Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76.042
Filtrar
1.
Theranostics ; 14(10): 3945-3962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994035

RESUMO

Rationale: NLRP3 inflammasome is critical in the development and progression of many metabolic diseases driven by chronic inflammation, but its effect on the pathology of postmenopausal osteoporosis (PMOP) remains poorly understood. Methods: We here firstly examined the levels of NLRP3 inflammasome in PMOP patients by ELISA. Then we investigated the possible mechanisms underlying the effect of NLRP3 inflammasome on PMOP by RNA sequencing of osteoblasts treated with NLRP3 siRNA and qPCR. Lastly, we accessed the effect of decreased NLRP3 levels on ovariectomized (OVX) rats. To specifically deliver NLRP3 siRNA to osteoblasts, we constructed NLRP3 siRNA wrapping osteoblast-specific aptamer (CH6)-functionalized lipid nanoparticles (termed as CH6-LNPs-siNLRP3). Results: We found that the levels of NLRP3 inflammasome were significantly increased in patients with PMOP, and were negatively correlated with estradiol levels. NLRP3 knock-down influenced signal pathways including immune system process, interferon signal pathway. Notably, of the top ten up-regulated genes in NLRP3-reduced osteoblasts, nine genes (except Mx2) were enriched in immune system process, and five genes were related to interferon signal pathway. The in vitro results showed that CH6-LNPs-siNLRP3 was relatively uniform with a dimeter of 96.64 ± 16.83 nm and zeta potential of 38.37 ± 1.86 mV. CH6-LNPs-siNLRP3 did not show obvious cytotoxicity and selectively delivered siRNA to bone tissue. Moreover, CH6-LNPs-siNLRP3 stimulated osteoblast differentiation by activating ALP and enhancing osteoblast matrix mineralization. When administrated to OVX rats, CH6-LNPs-siNLRP3 promoted bone formation and bone mass, improved bone microarchitecture and mechanical properties by decreasing the levels of NLRP3, IL-1ß and IL-18 and increasing the levels of OCN and Runx2. Conclusion: NLRP3 inflammasome may be a new biomarker for PMOP diagnosis and plays a key role in the pathology of PMOP. CH6-LNPs-siNLRP3 has potential application for the treatment of PMOP.


Assuntos
Inflamassomos , Lipossomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , Osteoblastos , Osteoporose Pós-Menopausa , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Feminino , Humanos , Ratos , Inflamassomos/metabolismo , Nanopartículas/química , Osteoporose Pós-Menopausa/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ratos Sprague-Dawley , RNA Interferente Pequeno/administração & dosagem , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/administração & dosagem , Modelos Animais de Doenças , Pessoa de Meia-Idade , Ovariectomia
2.
Int J Biol Sci ; 20(9): 3638-3655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993562

RESUMO

Castration-resistant prostate cancer (CRPC) is the leading cause of prostate cancer (PCa)-related death in males, which occurs after the failure of androgen deprivation therapy (ADT). PIWI-interacting RNAs (piRNAs) are crucial regulators in many human cancers, but their expression patterns and roles in CRPC remain unknown. In this study, we performed small RNA sequencing to explore CRPC-associated piRNAs using 10 benign prostate tissues, and 9 paired hormone-sensitive PCa (HSPCa) and CRPC tissues from the same patients. PiRNA-4447944 (piR-4447944) was discovered to be highly expressed in CRPC group compared with HSPCa and benign groups. Functional analyses revealed that piR-4447944 overexpression endowed PCa cells with castration resistance ability in vitro and in vivo, whereas knockdown of piR-4447944 using anti-sense RNA suppressed the proliferation, migration and invasion of CRPC cells. Additionally, enforced piR-4447944 expression promoted in vitro migration and invasion of PCa cells, and reduced cell apoptosis. Mechanistically, piR-4447944 bound to PIWIL2 to form a piR-4447944/PIWIL2 complex and inhibited tumor suppressor NEFH through direct interaction at the post-transcriptional level. Collectively, our study indicates that piR-4447944 is essential for prostate tumor-propagating cells and mediates androgen-independent growth of PCa, which extends current understanding of piRNAs in cancer biology and provides a potential approach for CRPC treatment.


