Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61.438
Filtrar
1.
PeerJ ; 12: e17472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827280

RESUMO

Excessive aluminum (Al) in acidic soils is a primary factor that hinders plant growth. The objective of the present study was to investigate the effect and physiological mechanism of exogenous silicon (Si) in alleviating aluminum toxicity. Under hydroponic conditions, 4 mM Al significantly impeded the growth of white clover; however, pretreatments with 1 mM Si mitigated this inhibition, as evidenced by notable changes in growth indicators and physiological parameters. Exogenous silicon notably increased both shoot and root length of white clover and significantly decreased electrolyte leakage (EL) and malondialdehyde (MDA) content compared to aluminum treatments. This positive effect was particularly evident in the roots. Further analysis involving hematoxylin staining, scanning electron microscopy (SEM), and examination of organic acids (OAs) demonstrated that silicon relieved the accumulation of bioactive aluminum and ameliorated damage to root tissues in aluminum-stressed plants. Additionally, energy-dispersive X-ray (EDX) analysis revealed that additional silicon was primarily distributed in the root epidermal and cortical layers, effectively reducing the transport of aluminum and maintaining the balance of exchangeable cations absorption. These findings suggest that gradual silicon deposition in root tissues effectively prevents the absorption of biologically active aluminum, thereby reducing the risk of mineral nutrient deficiencies induced by aluminum stress, promoting organic acids exudation, and compartmentalizing aluminum in the outer layer of root tissues. This mechanism helps white clover alleviate the damage caused by aluminum toxicity.


Assuntos
Alumínio , Raízes de Plantas , Silício , Trifolium , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Silício/farmacologia , Alumínio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Microscopia Eletrônica de Varredura , Malondialdeído/metabolismo
2.
Environ Microbiol ; 26(6): e16662, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840258

RESUMO

Our study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots. Some ectomycorrhizal species, typically found on mature spruces, were more prevalent on saplings from slow-growing spruces. The ericoid mycorrhizal fungus, Hyaloscypha hepaticola, showed a stronger association with saplings from fast-growing spruces. Moreover, saplings from slow-growing spruces had a greater number of Ascomycete taxa and free-living saprotrophic fungi. Aboveground sapling stems displayed some phenotypic variation; saplings from fast-growing phenotypes had longer branches but fewer whorls in their stems compared to those from the slow-growing group. In conclusion, the observed root-associated fungi and phenotypic characteristics in young Norway spruces may play a role in their long-term growth rate. This suggests that the early interactions between spruces and fungi could potentially influence their growth trajectory.


Assuntos
Micorrizas , Picea , Raízes de Plantas , Picea/microbiologia , Picea/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Noruega , Simbiose , Fungos/genética , Fungos/classificação , Fungos/crescimento & desenvolvimento , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento
3.
Plant Cell Rep ; 43(7): 163, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842544

RESUMO

KEY MESSAGE: Calcium polypeptide plays a key role during cadmium stress responses in rice, which is involved in increasing peroxidase activity, modulating pectin methylesterase activity, and regulating cell wall by reducing malondialdehyde content. Cadmium (Cd) contamination threatens agriculture and human health globally, emphasizing the need for sustainable methods to reduce cadmium toxicity in crops. Calcium polypeptide (CaP) is a highly water-soluble small molecular peptide acknowledged for its potential as an organic fertilizer in promoting plant growth. However, it is still unknown whether CaP has effects on mitigating Cd toxicity. Here, we investigated the effect of CaP application on the ability to tolerate toxic Cd in rice. We evaluated the impact of CaP on rice seedlings under varying Cd stress conditions and investigated the effect mechanism of CaP mitigating Cd toxicity by Fourier transform infrared spectroscopy (FTIR), fluorescent probe dye, immunofluorescent labeling, and biochemical analysis. We found a notable alleviation of Cd toxicity by reduced malondialdehyde content and increased peroxidase activity. In addition, our findings reveal that CaP induces structural alterations in the root cell wall by modulating pectin methylesterase activity. Altogether, our results confirm that CaP not only promoted biomass accumulation but also reduced Cd concentration in rice. This study contributes valuable insights to sustainable strategies for addressing Cd contamination in agricultural ecosystems.


