Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.756
Filtrar
1.
Stem Cell Res Ther ; 15(1): 158, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824568

RESUMO

BACKGROUND: Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS: In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS: Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS: The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.


Assuntos
Tecido Adiposo , Quitosana , Células-Tronco Mesenquimais , Microesferas , Regeneração Nervosa , Ratos Sprague-Dawley , Quitosana/química , Regeneração Nervosa/fisiologia , Animais , Ratos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Nervo Isquiático/fisiologia , Porosidade , Alicerces Teciduais/química , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Proliferação de Células , Células Cultivadas
5.
Nat Commun ; 15(1): 4721, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830884

RESUMO

Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.


Assuntos
Regeneração Nervosa , Nervo Isquiático , Animais , Coelhos , Regeneração Nervosa/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/fisiologia , Nervo Facial/fisiologia , Nervos Periféricos/fisiologia , Masculino , Ratos , Silício/química , Ratos Sprague-Dawley , Estimulação Elétrica
6.
Biotechnol J ; 19(5): e2300734, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719571

RESUMO

Self-assembly of biological elements into biomimetic cargo carriers for targeting and delivery is a promising approach. However, it still holds practical challenges. We developed a functionalization approach of DNA origami (DO) nanostructures with neuronal growth factor (NGF) for manipulating neuronal systems. NGF bioactivity and its interactions with the neuronal system were demonstrated in vitro and in vivo models. The DO elements fabricated by molecular self-assembly have manipulated the surrounding environment through static spatially and temporally controlled presentation of ligands to the cell surface receptors. Our data showed effective bioactivity in differentiating PC12 cells in vitro. Furthermore, the DNA origami NGF (DON) affected the growth directionality and spatial capabilities of dorsal root ganglion neurons in culture by introducing a chemotaxis effect along a gradient of functionalized DO structures. Finally, we showed that these elements provide enhanced axonal regeneration in a rat sciatic nerve injury model in vivo. This study is a proof of principle for the functionality of DO in neuronal manipulation and regeneration. The approach proposed here, of an engineered platform formed out of programmable nanoscale elements constructed of DO, could be extended beyond the nervous system and revolutionize the fields of regenerative medicine, tissue engineering, and cell biology.


Assuntos
DNA , Gânglios Espinais , Fator de Crescimento Neural , Regeneração Nervosa , Animais , Ratos , Células PC12 , DNA/química , Gânglios Espinais/citologia , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Nanoestruturas/química , Neurônios , Nervo Isquiático , Alicerces Teciduais/química , Ratos Sprague-Dawley
7.
Cell Stem Cell ; 31(5): 585-586, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701752

RESUMO

Stem cell therapy has emerged as a promising area of scientific investigation, sparking considerable interest, especially in spinal cord injury (SCI). Sun et al.1 discover that the extracellular matrix (ECM) from the neonatal spinal cord transmits biochemical signals to endogenous axons, thus promoting axonal regeneration.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Animais , Recém-Nascido , Matriz Extracelular/metabolismo , Adulto , Regeneração Nervosa
8.
Invest Ophthalmol Vis Sci ; 65(5): 3, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691090

RESUMO

Purpose: Forty-hertz light flicker stimulation has been proven to reduce neurodegeneration, but its effect on optic nerve regeneration is unclear. This study explores the effect of 40-Hz light flicker in promoting optic nerve regeneration in zebrafish and investigates the underlying mechanisms. Methods: Wild-type and mpeg1:EGFP zebrafish were used to establish a model of optic nerve crush. Biocytin tracing and hematoxylin and eosin staining were employed to observe whether 40-Hz light flicker promotes regeneration of retinal ganglion cell axons and dendrites. Optomotor and optokinetic responses were evaluated to assess recovery of visual function. Immunofluorescence staining of mpeg1:EGFP zebrafish was performed to observe changes in microglia. Differentially expressed genes that promote optic nerve regeneration following 40-Hz light flicker stimulation were identified and validated through RNA-sequencing analysis and quantitative real-time PCR (qRT-PCR). Results: Zebrafish exhibited spontaneous optic nerve regeneration after optic nerve injury and restored visual function. We observed that 40-Hz light flicker significantly activated microglia following optic nerve injury and promoted regeneration of retinal ganglion cell axons and dendrites, as well as recovery of visual function. Transcriptomics and qRT-PCR analyses revealed that 40-Hz light flicker increased the expression of genes associated with neuronal plasticity, including bdnf, npas4a, fosab, fosb, egr4, and ier2a. Conclusions: To our knowledge, this study is the first to demonstrate that 40-Hz light flicker stimulation promotes regeneration of retinal ganglion cell axons and dendrites and recovery of visual function in zebrafish, which is associated with microglial activation and enhancement of neural plasticity.