Assuntos
Proteínas Argonautas , Proliferação de Células , Neoplasias de Próstata Resistentes à Castração , RNA Interferente Pequeno , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Interferente Pequeno/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Camundongos , Apoptose , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , RNA de Interação com Piwi
3.
ASN Neuro ; 16(1): 2368382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024550

RESUMO

Ventromedial hypothalamic nucleus (VMN) growth hormone-releasing hormone (Ghrh) neurotransmission shapes counterregulatory hormone secretion. Dorsomedial VMN Ghrh neurons express the metabolic-sensitive transcription factor steroidogenic factor-1/NR5A1 (SF-1). In vivo SF-1 gene knockdown tools were used here to address the premise that in male rats, SF-1 may regulate basal and/or hypoglycemic patterns of Ghrh, co-transmitter biosynthetic enzyme, and estrogen receptor (ER) gene expression in these neurons. Single-cell multiplex qPCR analyses showed that SF-1 regulates basal profiles of mRNAs that encode Ghrh and protein markers for neurochemicals that suppress (γ-aminobutyric acid) or enhance (nitric oxide; glutamate) counterregulation. SF-1 siRNA pretreatment respectively exacerbated or blunted hypoglycemia-associated inhibition of glutamate decarboxylase67 (GAD67/GAD1) and -65 (GAD65/GAD2) transcripts. Hypoglycemia augmented or reduced nitric oxide synthase and glutaminase mRNAs, responses that were attenuated by SF-1 gene silencing. Ghrh and Ghrh receptor transcripts were correspondingly refractory to or increased by hypoglycemia, yet SF-1 knockdown decreased both gene profiles. Hypoglycemic inhibition of ER-alpha and G protein-coupled-ER gene expression was amplified by SF-1 siRNA pretreatment, whereas as ER-beta mRNA was amplified. SF-1 knockdown decreased (corticosterone) or elevated [glucagon, growth hormone (GH)] basal counterregulatory hormone profiles, but amplified hypoglycemic hypercorticosteronemia and -glucagonemia or prevented elevated GH release. Outcomes document SF-1 control of VMN Ghrh neuron counterregulatory neurotransmitter and ER gene transcription. SF-1 likely regulates Ghrh nerve cell receptivity to estradiol and release of distinctive neurochemicals during glucose homeostasis and systemic imbalance. VMN Ghrh neurons emerge as a likely substrate for SF-1 control of glucose counterregulation in the male rat.


Assuntos
Hormônio Liberador de Hormônio do Crescimento , Neurônios , Ratos Sprague-Dawley , Fator Esteroidogênico 1 , Núcleo Hipotalâmico Ventromedial , Animais , Masculino , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/genética , Núcleo Hipotalâmico Ventromedial/metabolismo , Fator Esteroidogênico 1/metabolismo , Fator Esteroidogênico 1/genética , Neurônios/metabolismo , Ratos , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Regulação da Expressão Gênica , Hipoglicemia/metabolismo , RNA Interferente Pequeno/farmacologia
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1048-1058, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977334

RESUMO

OBJECTIVE: To explore the mechanism by which soybean isoflavone (SI) reduces calcium overload induced by cerebral ischemia-reperfusion (I/R). METHODS: Forty-eight SD rats were randomized into 4 groups to receive sham operation, cerebral middle artery occlusion for 2 h followed by 24 h of reperfusion (I/R model group), or injection of adeno-associated virus carrying Frizzled-2 siRNA or empty viral vector into the lateral cerebral ventricle after modeling.Western blotting was used to examine Frizzled-2 knockdown efficiency and changes in protein expressions in the Wnt/Ca2+ signaling pathway.Calcium levels and pathological changes in the ischemic penumbra (IP) were measured using calcium chromogenic assay and HE staining, respectively.Another 72 SD randomly allocated for sham operation, I/R modeling, or soy isoflavones pretreatment before modeling were examined for regional cerebral blood flow using a Doppler flowmeter, and the cerebral infarct volume was assessed using TTC staining.Pathologies in the IP area were evaluated using HE and Nissl staining, and ROS level, Ca2+ level, cell apoptosis, and intracellular calcium concentration were analyzed using immunofluorescence assay or flow cytometry; the protein expressions of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP were detected with Western blotting and immunohistochemistry. RESULTS: In rats with cerebral I/R, Frizzled-2 knockdown significantly lowered calcium concentration (P < 0.001) and the expression levels of Wnt5a, Frizzled-2, and P-CaMK Ⅱ in the IP area.In soy isoflavones-pretreated rats, calcium concentration, ROS and MDA levels, cell apoptosis rate, cerebral infarct volume, and expression levels of Wnt/Ca2+ signaling pathway-related proteins were all significantly lower while SOD level was higher than those in rats in I/R model group. CONCLUSION: Soy isoflavones can mitigate calcium overload in rats with cerebral I/R by inhibiting the Wnt/Ca2+ signaling pathway.