Assuntos
Cádmio , Malondialdeído , Oryza , Estresse Oxidativo , Pectinas , Oryza/efeitos dos fármacos , Oryza/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pectinas/metabolismo , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Peptídeos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
4.
BMC Plant Biol ; 24(1): 520, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853268

RESUMO

BACKGROUND: One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS: The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS: Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS: This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.


Assuntos
Acetatos , Ciclopentanos , Ficus , Oxilipinas , Fenóis , Raízes de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Fenóis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Antioxidantes/metabolismo , Basidiomycota , Reguladores de Crescimento de Plantas/metabolismo , Agrobacterium
5.
Sci Rep ; 14(1): 13154, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849444

RESUMO

Nutrient limitations play a key regulatory role in plant growth, thereby affecting ecosystem productivity and carbon uptake. Experimental observations identifying the most limiting nutrients are lacking, particularly in Afrotropical forests. We conducted an ecosystem-scale, full factorial nitrogen (N)-phosphorus (P)-potassium (K) addition experiment consisting 32 40 × 40 m plots (eight treatments × four replicates) in Uganda to investigate which (if any) nutrient limits fine root growth. After two years of observations, added N rapidly decreased fine root biomass by up to 36% in the first and second years of the experiment. Added K decreased fine root biomass by 27% and fine root production by 30% in the second year. These rapid reductions in fine root growth highlight a scaled-back carbon investment in the costly maintenance of large fine root network as N and K limitations become alleviated. No fine root growth response to P addition was observed. Fine root turnover rate was not significantly affected by nutrient additions but tended to be higher in N added than non-N added treatments. These results suggest that N and K availability may restrict the ecosystem's capacity for CO2 assimilation, with implications for ecosystem productivity and resilience to climate change.


Assuntos
Florestas , Nitrogênio , Raízes de Plantas , Potássio , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo , Potássio/metabolismo , Biomassa , Uganda , Fósforo/metabolismo , Ecossistema , Clima Tropical , Dióxido de Carbono/metabolismo
6.
Sci Rep ; 14(1): 13091, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849601

RESUMO

The aim of current study was to prepared zinc oxide nanofertilzers by ecofriendly friendly, economically feasible, free of chemical contamination and safe for biological use. The study focused on crude extract of Withania coagulans as reducing agent for the green synthesis of ZnO nano-particles. Biosynthesized ZnO NPs were characterized by UV-Vis spectroscopy, XRD, FTIR and GC-MS analysis. However, zinc oxide as green Nano fertilizer was used to analyze responses induced by different doses of ZnO NPs [0, 25, 50,100, 200 mg/l and Zn acetate (100 mg/l)] in Triticum aestivum (wheat). The stimulatory and inhibitory effects of foliar application of ZnO NPs were studied on wheat (Triticum aestivum) with aspect of biomass accumulation, morphological attributes, biochemical parameters and anatomical modifications. Wheat plant showed significant (p < 0.01) enhancement of growth parameters upon exposure to ZnO NPs at specific concentrations. In addition, wheat plant showed significant increase in biochemical attributes, chlorophyll content, carotenoids, carbohydrate and protein contents. Antioxidant enzyme (POD, SOD, CAT) and total flavonoid content also confirmed nurturing impact on wheat plant. Increased stem, leaf and root anatomical parameters, all showed ZnO NPs mitigating capacity when applied to wheat. According to the current research, ZnO NPs application on wheat might be used to increase growth, yield, and Zn biofortification in wheat plants.


Assuntos
Fertilizantes , Oxirredução , Triticum , Óxido de Zinco , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Nanopartículas Metálicas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
7.
PeerJ ; 12: e17465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854802

RESUMO

Salt stress is one of the significant abiotic stress factors that exert harmful effects on plant growth and yield. In this study, five cultivars of mung bean (Vigna radiata L.) were treated with different concentrations of NaCl and also inoculated with a salt-tolerant bacterial strain to assess their growth and yield. The bacterial strain was isolated from the saline soil of Sahiwal District, Punjab, Pakistan and identified as Bacillus pseudomycoides. Plant growth was monitored at 15-days interval and finally harvested after 120 days at seed set. Both sodium and potassium uptake in above and below-ground parts were assessed using a flame photometer. Fresh and dry mass, number of pods, seeds per plant, weight of seeds per plant and weight of 100 seeds reduced significantly as the concentration of NaCl increased from 3 to 15 dSm-1. There was a significant reduction in the growth and yield of plants exposed to NaCl stress without bacterial inoculum compared to the plants with bacterial inoculum. The latter plants showed a significant increase in the studied parameters. It was found that the cultivar Inqelab mung showed the least reduction in growth and yield traits among the studied cultivars, while Ramzan mung showed the maximum reduction. Among all the cultivars, maximum Na+ uptake occurred in roots, while the least uptake was observed in seeds. The study concludes that NaCl stress significantly reduces the growth and yield of mung bean cultivars, but Bacillus pseudomycoides inoculum alleviates salt stress. These findings will be helpful to cultivate the selected cultivars in soils with varying concentrations of NaCl.