Assuntos
Microglia , Regeneração Nervosa , Plasticidade Neuronal , Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Peixe-Zebra , Animais , Microglia/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia , Plasticidade Neuronal/fisiologia , Células Ganglionares da Retina/fisiologia , Estimulação Luminosa , Modelos Animais de Doenças , Nervo Óptico/fisiologia , Axônios/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
9.
Invest Ophthalmol Vis Sci ; 65(5): 8, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38700874

RESUMO

Purpose: In the present study, we aim to elucidate the underlying molecular mechanism of endoplasmic reticulum (ER) stress induced delayed corneal epithelial wound healing and nerve regeneration. Methods: Human limbal epithelial cells (HLECs) were treated with thapsigargin to induce excessive ER stress and then RNA sequencing was performed. Immunofluorescence, qPCR, Western blot, and ELISA were used to detect the expression changes of SLIT3 and its receptors ROBO1-4. The role of recombinant SLIT3 protein in corneal epithelial proliferation and migration were assessed by CCK8 and cell scratch assay, respectively. Thapsigargin, exogenous SLIT3 protein, SLIT3-specific siRNA, and ROBO4-specific siRNA was injected subconjunctivally to evaluate the effects of different intervention on corneal epithelial and nerve regeneration. In addition, Ki67 staining was performed to evaluate the proliferation ability of epithelial cells. Results: Thapsigargin suppressed normal corneal epithelial and nerve regeneration significantly. RNA sequencing genes related to development and regeneration revealed that thapsigargin induced ER stress significantly upregulated the expression of SLIT3 and ROBO4 in corneal epithelial cells. Exogenous SLIT3 inhibited normal corneal epithelial injury repair and nerve regeneration, and significantly suppressed the proliferation and migration ability of cultured mouse corneal epithelial cells. SLIT3 siRNA inhibited ROBO4 expression and promoted epithelial wound healing under thapsigargin treatment. ROBO4 siRNA significantly attenuated the delayed corneal epithelial injury repair and nerve regeneration induced by SLIT3 treatment or thapsigargin treatment. Conclusions: ER stress inhibits corneal epithelial injury repair and nerve regeneration may be related with the upregulation of SLIT3-ROBO4 pathway.


Assuntos
Proliferação de Células , Estresse do Retículo Endoplasmático , Epitélio Corneano , Regeneração Nervosa , Receptores Imunológicos , Proteínas Roundabout , Transdução de Sinais , Cicatrização , Animais , Humanos , Camundongos , Western Blotting , Movimento Celular/fisiologia , Células Cultivadas , Estresse do Retículo Endoplasmático/fisiologia , Ensaio de Imunoadsorção Enzimática , Epitélio Corneano/metabolismo , Limbo da Córnea/citologia , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/fisiologia , Cicatrização/fisiologia
10.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767361