Assuntos
Isquemia Encefálica , Cálcio , Glycine max , Isoflavonas , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Via de Sinalização Wnt , Animais , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Via de Sinalização Wnt/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Glycine max/química , Apoptose/efeitos dos fármacos , Masculino , Proteína Wnt-5a/metabolismo , RNA Interferente Pequeno/genética
5.
J Med Chem ; 67(14): 12428-12438, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38996002

RESUMO

Targeting Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) in macrophages using RNAi nanotechnology represents an innovative and promising strategy in the diagnosis and treatment of atherosclerosis. Nevertheless, it remains elusive because of the current challenges associated with the systemic delivery of siRNA nanoparticle (NP) to atheromatous plaques and the complexity of atherosclerotic plaques. Here, we demonstrate the potential of a thienothiadiazole-based near-infrared-II (NIR-II) organic aggregation-induced emission (AIE) platform encapsulated with the Camk2g siRNA to effectively target CaMKIIγ in macrophages for dynamic imaging and image-guided gene therapy of atherosclerosis. The nanoparticles effectively decreased CaMKIIγ expression and increased the expression of the efferocytosis receptor MerTK in plaque macrophages, leading to a reduction in the necrotic core area of the lesion in an aortic plaque model. Our theranostic approach highlights the substantial promise of near-infrared II (NIR-II) AIEgens for imaging and image-guided therapy of atherosclerosis.


Assuntos
Aterosclerose , Imagem Óptica , RNA Interferente Pequeno , Aterosclerose/diagnóstico por imagem , Aterosclerose/terapia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/uso terapêutico , Animais , Camundongos , Nanopartículas/química , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Tiadiazóis/química , Tiadiazóis/farmacologia , Raios Infravermelhos
6.
J Nanobiotechnology ; 22(1): 409, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992688

RESUMO

OBJECTIVE: This study aimed to investigate the critical role of MDSCs in CRC immune suppression, focusing on the CSF1R and JAK/STAT3 signaling axis. Additionally, it assessed the therapeutic efficacy of LNCs@CSF1R siRNA and anti-PD-1 in combination. METHODS: Single-cell transcriptome sequencing data from CRC and adjacent normal tissues identified MDSC-related differentially expressed genes. RNA-seq analysis comprehensively profiled MDSC gene expression in murine CRC tumors. LNCs@CSF1R siRNA nanocarriers effectively targeted and inhibited CSF1R. Flow cytometry quantified changes in MDSC surface markers post-CSF1R inhibition. RNA-seq and pathway enrichment analyses revealed the impact of CSF1R on MDSC metabolism and signaling. The effect of CSF1R inhibition on the JAK/STAT3 signaling axis was validated using Colivelin and metabolic assessments. Glucose and fatty acid uptake were measured via fluorescence-based flow cytometry. The efficacy of LNCs@CSF1R siRNA and anti-PD-1, alone and in combination, was evaluated in a murine CRC model with extensive tumor section analyses. RESULTS: CSF1R played a significant role in MDSC-mediated immune suppression. LNCs@CSF1R siRNA nanocarriers effectively targeted MDSCs and inhibited CSF1R. CSF1R regulated MDSC fatty acid metabolism and immune suppression through the JAK/STAT3 signaling axis. Inhibition of CSF1R reduced STAT3 activation and target gene expression, which was rescued by Colivelin. Combined treatment with LNCs@CSF1R siRNA and anti-PD-1 significantly slowed tumor growth and reduced MDSC abundance within CRC tumors. CONCLUSION: CSF1R via the JAK/STAT3 axis critically regulates MDSCs, particularly in fatty acid metabolism and immune suppression. Combined therapy with LNCs@CSF1R siRNA and anti-PD-1 enhances therapeutic efficacy in a murine CRC model, providing a strong foundation for future clinical applications.