Assuntos
Bacillus , Cloreto de Sódio , Vigna , Bacillus/efeitos dos fármacos , Vigna/microbiologia , Vigna/efeitos dos fármacos , Vigna/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Estresse Salino , Potássio/metabolismo , Paquistão , Microbiologia do Solo , Sódio/metabolismo , Sementes/microbiologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Tolerância ao Sal
8.
Planta ; 260(1): 24, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858226

RESUMO

MAIN CONCLUSION: The resurrection plant Boea hygrometrica selectively recruits and assembles drought-specific microbial communities across the plant-soil compartments, which may benefit plant growth and fitness under extreme drought conditions. Plant-associated microbes are essential for facilitating plant growth and fitness under drought stress. The resurrection plant Boea hygrometrica in natural habitats with seasonal rainfall can survive rapid desiccation, yet their interaction with microbiomes under drought conditions remains unexplored. This study examined the bacterial and fungal microbiome structure and drought response across plant-soil compartments of B. hygrometrica by high-throughput amplicon sequencing of 16S rRNA gene and internal transcribed spacer. Our results demonstrated that the diversity, composition, and functional profile of the microbial community varied considerably across the plant-soil compartments and were strongly affected by drought stress. Bacterial and fungal diversity was significantly reduced from soil to endosphere and belowground to aboveground compartments. The compartment-specific enrichment of the dominant bacteria phylum Cyanobacteriota and genus Methylorubrum in leaf endosphere, genera Pseudonocardia in rhizosphere soil and Actinoplanes in root endosphere, and fungal phylum Ascomycota in the aboveground compartments and genera Knufia in root endosphere and Cladosporium in leaf endosphere composed part of the core microbiota with corresponding enrichment of beneficial functions for plant growth and fitness. Moreover, the recruitment of dominant microbial genera Sphingosinicella and Plectosphaerella, Ceratobasidiaceae mycorrhizal fungi, and numerous plant growth-promoting bacteria involving nutrient supply and auxin regulation was observed in desiccated B. hygrometrica plants. Our results suggest that the stable assembled drought-specific microbial community of B. hygrometrica may contribute to plant survival under extreme environments and provide valuable microbial resources for the microbe-mediated drought tolerance enhancement in crops.


Assuntos
Secas , Microbiota , Microbiologia do Solo , Microbiota/genética , Estresse Fisiológico , Bactérias/genética , Bactérias/classificação , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , RNA Ribossômico 16S/genética , Fungos/fisiologia , Fungos/genética , Rizosfera , Brassicaceae/microbiologia , Brassicaceae/genética , Brassicaceae/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/genética
9.
BMC Microbiol ; 24(1): 195, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849736

RESUMO

BACKGROUND: Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS: The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS: The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.


Assuntos
Biodiversidade , Endófitos , Fungos , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Raízes de Plantas/microbiologia , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Filogenia , Micobioma
10.
BMC Biotechnol ; 24(1): 39, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849803