RESUMO

Schwann cells (SCs) are myelinating cells of the peripheral nervous system, playing a crucial role in peripheral nerve regeneration. Nanosecond Pulse Electric Field (nsPEF) is an emerging method applicable in nerve electrical stimulation that has been demonstrated to be effective in stimulating cell proliferation and other biological processes. Aiming to assess whether SCs undergo significant changes under nsPEF and help explore the potential for new peripheral nerve regeneration methods, cultured RSC96 cells were subjected to nsPEF stimulation at 5 kV and 10 kV, followed by continued cultivation for 3-4 days. Subsequently, some relevant factors expressed by SCs were assessed to demonstrate the successful stimulation, including the specific marker protein, neurotrophic factor, transcription factor, and myelination regulator. The representative results showed that nsPEF significantly enhanced the proliferation and migration of SCs and the ability to synthesize relevant factors that contribute positively to the regeneration of peripheral nerves. Simultaneously, lower expression of GFAP indicated the benign prognosis of peripheral nerve injuries. All these outcomes show that nsPEF has great potential as an efficient treatment method for peripheral nerve injuries by stimulating SCs.


Assuntos
Regeneração Nervosa , Células de Schwann , Células de Schwann/citologia , Células de Schwann/fisiologia , Regeneração Nervosa/fisiologia , Animais , Ratos , Nervos Periféricos/fisiologia , Nervos Periféricos/citologia , Proliferação de Células/fisiologia , Estimulação Elétrica/métodos , Traumatismos dos Nervos Periféricos/terapia
11.
Handb Clin Neurol ; 201: 1-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38697733

RESUMO

Peripheral nerves are functional networks in the body. Disruption of these networks induces varied functional consequences depending on the types of nerves and organs affected. Despite the advances in microsurgical repair and understanding of nerve regeneration biology, restoring full functions after severe traumatic nerve injuries is still far from achieved. While a blunted growth response from axons and errors in axon guidance due to physical barriers may surface as the major hurdles in repairing nerves, critical additional cellular and molecular aspects challenge the orderly healing of injured nerves. Understanding the systematic reprogramming of injured nerves at the cellular and molecular levels, referred to here as "hallmarks of nerve injury regeneration," will offer better ideas. This chapter discusses the hallmarks of nerve injury and regeneration and critical points of failures in the natural healing process. Potential pharmacological and nonpharmacological intervention points for repairing nerves are also discussed.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Humanos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Nervos Periféricos , Axônios/fisiologia , Axônios/patologia
12.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735969

RESUMO

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Assuntos
Macrófagos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Poliuretanos , Ratos Sprague-Dawley , Células de Schwann , Animais , Regeneração Nervosa/efeitos dos fármacos , Poliuretanos/química , Ratos , Macrófagos/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Nanofibras/química , Nervo Isquiático/efeitos dos fármacos , Regeneração Tecidual Guiada/métodos , Masculino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Alicerces Teciduais/química , Camundongos , Células RAW 264.7
13.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 598-607, 2024 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-38752248