Assuntos
Neoplasias Colorretais , Células Supressoras Mieloides , RNA Interferente Pequeno , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Fator de Transcrição STAT3 , Animais , Células Supressoras Mieloides/metabolismo , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Humanos , Transdução de Sinais/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Janus Quinases/metabolismo , Imunomodulação/efeitos dos fármacos , Receptor de Fator Estimulador de Colônias de Macrófagos
7.
Nano Lett ; 24(28): 8732-8740, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958407

RESUMO

Piwi-interacting RNAs (piRNAs) are small noncoding RNAs that repress transposable elements to maintain genome integrity. The canonical catalytic hairpin assembly (CHA) circuit relies on random collisions of free-diffused reactant probes, which substantially slow down reaction efficiency and kinetics. Herein, we demonstrate the construction of a spatial-confined self-stacking catalytic circuit for rapid and sensitive imaging of piRNA in living cells based on intramolecular and intermolecular hybridization-accelerated CHA. We rationally design a 3WJ probe that not only accelerates the reaction kinetics by increasing the local concentration of reactant probes but also eliminates background signal leakage caused by cross-entanglement of preassembled probes. This strategy achieves high sensitivity and good specificity with shortened assay time. It can quantify intracellular piRNA expression at a single-cell level, discriminate piRNA expression in tissues of breast cancer patients and healthy persons, and in situ image piRNA in living cells, offering a new approach for early diagnosis and postoperative monitoring.


Assuntos
RNA Interferente Pequeno , Humanos , RNA Interferente Pequeno/genética , Catálise , Hibridização de Ácido Nucleico , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Cinética , RNA de Interação com Piwi
8.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000202

RESUMO

The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.


Assuntos
Cisplatino , Células Ciliadas Auditivas , Microbolhas , Muramidase , NADPH Oxidase 4 , Ototoxicidade , Espécies Reativas de Oxigênio , Cisplatino/farmacologia , Animais , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Camundongos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/genética , Muramidase/genética , RNA Interferente Pequeno/genética , Ondas Ultrassônicas , Técnicas de Silenciamento de Genes , Linhagem Celular
9.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000204

RESUMO

Fear conditioning evokes a physiologic release of glucocorticoids that assists learning. As a cochaperone in the glucocorticoid receptor complex, FKBP51 modulates stress-induced glucocorticoid signaling and may influence conditioned fear responses. This study combines molecular and behavioral approaches to examine whether locally reducing FKBP51 expression in the ventral hippocampus is sufficient to affect fear-related behaviors. We hypothesized that reducing FKBP51 expression in the VH would increase glucocorticoid signaling to alter auditory fear conditioning. Adult male rats were injected with an adeno-associated virus (AAV) vector expressing short hairpin - RNAs (shRNA) targeting FKBP5 into the ventral hippocampus to reduce FKBP5 levels or a control AAV. Infusion of FKBP5-shRNA into the ventral hippocampus decreased auditory fear acquisition and recall. Although animals injected with FKBP5-shRNA showed less freezing during extinction recall, the difference was due to a reduced fear recall rather than improved extinction. Reducing ventral hippocampus FKBP51 did not affect exploratory behavior in either the open field test or the elevated zero maze test but did increase passive behavior in the forced swim test, suggesting that the reduction in auditory fear recall was not due to more active responses to acute stress. Furthermore, lower ventral hippocampus FKBP51 levels did not alter corticosterone release in response to restraint stress, suggesting that the reduced fear recall was not due to lower corticosterone release. Our findings suggest FKBP51 in the ventral hippocampus plays a selective role in modulating fear-learning processes and passive behavioral responses to acute stress rather than hypothalamic-pituitary-adrenal axis reactivity or exploratory responses.


Assuntos
Medo , Hipocampo , Proteínas de Ligação a Tacrolimo , Animais , Masculino , Medo/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Hipocampo/metabolismo , Ratos , Corticosterona/metabolismo , Corticosterona/sangue , Ratos Sprague-Dawley , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Receptores de Glucocorticoides/metabolismo , Extinção Psicológica/fisiologia
10.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000381

RESUMO

The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.