RESUMO

BACKGROUND: Melia azedarach is known as a medicinal plant that has wide biological activities such as analgesic, antibacterial, and antifungal effects and is used to treat a wide range of diseases such as diarrhea, malaria, and various skin diseases. However, optimizing the extraction of valuable secondary metabolites of M. azedarach using alternative extraction methods has not been investigated. This research aims to develop an effective, fast, and environmentally friendly extraction method using Ultrasound-assisted extraction, methanol and temperature to optimize the extraction of two secondary metabolites, lupeol and stigmasterol, from young roots of M. azedarach using the response surface methodology. METHODS: Box-behnken design was applied to optimize different factors (solvent, temperature, and ultrasonication time). The amounts of lupeol and stigmasterol in the root of M. azedarach were detected by the HPLC-DAD. The required time for the analysis of each sample by the HPLC-DAD system was considered to be 8 min. RESULTS: The results indicated that the highest amount of lupeol (7.82 mg/g DW) and stigmasterol (6.76 mg/g DW) was obtained using 50% methanol at 45 °C and ultrasonication for 30 min, and 50% methanol in 35 °C, and ultrasonication for 30 min, respectively. Using the response surface methodology, the predicted conditions for lupeol and stigmasterol from root of M. azedarach were as follows; lupeol: 100% methanol, temperature 45 °C and ultrasonication time 40 min (14.540 mg/g DW) and stigmasterol 43.75% methanol, temperature 34.4 °C and ultrasonication time 25.3 min (5.832 mg/g DW). CONCLUSIONS: The results showed that the amount of secondary metabolites lupeol and stigmasterol in the root of M. azedarach could be improved by optimizing the extraction process utilizing response surface methodology.


Assuntos
Melia azedarach , Triterpenos Pentacíclicos , Estigmasterol , Triterpenos Pentacíclicos/metabolismo , Estigmasterol/metabolismo , Estigmasterol/isolamento & purificação , Estigmasterol/química , Melia azedarach/química , Cromatografia Líquida de Alta Pressão , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Extratos Vegetais/química , Temperatura , Solventes/química , Lupanos
11.
Curr Microbiol ; 81(7): 218, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856763

RESUMO

Atractylodes macrocephala Koidz (AMK) is a perennial herb from the plant family Asteraceae (formerly Compositae). This herb is mainly distributed in mountainous wetlands in Zhejiang, Sichuan, Yunnan, and Hunan provinces of China. Its medicinal production and quality, however, are severely impacted by root rot disease. In our previous study, endophytic bacterium designated AM201 exerted a high biocontrol effect on the root rot disease of AMK. However, the molecular mechanisms underlying this effect remain unclear. In this study, the identity of strain AM201 as Rhodococcus sp. was determined through analysis of its morphology, physiological and biochemical characteristics, as well as 16S rDNA sequencing. Subsequently, we performed transcriptome sequencing and bioinformatics analysis to compare and analyze the transcriptome profiles of root tissues from two groups: AM201 (AMK seedlings inoculated with Fusarium solani [FS] and AM201) and FS (AMK seedlings inoculated with FS alone). We also conducted morphological, physiological, biochemical, and molecular identification analyses for the AM201 strain. We obtained 1,560 differentially expressed genes, including 187 upregulated genes and 1,373 downregulated genes. We screened six key genes (GOLS2, CIPK25, ABI2, egID, PG1, and pgxB) involved in the resistance of AM201 against AMK root rot disease. These genes play a critical role in reactive oxygen species (ROS) clearance, Ca2+ signal transduction, abscisic acid signal inhibition, plant root growth, and plant cell wall defense. The strain AM201 was identified as Rhodococcus sp. based on its morphological characteristics, physiological and biochemical properties, and 16S rDNA sequencing results. The findings of this study could enable to prevent and control root rot disease in AMK and could offer theoretical guidance for the agricultural production of other medicinal herbs.


Assuntos
Atractylodes , Endófitos , Perfilação da Expressão Gênica , Doenças das Plantas , Raízes de Plantas , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Rhodococcus/fisiologia , Atractylodes/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Endófitos/genética , Endófitos/metabolismo , Endófitos/classificação , Endófitos/fisiologia , Endófitos/isolamento & purificação , Transcriptoma , Fusarium/genética , Fusarium/fisiologia , China , RNA Ribossômico 16S/genética
12.
Int J Nanomedicine ; 19: 4907-4921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828197