RESUMO

Objective: To investigate the feasibility of selenium-methylselenocysteine (SMC) to promote peripheral nerve regeneration and its mechanism of action. Methods: Rat Schwann cells RSC96 cells were randomly divided into 5 groups, which were group A (without any treatment, control group), group B (adding 100 µmol/L H 2O 2), group C (adding 100 µmol/L H 2O 2+100 µmol/L SMC), group D (adding 100 µmol/L H 2O 2+200 µmol/L SMC), group E (adding 100 µmol/L H 2O 2+400 µmol/L SMC); the effect of SMC on cell proliferation was detected by MTT method, and the level of oxidative stress was detected by immunofluorescence for free radicals [reactive oxygen species (ROS)] after determining the appropriate dose group. Thirty-six 4-week-old male Sprague Dawley rats were randomly divided into 3 groups, namely, the sham operation group (Sham group), the sciatic nerve injury group (PNI group), and the SMC treatment group (SMC group), with 12 rats in each group; the rats in the PNI group were fed with food and water normally after modelling operation, and the rats in the SMC group were added 0.75 mg/kg SMC to the drinking water every day. At 4 weeks after operation, the sciatic nerves of rats in each group were sampled for neuroelectrophysiological detection of highest potential of compound muscle action potential (CMAP). The levels of inflammatory factors [interleukin 17 (IL-17), IL-6, IL-10 and oxidative stress factors catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA)] were detected by ELISA assay. The luxol fast blue (LFB) staining was used to observe the myelin density, fluorescence intensity of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) was observed by immunofluorescence staining, and myelin morphology was observed by transmission electron microscopy with measurement of axon diameter. Western blot was used to detect the protein expressions of p38 mitogen-activated protein kinases (p38MAPK), phosphorylated p38MAPK (p-p38MAPK), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Results: MTT assay showed that the addition of SMC significantly promoted the proliferation of RSC96 cells, and the low concentration could achieve an effective effect, so the treatment method of group C was selected for the subsequent experiments; ROS immunofluorescence test showed that group B showed a significant increase in the intensity of ROS fluorescence compared with that of group A, and group C showed a significant decrease in the intensity of ROS fluorescence compared with that of group B ( P<0.05). Neuroelectrophysiological tests showed that the highest potential of CMAP in SMC group was significantly higher than that in PNI and Sham groups ( P<0.05). ELISA assay showed that the levels of IL-6, IL-17, and MDA in PNI group were significantly higher than those in Sham group, and the levels of IL-10, SOD, and CAT were significantly lower; the levels of IL-6, IL-17, and MDA in SMC group were significantly lower than those in PNI group, and the levels of IL-10, SOD, and CAT were significantly higher ( P<0.05). LFB staining and transmission electron microscopy showed that the myelin density and the diameter of axons in the SMC group were significantly higher than those of the PNI group and the Sham group ( P<0.05). Immunofluorescence staining showed that the fluorescence intensity of GFAP and MBP in the SMC group were significantly stronger than those in the PNI group and Sham group ( P<0.05). Western blot showed that the relative expressions of Nrf2 and HO-1 proteins in the SMC group were significantly higher than those in the PNI group and Sham group, and the ratio of p-p38MAPK/p38MAPK proteins was significantly higher in the PNI group than that in the SMC group and Sham group ( P<0.05). Conclusion: SMC may inhibit oxidative stress and inflammation after nerve injury by up-regulating the Nrf2/HO-1 pathway, and then inhibit the phosphorylation of p38MAPK pathway to promote the proliferation of Schwann cells, which ultimately promotes the formation of myelin sheaths and accelerates the regeneration of peripheral nerves.


Assuntos
Regeneração Nervosa , Estresse Oxidativo , Ratos Sprague-Dawley , Células de Schwann , Nervo Isquiático , Selênio , Selenocisteína , Animais , Regeneração Nervosa/efeitos dos fármacos , Ratos , Masculino , Selenocisteína/análogos & derivados , Selenocisteína/farmacologia , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Selênio/farmacologia , Proliferação de Células/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/metabolismo
14.
Elife ; 122024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742628

RESUMO

Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.


Assuntos
Traumatismos dos Nervos Periféricos , Animais , Camundongos , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Regeneração Nervosa/fisiologia , Neurônios Motores/fisiologia , Nociceptores/fisiologia , Nociceptores/metabolismo , Análise de Sequência de RNA , Mecanorreceptores/fisiologia , Mecanorreceptores/metabolismo , Axotomia , Masculino , Nervo Isquiático/lesões , Neurônios/fisiologia
15.
Nat Commun ; 15(1): 4400, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782898

RESUMO

Digestive Chagas disease (DCD) is an enteric neuropathy caused by Trypanosoma cruzi infection. There is a lack of evidence on the mechanism of pathogenesis and rationales for treatment. We used a female C3H/HeN mouse model that recapitulates key clinical manifestations to study how infection dynamics shape DCD pathology and the impact of treatment with the front-line, anti-parasitic drug benznidazole. Curative treatment 6 weeks post-infection resulted in sustained recovery of gastrointestinal transit function, whereas treatment failure led to infection relapse and gradual return of DCD symptoms. Neuro/immune gene expression patterns shifted from chronic inflammation to a tissue repair profile after cure, accompanied by increased cellular proliferation, glial cell marker expression and recovery of neuronal density in the myenteric plexus. Delaying treatment until 24 weeks post-infection led to partial reversal of DCD, suggesting the accumulation of permanent tissue damage over the course of chronic infection. Our study shows that murine DCD pathogenesis is sustained by chronic T. cruzi infection and is not an inevitable consequence of acute stage denervation. The risk of irreversible enteric neuromuscular tissue damage and dysfunction developing highlights the importance of prompt diagnosis and treatment. These findings support the concept of treating asymptomatic, T. cruzi-infected individuals with benznidazole to prevent DCD development.


