could potentially promote the autophagy and apoptosis of macrophages in endometriosis via inhibition of the mTOR signaling pathway, highlighting the potential of EPHA3 as the target to treat endometriosis.


Assuntos
Apoptose , Morte Celular Autofágica , Endometriose/metabolismo , Macrófagos/metabolismo , Receptor EphA3/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Modelos Animais de Doenças , Endometriose/genética , Endometriose/patologia , Feminino , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Receptor EphA3/genética , Serina-Treonina Quinases TOR/genética
15.
J Clin Lab Anal ; 33(5): e22871, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30958616

RESUMO

BACKGROUND: This study aimed to preliminarily assess the relationship between erythropoietin-producing hepatocellular carcinoma receptor A3 (EphA3) and androgen receptor (AR) protein expression levels and prognosis in prostate cancer (PCa) to better understand the role of EphA3 in the prognosis and progression of PCa. MATERIALS: We investigated the expression of EphA3 and AR in human PCa by immunohistochemistry. RESULTS: EphA3 and AR were both significantly upregulated in PCa, with expression mainly localized to the nucleus. A high level of AR expression was found in 48.4% of 64 tumor samples, which was significantly more than in the adjacent tissue samples (15.6%) (P < 0.01). The percentage of samples expressing a high level of EphA3 was significantly greater in the PCa samples (54.7%) than in the adjacent tissue samples (20.3%) for the 64 tumors (P < 0.01). The high levels of EphA3 and AR expression in the PCa tissue samples were both correlated with the pathological stage, bladder and rectal invasion, distant metastasis, and preoperative PSA level (both P < 0.05). The survival time was significantly shorter in high levels of AR expression of patients. (P < 0.01). A high level of EphA3 in PCa patients suggests a poor prognosis (P < 0.05). Biochemical recurrence, distant metastasis, and the final scores of EphA3 and AR expression were significantly correlated with the prognosis of PCa (P < 0.05). CONCLUSIONS: Increased EphA3 expression is an independent prognostic factor for a poor outcome and decreased survival in PCa.


Assuntos
Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/cirurgia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Androgênicos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptor EphA3 , Estudos Retrospectivos
16.
Int J Oncol ; 54(2): 722-732, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30483759

RESUMO

Eph receptor tyrosine kinases are critical for cell­cell communication during normal and oncogenic development. Eph receptor A3 (EphA3) expression is associated with tumor promotion in certain types of cancer; however, it acts as a tumor suppressor in others. The expression levels of EphA3 and its effects on tumor progression in esophageal squamous cell carcinoma (ESCC) cell lines were determined using reverse transcription­quantitative polymerase chain reaction analysis and a Transwell invasion assay. The present study demonstrated that EphA3 expression was decreased in ESCC tissues and cell lines. Treatment with the DNA methylation inhibitor 5­aza­2'­deoxycytidine increased the mRNA expression levels of EphA3 in the ESCC cell lines KYSE510 and KYSE30. In addition, overexpression of EphA3 in KYSE450 and KYSE510 cells inhibited cell migration and invasion. EphA3 overexpression also decreased RhoA GTPase. Furthermore, EphA3 overexpression induced mesenchymal­epithelial transition, as demonstrated by epithelial­like morphological alterations, increased expression of epithelial proteins (E­cadherin and the tight junction protein 1 zonula occludens­1) and decreased expression of mesenchymal proteins (Vimentin, N­cadherin and Snail). Conversely, silencing EphA3 in KYSE410 cells triggered epithelial­mesenchymal transition, and promoted cell migration and invasion. These results suggested that EphA3 may serve a tumor­suppressor role in ESCC.