RESUMO

Purpose: Pueraria lobata (P. lobata), a dual-purpose food and medicine, displays limited efficacy in alcohol detoxification and liver protection, with previous research primarily focused on puerarin in its dried roots. In this study, we investigated the potential effects and mechanisms of fresh P. lobata root-derived exosome-like nanovesicles (P-ELNs) for mitigating alcoholic intoxication, promoting alcohol metabolism effects and protecting the liver in C57BL/6J mice. Methods: We isolated P-ELNs from fresh P. lobata root using differential centrifugation and characterized them via transmission electron microscopy, nanoscale particle sizing, ζ potential analysis, and biochemical assays. In Acute Alcoholism (AAI) mice pre-treated with P-ELNs, we evaluated their effects on the timing and duration of the loss of the righting reflex (LORR), liver alcohol metabolism enzymes activity, liver and serum alcohol content, and ferroptosis-related markers. Results: P-ELNs, enriched in proteins, lipids, and small RNAs, exhibited an ideal size (150.7 ± 82.8 nm) and negative surface charge (-31 mV). Pre-treatment with 10 mg/(kg.bw) P-ELNs in both male and female mice significantly prolonged ebriety time, shortened sobriety time, enhanced acetaldehyde dehydrogenase (ALDH) activity while concurrently inhibited alcohol dehydrogenase (ADH) activity, and reduced alcohol content in the liver and serum. Notably, P-ELNs demonstrated more efficacy compared to P-ELNs supernatant fluid (abundant puerarin content), suggesting alternative active components beyond puerarin. Additionally, P-ELNs prevented ferroptosis by inhibiting the reduction of glutathione peroxidase 4 (GPX4) and reduced glutathione (GSH), and suppressing acyl-CoA synthetase long-chain family member 4 (ACSL4) elevation, thereby mitigating pathological liver lipid accumulation. Conclusion: P-ELNs exhibit distinct exosomal characteristics and effectively alleviate alcoholic intoxication, improve alcohol metabolism, suppress ferroptosis, and protect the liver from alcoholic injury. Consequently, P-ELNs hold promise as a therapeutic agent for detoxification, sobriety promotion, and prevention of alcoholic liver injury.


Assuntos
Intoxicação Alcoólica , Exossomos , Fígado , Camundongos Endogâmicos C57BL , Raízes de Plantas , Pueraria , Animais , Pueraria/química , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Exossomos/química , Camundongos , Masculino , Intoxicação Alcoólica/tratamento farmacológico , Raízes de Plantas/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Etanol/química , Etanol/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Alcoolismo/tratamento farmacológico , Isoflavonas
13.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831110

RESUMO

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Assuntos
Bacillus subtilis , Endófitos , Raízes de Plantas , Rosmarinus , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/metabolismo , Endófitos/isolamento & purificação , Endófitos/metabolismo , Endófitos/genética , Endófitos/classificação , Rosmarinus/química , Rosmarinus/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Fusarium/metabolismo , Microbiologia do Solo , Desenvolvimento Vegetal , Germinação , Ácidos Indolacéticos/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/efeitos dos fármacos , Fixação de Nitrogênio , Fosfatos/metabolismo
14.
Sci Rep ; 14(1): 12907, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839814

RESUMO

Flatbed scanners are commonly used for root analysis, but typical manual segmentation methods are time-consuming and prone to errors, especially in large-scale, multi-plant studies. Furthermore, the complex nature of root structures combined with noisy backgrounds in images complicates automated analysis. Addressing these challenges, this article introduces RhizoNet, a deep learning-based workflow to semantically segment plant root scans. Utilizing a sophisticated Residual U-Net architecture, RhizoNet enhances prediction accuracy and employs a convex hull operation for delineation of the primary root component. Its main objective is to accurately segment root biomass and monitor its growth over time. RhizoNet processes color scans of plants grown in a hydroponic system known as EcoFAB, subjected to specific nutritional treatments. The root detection model using RhizoNet demonstrates strong generalization in the validation tests of all experiments despite variable treatments. The main contributions are the standardization of root segmentation and phenotyping, systematic and accelerated analysis of thousands of images, significantly aiding in the precise assessment of root growth dynamics under varying plant conditions, and offering a path toward self-driving labs.


Assuntos
Biomassa , Raízes de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo
15.
PLoS One ; 19(6): e0304503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843246

RESUMO

Drought stress is a prominent abiotic factor that adversely influences the growth and development of Bupleurum chinense during its seedling stage, negatively impacting biomass and secondary metabolite production, thus affecting yield and quality. To investigate the molecular mechanism underlying the response of B. chinense seedlings under drought stress, this study employed comprehensive physiological, transcriptomic, and metabolomic analyses. The results revealed that under drought stress, the root soluble sugar and free proline content in B. chinense seedlings significantly increased, while the activities of SOD, POD, and CAT increased in the leaves. These findings indicate the presence of distinct response mechanisms in B. chinense to cope with drought stress. Integrated analysis further identified significant correlations between genes and metabolites related to amino acid biosynthesis in the leaves, as well as genes and metabolites associated with acetaldehyde and dicarboxylic acid metabolism. In the roots, genes and metabolites related to plant hormone signaling and the tricarboxylic acid (TCA) cycle showed significant correlations. These findings provide vital views into the molecular-level response mechanisms of B. chinense under drought stress. Moreover, this study establishes the groundwork for identifying drought-tolerant genes and breeding drought-resistant varieties, which could improve the drought tolerance of medicinal plants and have broader implications for agriculture and crop production in water-scarce areas.