Assuntos
Células Mieloides , Neoplasias , RNA não Traduzido , Humanos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Células Mieloides/metabolismo , RNA não Traduzido/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Animais , Regulação Neoplásica da Expressão Gênica
11.
Cell Physiol Biochem ; 58(4): 292-310, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973197

RESUMO

BACKGROUND/AIMS: Tactile perception relies on mechanoreceptors and nerve fibers, including c-fibers, Aß-fibers and Aδ-fibers. Schwann cells (SCs) play a crucial role in supporting nerve fibers, with non-myelinating SCs enwrapping c-fibers and myelinating SCs ensheathing Aß and Aδ fibers. Recent research has unveiled new functions for cutaneous sensory SCs, highlighting the involvement of nociceptive SCs in pain perception and Meissner corpuscle SCs in tactile sensation. Furthermore, Piezo2, previously associated with Merkel cell tactile sensitivity, has been identified in SCs. The goal of this study was to investigate the channels implicated in SC mechanosensitivity and the release process of neurotrophic factor secretion. METHODS: Immortalized IFRS1 SCs and human primary SCs generated two distinct subtypes of SCs: undifferentiated and differentiated SCs. Quantitative PCR was employed to evaluate the expression of differentiation markers and mechanosensitive channels, including TRP channels (TRPV4, TRPM7 and TRPA1) and Piezo channels (Piezo1 and Piezo2). To validate the functionality of specific mechanosensitive channels, Ca2+ imaging and electronic cell sizing experiments were conducted under hypotonic conditions, and inhibitors and siRNAs were used. Protein expression was assessed by Western blotting and immunostaining. Additionally, secretome analysis was performed to evaluate the release of neurotrophic factors in response to hypotonic stimulation, with BDNF, a representative trophic factor, quantified using ELISA. RESULTS: Induction of differentiation increased Piezo2 mRNA expression levels both in IFRS1 and in human primary SCs. Both cell types were responsive to hypotonic solutions, with differentiated SCs displaying a more pronounced response. Gd3+ and FM1-43 effectively inhibited hypotonicity-induced Ca2+ transients in differentiated SCs, implicating Piezo2 channels. Conversely, inhibitors of Piezo1 and TRPM7 (Dooku1 and NS8593, respectively) had no discernible impact. Moreover, Piezo2 in differentiated SCs appeared to participate in regulatory volume decreases (RVD) after cell swelling induced by hypotonic stimulation. A Piezo2 deficiency correlated with reduced RVD and prolonged cell swelling, leading to heightened release of the neurotrophic factor BDNF by upregulating the function of endogenously expressed Ca2+-permeable TRPV4. CONCLUSION: Our study unveils the mechanosensitivity of SCs and implicates Piezo2 channels in the release of neurotrophic factors from SCs. These results suggest that Piezo2 may contribute to RVD, thereby maintaining cellular homeostasis, and may also serve as a negative regulator of neurotrophic factor release. These findings underscore the need for further investigation into the role of Piezo2 in SC function and neurotrophic regulation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Tamanho Celular , Canais Iônicos , Células de Schwann , Células de Schwann/metabolismo , Células de Schwann/citologia , Humanos , Canais Iônicos/metabolismo , Tamanho Celular/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , RNA Interferente Pequeno/metabolismo , Diferenciação Celular , Células Cultivadas , Interferência de RNA , Cálcio/metabolismo , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Mecanotransdução Celular
12.
J Nanobiotechnology ; 22(1): 434, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044233

RESUMO

Pulmonary Fibrosis (PF) is a fatal disease in the interstitial lung associated with high mortality, morbidity, and poor prognosis. Transforming growth factor-ß1 (TGF-ß1) is a fibroblast-activating protein that promotes fibrous diseases. Herein, an inhalable system was first developed using milk exosomes (M-Exos) encapsulating siRNA against TGF-ß1 (MsiTGF-ß1), and their therapeutic potential for bleomycin (BLM)-induced PF was investigated. M-siTGF-ß1 was introduced into the lungs of mice with PF through nebulization. The collagen penetration effect and lysosomal escape ability were verified in vitro. Inhaled MsiTGF-ß1 notably alleviated inflammatory infiltration, attenuated extracellular matrix (ECM) deposition, and increased the survival rate of PF mice by 4.7-fold. M-siTGF-ß1 protected lung tissue from BLM toxicity by efficiently delivering specific siRNA to the lungs, leading to TGF-ß1 mRNA silencing and epithelial mesenchymal transition pathway inhibition. Therefore, M-siTGF-ß1 offers a promising avenue for therapeutic intervention in fibrosis-related disorders.