Assuntos
Transição Epitelial-Mesenquimal/genética , Carcinoma de Células Escamosas do Esôfago/genética , Receptores Proteína Tirosina Quinases/genética , Proteína rhoA de Ligação ao GTP/genética , Apoptose/genética , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Metilação de DNA/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Invasividade Neoplásica/genética , RNA Mensageiro/genética , Receptor EphA3
17.
Exp Eye Res ; 178: 46-60, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30237102

RESUMO

The Eph and ephrins are involved in the genesis of topographic ordered connections at the visual system. Previously we demonstrated that tectal EphA3 stimulates axon growth of nasal retinal ganglion cells (RGCs) toward the caudal tectum preventing them from branching in the rostral tectum. Now we investigated whether tectal EphA3 plays this role by modulating the axonal EphA4 forward signaling or throughout axonal ephrin-As reverse signaling. For this purpose we used cultures of nasal retinal explants and dissociated retinal neurons from chicken embryos. We treated them with clustered EphA3-Fc, Fc (control), PI-PLC (sheds ephrin-As) or KYL (inhibits ephrin-As-mediated EphA4 activation). We achieved in vitro and in vivo electroporations of chicken embryo retinas with wild type EphA4, Ki-EphA4 (kinase inactive dominant negative EphA4) or EGFP in pMES expression vector. We performed immunocytochemistry, immunoprecipitation and Western blot against Eph/ephrin-As system. Our results showed that: 1) shedding of ephrin-As and the inhibition of ephrin-A-mediated EphA4 activity increase axon length and decrease axonal interstitial filopodia density of nasal RGCs; and 2) a dominant negative form of EphA4 increases axon growth in vitro and induces nasal RGC axons to grow passing throughout their target area in the caudal tectum meanwhile overexpression of EphA4 produces the opposite effects. All together, these results demonstrate that ephrin-A-mediated EphA4 forward signaling decreases the level of axon growth and increases the density of axonal interstitial filopodia of nasal RGCs. Besides, our results showed that: 3) EphA3 ectodomain increases axon growth and decreases the density of axonal interstitial filopodia and branching in vitro and in vivo and 4) EphA3 ectodomain diminishes the ephrin-A2/EphA4 colocalization, and the EphA4 and ephexin1 phosphorylation. All together, these results show that the EphA3 ectodomain produces the opposite effects than the EphA4 forward signaling, by decreasing this signaling pathway throughout competing with EphA4 for ephrin-As binding. Furthermore, it is proposed that tectal EphA3 participates in the establishment of retinotectal mapping throughout this mechanism and that EphAs can regulate axon growth and branching by modulating other EphA receptors forward signaling.


Assuntos
Crescimento Neuronal/fisiologia , Receptor EphA3/farmacologia , Receptor EphA4/metabolismo , Retina/embriologia , Células Ganglionares da Retina/efeitos dos fármacos , Transdução de Sinais/fisiologia , Colículos Superiores/embriologia , Animais , Axônios/fisiologia , Western Blotting , Células Cultivadas , Embrião de Galinha , Galinhas , Eletroporação , Imuno-Histoquímica , Imunoprecipitação , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Colículos Superiores/metabolismo
18.
Dig Dis Sci ; 64(6): 1514-1522, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30560328

RESUMO

BACKGROUND: EphA3 is a member of Eph receptors, which is involved in tumorigenesis. The expression and clinical significance of EphA3 in colorectal cancer (CRC) have not been fully investigated. METHODS: Four colon cancer cell lines and a set of CRC tissues were examined for EphA3 expression. The methylation status of a CpG island within the EphA3 promoter, the presence of four somatic EPHA3 mutations, and EPHA3 gene copy number variations were also analyzed in colon cancer cell lines. RESULTS: EphA3 expression was lost in all colon cancer cell lines examined. EphA3 expression was lower in tumor tissues when compared with normal intestinal tissues (P < 0.001). A comparison of EphA3 immunohistochemical scores for tumor and matched normal intestinal tissues revealed that the protein was downregulated in 82/164 (50.0%), unchanged in 52/164 (31.7%), and upregulated in 30/164 (18.3%) cases of CRC. EphA3 expression was negatively associated with lymph node metastasis (P =0.014, rs=- 0.192) and TNM stage (P =0.001, rs=- 0.260). Downregulation of expression was more common in older patients (P =0.013, rs=0.193). Methylated promoter DNA was detected in all four colon cancer cell lines. Somatic mutations or EphA3 gene deletion was not detected. CONCLUSIONS: EphA3 was downregulated in the majority of CRC. Hypermethylation of a CpG island within the EPHA3 promoter provides a possible mechanism. Loss of EphA3 expression was associated with lymph node metastasis and TNM stage and may therefore prove useful as a predictor for tumor spread in CRC.