Assuntos
Bupleurum , Secas , Regulação da Expressão Gênica de Plantas , Metabolômica , Plântula , Estresse Fisiológico , Bupleurum/genética , Bupleurum/metabolismo , Plântula/metabolismo , Plântula/genética , Estresse Fisiológico/genética , Transcriptoma , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Perfilação da Expressão Gênica , Metaboloma
16.
PLoS One ; 19(6): e0302506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843263

RESUMO

We present the chromosome-scale genome assembly of the allopolyploid root-knot nematode Meloidogyne javanica. We show that the M. javanica genome is predominantly allotetraploid, comprising two subgenomes, A and B, that most likely originated from hybridisation of two ancestral parental species. The assembly was annotated using full-length non-chimeric transcripts, comparison to reference databases, and ab initio prediction techniques, and the subgenomes were phased using ancestral k-mer spectral analysis. Subgenome B appears to show fission of chromosomal contigs, and while there is substantial synteny between subgenomes, we also identified regions lacking synteny that may have diverged in the ancestral genomes prior to or following hybridisation. This annotated and phased genome assembly forms a significant resource for understanding the origins and genetics of these globally important plant pathogens.


Assuntos
Genoma Helmíntico , Tylenchoidea , Animais , Tylenchoidea/genética , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Poliploidia , Cromossomos/genética , Sintenia , Reprodução Assexuada/genética , Filogenia
17.
Sci Rep ; 14(1): 12854, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834735

RESUMO

Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 µM GA, and 20 µM GA, without and with 5 µM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 µM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 µM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 µM ZnFNP compared to control. In conclusion, 20 µM GA + 5 µM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 µM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.


Assuntos
Compostos Férricos , Ácido Gálico , Estresse Salino , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Ácido Gálico/metabolismo , Zinco/metabolismo , Fotossíntese/efeitos dos fármacos , Nanopartículas/química , Clorofila/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Salinidade , Solo/química
18.
Microbiome ; 12(1): 101, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840214

RESUMO

BACKGROUND: Plant microbiota contributes to plant growth and health, including enhancing plant resistance to various diseases. Despite remarkable progress in understanding diseases resistance in plants, the precise role of rhizosphere microbiota in enhancing watermelon resistance against soil-borne diseases remains unclear. Here, we constructed a synthetic community (SynCom) of 16 core bacterial strains obtained from the rhizosphere of grafted watermelon plants. We further simplified SynCom and investigated the role of bacteria with synergistic interactions in promoting plant growth through a simple synthetic community. RESULTS: Our results demonstrated that the SynCom significantly enhanced the growth and disease resistance of ungrafted watermelon grown in non-sterile soil. Furthermore, analysis of the amplicon and metagenome data revealed the pivotal role of Pseudomonas in enhancing plant health, as evidenced by a significant increase in the relative abundance and biofilm-forming pathways of Pseudomonas post-SynCom inoculation. Based on in vitro co-culture experiments and bacterial metabolomic analysis, we selected Pseudomonas along with seven other members of the SynCom that exhibited synergistic effects with Pseudomonas. It enabled us to further refine the initially constructed SynCom into a simplified SynCom comprising the eight selected bacterial species. Notably, the plant-promoting effects of simplified SynCom were similar to those of the initial SynCom. Furthermore, the simplified SynCom protected plants through synergistic effects of bacteria. CONCLUSIONS: Our findings suggest that the SynCom proliferate in the rhizosphere and mitigate soil-borne diseases through microbial synergistic interactions, highlighting the potential of synergistic effects between microorganisms in enhancing plant health. This study provides a novel insight into using the functional SynCom as a promising solution for sustainable agriculture. Video Abstract.