Assuntos
Bleomicina , Colágeno , Transição Epitelial-Mesenquimal , Exossomos , Pulmão , Leite , Fibrose Pulmonar , RNA Interferente Pequeno , Fator de Crescimento Transformador beta1 , Animais , Exossomos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Camundongos , Colágeno/metabolismo , Bleomicina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Leite/química , Camundongos Endogâmicos C57BL , Humanos , Permeabilidade , Masculino , Nebulizadores e Vaporizadores
13.
Sci Rep ; 14(1): 15442, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965312

RESUMO

The human intestinal tract is colonized with microorganisms, which present a diverse array of immunological challenges. A number of antimicrobial mechanisms have evolved to cope with these challenges. A key defense mechanism is the expression of inducible antimicrobial peptides (AMPs), such as beta-defensins, which rapidly inactivate microorganisms. We currently have a limited knowledge of mechanisms regulating the inducible expression of AMP genes, especially factors from the host required in these regulatory mechanisms. To identify the host factors required for expression of the beta-defensin-2 gene (HBD2) in intestinal epithelial cells upon a bacterial challenge, we performed a RNAi screen using a siRNA library spanning the whole human genome. The screening was performed in duplicate to select the strongest 79 and 110 hit genes whose silencing promoted or inhibited HBD2 expression, respectively. A set of 57 hits selected among the two groups of genes was subjected to a counter-screening and a subset was subsequently validated for its impact onto HBD2 expression. Among the 57 confirmed hits, we brought out the TLR5-MYD88 signaling pathway, but above all new signaling proteins, epigenetic regulators and transcription factors so far unrevealed in the HBD2 regulatory circuits, like the GATA6 transcription factor involved in inflammatory bowel diseases. This study represents a significant step toward unveiling the key molecular requirements to promote AMP expression in human intestinal epithelial cells, and revealing new potential targets for the development of an innovative therapeutic strategy aiming at stimulating the host AMP expression, at the era of antimicrobial resistance.


Assuntos
Células Epiteliais , Mucosa Intestinal , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , beta-Defensinas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Transdução de Sinais , Regulação da Expressão Gênica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Interferência de RNA
14.
J Nanobiotechnology ; 22(1): 392, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965606

RESUMO

Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores da Transferrina , Animais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Receptores da Transferrina/metabolismo , Camundongos , Linhagem Celular Tumoral , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proliferação de Células/efeitos dos fármacos , Terapia Genética/métodos , RNA Interferente Pequeno/farmacologia , Camundongos Nus
15.
Cell Commun Signal ; 22(1): 368, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030571

RESUMO

BACKGROUND: Painful diabetic neuropathy (PDN) is closely linked to inflammation, which has been demonstrated to be associated with pyroptosis. Emerging evidence has implicated TANK-binding kinase 1 (TBK1) in various inflammatory diseases. However, it remains unknown whether activated TBK1 causes hyperalgesia via pyroptosis. METHODS: PDN mice model of type 1 or type 2 diabetic was induced by C57BL/6J or BKS-DB mice with Lepr gene mutation. For type 2 diabetes PDN model, TBK1-siRNA, Caspase-1 inhibitor Ac-YVAD-cmk or TBK1 inhibitor amlexanox (AMX) were delivered by intrathecal injection or intragastric administration. The pain threshold and plantar skin blood perfusion were evaluated through animal experiments. The assessments of spinal cord, dorsal root ganglion, sciatic nerve, plantar skin and serum included western blotting, immunofluorescence, ELISA, and transmission electron microscopy. RESULTS: In the PDN mouse model, we found that TBK1 was significantly activated in the spinal dorsal horn (SDH) and mainly located in microglia, and intrathecal injection of chemically modified TBK1-siRNA could improve hyperalgesia. Herein, we described the mechanism that TBK1 could activate the noncanonical nuclear factor κB (NF-κB) pathway, mediate the activation of NLRP3 inflammasome, trigger microglia pyroptosis, and ultimately induce PDN, which could be reversed following TBK1-siRNA injection. We also found that systemic administration of AMX, a TBK1 inhibitor, could effectively improve peripheral nerve injury. These results revealed the key role of TBK1 in PDN and that TBK1 inhibitor AMX could be a potential strategy for treating PDN. CONCLUSIONS: Our findings revealed a novel causal role of TBK1 in pathogenesis of PDN, which raises the possibility of applying amlexanox to selectively target TBK1 as a potential therapeutic strategy for PDN.