Assuntos
Doença de Chagas , Modelos Animais de Doenças , Sistema Nervoso Entérico , Camundongos Endogâmicos C3H , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Feminino , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Camundongos , Sistema Nervoso Entérico/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos
16.
Sci Rep ; 14(1): 11946, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789574

RESUMO

Spinal cord injury (SCI) leads to motor and sensory impairment below the site of injury, thereby necessitating rehabilitation. An enriched environment (EE) increases social interaction and locomotor activity in a mouse model, similar to human rehabilitation. However, the impact of EE on presynaptic plasticity in gene expression levels remains unclear. Hence, this study aimed to investigate the therapeutic potential of EE in an SCI mouse model. Mice with spinal cord contusion were divided into two groups: those housed in standard cages (control) and those in EE conditions (EE). Each group was housed separately for either 2- or 8-weeks post-injury, after which RNA sequencing was performed and compared to a sham group (receiving only a dorsal laminectomy). The synaptic vesicle cycle (SVC) pathway and related genes showed significant downregulation after SCI at both time points. Subsequently, we investigated whether exposure to EE for 2- and 8-weeks post-SCI could modulate the SVC pathway and its related genes. Notably, exposure to EE for 8 weeks resulted in a marked reversal effect of SVC-related gene expression, along with stimulation of axon regeneration and mitigation of locomotor activity loss. Thus, prolonged exposure to EE increased presynaptic activity, fostering axon regeneration and functional improvement by modulating the SVC in the SCI mouse model. These findings suggest that EE exposure proves effective in inducing activity-dependent plasticity, offering a promising therapeutic approach akin to rehabilitation training in patients with SCI.


Assuntos
Modelos Animais de Doenças , Traumatismos da Medula Espinal , Vesículas Sinápticas , Animais , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Traumatismos da Medula Espinal/metabolismo , Camundongos , Vesículas Sinápticas/metabolismo , Locomoção , Feminino , Plasticidade Neuronal , Meio Ambiente , Recuperação de Função Fisiológica , Camundongos Endogâmicos C57BL , Regeneração Nervosa
17.
ACS Nano ; 18(20): 13333-13345, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717602

RESUMO

A persistent inflammatory response, intrinsic limitations in axonal regenerative capacity, and widespread presence of extrinsic axonal inhibitors impede the restoration of motor function after a spinal cord injury (SCI). A versatile treatment platform is urgently needed to address diverse clinical manifestations of SCI. Herein, we present a multifunctional nanoplatform with anisotropic bimodal mesopores for effective neural circuit reconstruction after SCI. The hierarchical nanoplatform features of a Janus structure consist of dual compartments of hydrophilic mesoporous silica (mSiO2) and hydrophobic periodic mesoporous organosilica (PMO), each possessing distinct pore sizes of 12 and 3 nm, respectively. Unlike traditional hierarchical mesoporous nanomaterials with dual-mesopores interlaced with each other, the two sets of mesopores in this Janus nanoplatform are spatially independent and possess completely distinct chemical properties. The Janus mesopores facilitate controllable codelivery of dual drugs with distinct properties: the hydrophilic macromolecular enoxaparin (ENO) and the hydrophobic small molecular paclitaxel (PTX). Anchoring with CeO2, the resulting mSiO2&PMO-CeO2-PTX&ENO nanoformulation not only effectively alleviates ROS-induced neuronal apoptosis but also enhances microtubule stability to promote intrinsic axonal regeneration and facilitates axonal extension by diminishing the inhibitory effect of extracellular chondroitin sulfate proteoglycans. We believe that this functional dual-mesoporous nanoplatform holds significant potential for combination therapy in treating severe multifaceted diseases.