Assuntos
Citrullus , Fusarium , Microbiota , Doenças das Plantas , Pseudomonas , Rizosfera , Microbiologia do Solo , Citrullus/microbiologia , Fusarium/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas/genética , Resistência à Doença , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Raízes de Plantas/microbiologia
19.
Fa Yi Xue Za Zhi ; 40(2): 186-191, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38847035

RESUMO

OBJECTIVES: To explore the postmortem diffusion rule of Aconitum alkaloids and their metabolites in poisoned rabbits, and to provide a reference for identifying the antemortem poisoning or postmortem poisoning of Aconitum alkaloids. METHODS: Twenty-four rabbits were sacrificed by tracheal clamps. After 1 hour, the rabbits were administered with aconitine LD50 in decocting aconite root powder by intragastric administration. Then, they were placed supine and stored at 25 ℃. The biological samples from 3 randomly selected rabbits were collected including heart blood, peripheral blood, urine, heart, liver, spleen, lung and kidney tissues at 0 h, 4 h, 8 h, 12 h, 24 h, 48 h, 72 h and 96 h after intragastric administration, respectively. Aconitum alkaloids and their metabolites in the biological samples were analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS: At 4 h after intragastric administration, Aconitum alkaloids and their metabolites could be detected in heart blood, peripheral blood and major organs, and the contents of them changed dynamically with the preservation time. The contents of Aconitum alkaloids and their metabolites were higher in the spleen, liver and lung, especially in the spleen which was closer to the stomach. The average mass fraction of benzoylmesaconine metabolized in rabbit spleen was the highest at 48 h after intragastric administration. In contrast, the contents of Aconitum alkaloids and their metabolites in kidney were all lower. Aconitum alkaloids and their metabolites were not detected in urine. CONCLUSIONS: Aconitum alkaloids and their metabolites have postmortem diffusion in poisoned rabbits, diffusing from high-content organs (stomach) to other major organs and tissues as well as the heart blood. The main mechanism is the dispersion along the concentration gradient, while urine is not affected by postmortem diffusion, which can be used as the basis for the identification of antemortem and postmortem Aconitum alkaloids poisoning.


Assuntos
Aconitum , Alcaloides , Fígado , Espectrometria de Massas em Tandem , Animais , Coelhos , Aconitum/química , Alcaloides/metabolismo , Alcaloides/urina , Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Fígado/metabolismo , Rim/metabolismo , Pulmão/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacocinética , Aconitina/urina , Aconitina/metabolismo , Aconitina/análise , Raízes de Plantas/química , Distribuição Tecidual , Baço/metabolismo , Mudanças Depois da Morte , Toxicologia Forense/métodos , Miocárdio/metabolismo , Fatores de Tempo , Masculino
20.
Environ Microbiol Rep ; 16(3): e13286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844388

RESUMO

Microorganisms in the rhizosphere, particularly arbuscular mycorrhiza, have a broad symbiotic relationship with their host plants. One of the major fungi isolated from the rhizosphere of Peucedanum praeruptorum is Penicillium restrictum. The relationship between the metabolites of P. restrictum and the root exudates of P. praeruptorum is being investigated. The accumulation of metabolites in the mycelium and fermentation broth of P. restrictum was analysed over different fermentation periods. Non-targeted metabolomics was used to compare the differences in intracellular and extracellular metabolites over six periods. There were significant differences in the content and types of mycelial metabolites during the incubation. Marmesin, an important intermediate in the biosynthesis of coumarins, was found in the highest amount on the fourth day of incubation. The differential metabolites were screened to obtain 799 intracellular and 468 extracellular differential metabolites. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the highly enriched extracellular metabolic pathways were alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and terpenoid backbone biosynthesis. In addition, the enrichment analysis associated with intracellular and extracellular ATP-binding cassette transporter proteins revealed that some ATP-binding cassette transporters may be involved in the transportation of certain amino acids and carbohydrates. Our results provide some theoretical basis for the regulatory mechanisms between the rhizosphere and the host plant and pave the way for the heterologous production of furanocoumarin.


Assuntos
Fermentação , Micélio , Penicillium , Rizosfera , Micélio/metabolismo , Micélio/crescimento & desenvolvimento , Penicillium/metabolismo , Penicillium/genética , Raízes de Plantas/microbiologia , Metaboloma , Metabolômica , Microbiologia do Solo , Redes e Vias Metabólicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...