Assuntos
Neoplasias Colorretais/genética , Metilação de DNA , Receptores Proteína Tirosina Quinases/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ilhas de CpG , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Receptores Proteína Tirosina Quinases/metabolismo , Receptor EphA3
19.
Biochem Biophys Res Commun ; 508(3): 715-721, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528229

RESUMO

EphA3, a member of the Eph family of receptor tyrosine kinases, has been reported to be overexpressed in some human cancers including glioblastoma. Here, we found that expression of EphA3 is up-regulated in response to epidermal growth factor (EGF) stimulation and promotes formation of cell aggregates in suspension culture of glioblastoma cells. Suppression of EphA3 expression by short hairpin RNA-mediated knockdown or CRISPR/Cas9-mediated gene deletion inhibited EGF-induced promotion of cell aggregate formation, whereas overexpression of EphA3 promoted formation of cell aggregates in suspension culture. EGF-induced EphA3 expression and promotion of cell aggregate formation required Akt activity. Furthermore, N-cadherin, whose expression was regulated by EGF and EphA3, contributed to the formation of cell aggregates in suspension culture. These results suggest that the regulation of EphA3 expression plays a critical role in glioblastoma cell growth in non-adherent conditions.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Fator de Crescimento Epidérmico/farmacologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Receptores Proteína Tirosina Quinases/genética , Regulação para Cima/genética , Caderinas/metabolismo , Agregação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor EphA3 , Suspensões , Regulação para Cima/efeitos dos fármacos
20.
Drug Deliv ; 25(1): 1634-1641, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30176744

RESUMO

Glioblastoma is the most common malignant brain tumor. Efficient delivery of drugs targeting glioblastomas remains a challenge. Ephrin type-A receptor 3 (EPHA3) tyrosine kinase antibody-modified polylactide-co-glycolide (PLGA) nanoparticles (NPs) were developed to target glioblastoma via nose-to-brain delivery. Anti-EPHA3-modified, TBE-loaded NPs were prepared using an emulsion-solvent evaporation method, showed a sustained in vitro release profile up to 48 h and a mean particle size of 145.9 ± 8.7 nm. The cellular uptake of anti-EPHA3-modified NPs by C6 cells was significantly enhanced compared to that of nontargeting NPs (p < .01). In vivo imaging and distribution studies on the glioma-bearing rats showed that anti-EPHA3-modified NPs exhibited high fluorescence intensity in the brain and effectively accumulated to glioma tissues, indicating the targeting effect of anti-EPHA3. Glioma-bearing rats treated with anti-EPHA3-modified NPs resulted in significantly higher tumor cell apoptosis (p < .01) than that observed with other formulations and prolonged the median survival time of glioma-bearing rats to 26 days, which was 1.37-fold longer than that of PLGA NPs. The above results indicated that anti-EPHA3-modified NPs may potentially serve as a nose-to-brain drug carrier for the treatment of glioblastoma.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos , Glioblastoma/tratamento farmacológico , Nanopartículas , Poliglactina 910 , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antineoplásicos/química , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Glioblastoma/imunologia , Humanos , Masculino , Terapia de Alvo Molecular , Nanopartículas/química , Poliglactina 910/química , Ratos , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/imunologia , Receptor EphA3 , Temozolomida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...