Assuntos
Neuropatias Diabéticas , Microglia , Proteínas Serina-Treonina Quinases , Piroptose , Animais , Masculino , Camundongos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Neuropatias Diabéticas/patologia , Modelos Animais de Doenças , Hiperalgesia/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Piroptose/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética
16.
J Extracell Vesicles ; 13(7): e12484, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041344

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterised by immune evasion that contribute to poor prognosis. Cancer-associated fibroblasts (CAFs) play a pivotal role in orchestrating the PDAC tumour microenvironment. We investigated the role of CAF-derived extracellular vesicle (EV)-packaged long non-coding RNAs (lncRNAs) in immune evasion and explored gene therapy using engineered EVs loading small interfering RNAs (siRNAs) as a potential therapeutic strategy. Our findings highlight the significance of EV-packaged lncRNA RP11-161H23.5 from CAF in promoting PDAC immune evasion by downregulating HLA-A expression, a key component of antigen presentation. Mechanistically, RP11-161H23.5 forms a complex with CNOT4, a subunit of the mRNA deadenylase CCR4-NOT complex, enhancing the degradation of HLA-A mRNA by shortening its poly(A) tail. This immune evasion mechanism compromises the anti-tumour immune response. To combat this, we propose an innovative approach utilising engineered EVs as natural and biocompatible nanocarriers for siRNA-based gene therapy and this strategy holds promise for enhancing the effectiveness of immunotherapy in PDAC. Overall, our study sheds light on the critical role of CAF-derived EV-packaged lncRNA RP11-161H23.5/CNOT4/HLA-A axis in PDAC immune evasion and presents a novel avenue for therapeutic intervention.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Vesículas Extracelulares , Antígenos HLA-A , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Antígenos HLA-A/metabolismo , Evasão da Resposta Imune , Regulação Neoplásica da Expressão Gênica , Regulação para Baixo , RNA Interferente Pequeno , Microambiente Tumoral/imunologia , Animais , Evasão Tumoral , Camundongos
17.
Med Oncol ; 41(8): 193, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955918

RESUMO

Preclinical and clinical research showed that immune checkpoint blockade provides beneficial effects for many patients with liver cancer. This study aimed to assess the effect of CTLA-4-specific siRNA on the proliferation, cell cycle, migration, and apoptosis of HePG2 cells. Transfection of siRNA was performed by electroporation. The viability of cells was determined through MTT assay. Flow cytometry was performed to investigate the cell cycle and apoptosis rate, and the wound-healing assay was used to determine HepG2 cells migration. The expression levels of CTLA-4, c-Myc, Ki-67, BCL-2, BAX, caspase-9 (CAS9), and MMP-2,9,13 were measured by qRT-PCR. Transfection of specific CTLA-4-siRNA significantly inhibited the expression of the CTLA-4 gene. Also, our results revealed that CTLA-4 silencing diminished the proliferation and migration as well as induced the apoptosis of HePG2 cells. CTLA-4-siRNA transfection induced the cell cycle arrest in G2 phase. Moreover, CTLA-4-siRNA transfection reduced the expression levels of c-Myc, Ki-67, BCL-2, MMP-2,9,13, and elevated the expression levels of BAX and caspase-9. Our results suggest that silencing CTLA-4 through specific siRNA may be a promising strategy for future therapeutic interventions for treating liver cancer.


Assuntos
Apoptose , Antígeno CTLA-4 , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Neoplasias Hepáticas , RNA Interferente Pequeno , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Células Hep G2 , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/antagonistas & inibidores , Movimento Celular/genética , RNA Interferente Pequeno/genética , Inativação Gênica
18.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2136-2149, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044580

RESUMO

African swine fever virus (ASFV), as a contagious viral pathogen, is responsible for the occurrence of African swine fever (ASF), a rapidly spreading and highly lethal disease. Since ASFV was introduced into China in 2018, it has been quickly spread to many provinces, which brought great challenges to the pig industry in China. Due to the limited knowledge about the pathogenesis of ASFV, neither vaccines nor antiviral drugs are available. We have found that ASFV infection can induce oxidative stress responses in cells, and DNA repair enzymes play a key role in this process. This study employed RNA interference, RT-qPCR, Western blotting, Hemadsorption (HAD), and flow cytometry to investigate the effects of the inhibitors of DNA repair enzymes OGG1 and MTH1 on ASFV replication and evaluated the anti-ASFV effects of the inhibitors. This study provides reference for the development of anti-viral drugs.