Assuntos
Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Animais , Porosidade , Dióxido de Silício/química , Paclitaxel/farmacologia , Paclitaxel/química , Anisotropia , Regeneração Nervosa/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Apoptose/efeitos dos fármacos , Ratos , Nanoestruturas/química , Camundongos , Tamanho da Partícula , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia
18.
Neurosci Lett ; 833: 137832, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38796094

RESUMO

Axonal regeneration is restricted in adults and causes irreversible motor dysfunction following spinal cord injury (SCI). In contrast, neonates have prominent regenerative potential and can restore their neural function. Although the distinct cellular responses in neonates have been studied, how they contribute to neural recovery remains unclear. To assess whether the secreted molecules in neonatal SCI can enhance neural regeneration, we re-analyzed the previously performed single-nucleus RNA-seq (snRNA-seq) and focused on Asporin and Cd109, the highly expressed genes in the injured neonatal spinal cord. In the present study, we showed that both these molecules were expressed in the injured spinal cords of adults and neonates. We treated the cortical neurons with recombinant Asporin or CD109 to observe their direct effects on neurons in vitro. We demonstrated that these molecules enhance neurite outgrowth in neurons. However, these molecules did not enhance re-growth of severed axons. Our results suggest that Asporin and CD109 influence neurites at the lesion site, rather than promoting axon regeneration, to restore neural function in neonates after SCI.


Assuntos
Animais Recém-Nascidos , Axônios , Regeneração Nervosa , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Animais , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Células Cultivadas , Crescimento Neuronal/fisiologia , Medula Espinal/metabolismo , Antígenos CD/metabolismo , Neurônios/metabolismo , Ratos , Neuritos/metabolismo , Neuritos/efeitos dos fármacos , Feminino
19.
Biomed Pharmacother ; 175: 116645, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729050

RESUMO

Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Células de Schwann , Células de Schwann/fisiologia , Humanos , Animais , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Nervos Periféricos/fisiologia
20.
Neurosci Lett ; 833: 137813, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38723761

RESUMO

A significant public health burden is peripheral nerve damage (PNI), which is frequently brought on by trauma. Macrophages were essential to the effective regeneration of nerves and restoration of function. It is still not entirely understood how macrophages and Schwann cells interact after damage during remyelination. Here, we established an inflammatory model in bone marrow-derived macrophages (BMDMs) and a rat sciatic nerve damage model to investigate the possible relationship between lipopolysaccharides (LPS)-induced exosomes derived from Schwann cells (LPS SCs-Exos) and peripheral nerve repair. The pro-inflammatory macrophage was changed into a pro-regeneration macrophage by LPS SC-Exos. Notably, it was discovered that SC-Exos had a substantial enrichment of OTULIN. OTULIN was a key mediator in the regulatory effects of LPS SC-Exos by deubiquitinating ERBB2 and preventing its degradation. The local injection of SC-Exos into the nerve damage site led in a faster functional recovery, axon regeneration and remyelination, and an increased M2 macrophage polarization, whereas OTULIN knockdown reversed these effects in vivo. Our results indicate that LPS SC-Exos may offer a therapeutic avenue for peripheral nerve regeneration by promoting macrophage polarization toward an M2 phenotype through the shuttling of OTULIN and deubiquitination of ERBB2. SIGNIFICANCE STATEMENT: OTULIN protein from SC-Exos mediated the macrophages polarization and axonal growth in BMDMs through promoting ubiquitination of ERBB2 and triggering the degradation of ERBB2. The findings offered prospective therapeutic hints for PNI therapy approaches that target axonal regrowth.


Assuntos
Exossomos , Macrófagos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Ratos Sprague-Dawley , Células de Schwann , Animais , Células de Schwann/metabolismo , Exossomos/metabolismo , Macrófagos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Regeneração Nervosa/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Masculino , Ubiquitinação , Camundongos , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Camundongos Endogâmicos C57BL , Lipopolissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...