Assuntos
Vírus da Febre Suína Africana , DNA Glicosilases , Monoéster Fosfórico Hidrolases , Replicação Viral , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/efeitos dos fármacos , Animais , Replicação Viral/efeitos dos fármacos , Suínos , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Febre Suína Africana/virologia , Antivirais/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Inibidores Enzimáticos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células Vero
19.
Recent Pat Anticancer Drug Discov ; 19(4): 503-515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044710

RESUMO

BACKGROUND: Both apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) inhibition and melatonin suppress prostate cancer (PCa) growth. OBJECTIVE: This study evaluated the therapeutic efficiency of self-assembled and prostate-specific membrane antigen (PSMA)-targeted nanocarrier loading 125I radioactive particles and encapsulating siRNA targeting APE1 (siAPE1) and melatonin for PCa. METHODS: The linear polyarginine R12 polypeptide was prepared using Fmoc-Arg-Pbf-OH. The PSMA-targeted polymer was synthesized by conjugating azide-modified R12 peptide to PSMA monoclonal antibody (mAb). Before experiments, the PSMA-R12 nanocarrier was installed with melatonin and siAPE1, which were subsequently labeled by 125I radioactive particles. In vitro biocompatibility and cytotoxicity of nanocomposites were examined in LNCaP cells and in vivo biodistribution and pharmacokinetics were determined using PCa tumor-bearing mice. RESULTS: PSMA-R12 nanocarrier was ~120 nm in size and was increased to ~150 nm by melatonin encapsulation. PSMA-R12 nanoparticles had efficient loading capacities of siAPE1, melatonin, and 125I particles. The co-delivery of melatonin and siAPE1 by PSMA-R12-125I showed synergistic effects on suppressing LNCaP cell proliferation and Bcl-2 expression and promoting cell apoptosis and caspase-3 expression. Pharmacokinetics analysis showed that Mel@PSMA-R12-125I particles had high uptake activity in the liver, spleen, kidney, intestine, and tumor, and were accumulated in the tumor sites within the first 8 h p.i., but was rapidly cleared from all the tested organs at 24 h p.i. Administration of nanoparticles to PCa tumors in vivo showed that Mel@PSMA-R12- 125I/siAPE1 had high efficiency in suppressing PCa tumor growth. CONCLUSION: The PSMA-targeted nanocarrier encapsulating siAPE1 and melatonin is a promising therapeutic strategy for PCa and can provide a theoretical basis for patent applications.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Radioisótopos do Iodo , Melatonina , Nanopartículas , Neoplasias da Próstata , Masculino , Animais , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Radioisótopos do Iodo/administração & dosagem , Melatonina/farmacologia , Melatonina/administração & dosagem , Linhagem Celular Tumoral , Nanopartículas/química , Camundongos , Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutamato Carboxipeptidase II/metabolismo , Distribuição Tecidual , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia
20.
Proc Natl Acad Sci U S A ; 121(30): e2403460121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008666

RESUMO

Autonomous nanorobots represent an advanced tool for precision therapy to improve therapeutic efficacy. However, current nanorobotic designs primarily rely on inorganic materials with compromised biocompatibility and limited biological functions. Here, we introduce enzyme-powered bacterial outer membrane vesicle (OMV) nanorobots. The immobilized urease on the OMV membrane catalyzes the decomposition of bioavailable urea, generating effective propulsion for nanorobots. This OMV nanorobot preserves the unique features of OMVs, including intrinsic biocompatibility, immunogenicity, versatile surface bioengineering for desired biofunctionalities, capability of cargo loading and protection. We present OMV-based nanorobots designed for effective tumor therapy by leveraging the membrane properties of OMVs. These involve surface bioengineering of robotic body with cell-penetrating peptide for tumor targeting and penetration, which is further enhanced by active propulsion of nanorobots. Additionally, OMV nanorobots can effectively safeguard the loaded gene silencing tool, small interfering RNA (siRNA), from enzymatic degradation. Through systematic in vitro and in vivo studies using a rodent model, we demonstrate that these OMV nanorobots substantially enhanced siRNA delivery and immune stimulation, resulting in the utmost effectiveness in tumor suppression when juxtaposed with static groups, particularly evident in the orthotopic bladder tumor model. This OMV nanorobot opens an inspiring avenue to design advanced medical robots with expanded versatility and adaptability, broadening their operation scope in practical biomedical domains.


Assuntos
Membrana Externa Bacteriana , Animais , Humanos , Membrana Externa Bacteriana/metabolismo , Camundongos , Robótica/métodos , Urease/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA