Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.174
Filtrar
1.
Org Biomol Chem ; 22(19): 3966-3978, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690804

RESUMO

Amino acid and peptide radicals are of broad interest due to their roles in biochemical oxidative damage, pathogenesis and protein radical catalysis, among others. Using density functional theory (DFT) calculations at the ωB97X-D/def2-QZVPPD//ωB97X-D/def2-TZVPP level of theory, we systematically investigated the hydrogen bonding between water and fourteen α-amino acids (Ala, Asn, Cys, Gln, Gly, His, Met, Phe, Pro, Sel, Ser, Thr, Trp, and Tyr) in both neutral and radical cation forms. For all amino acids surveyed, stronger hydrogen-bonding interactions with water were observed upon single-electron oxidation, with the greatest increases in hydrogen-bonding strength occurring in Gly, Ala and His. We demonstrate that the side chain has a significant impact on the most favorable hydrogen-bonding modes experienced by amino acid radical cations. Our computations also explored the fragmentation of amino acid radical cations through the loss of a COOH radical facilitated by hydrogen bonding. The most favorable pathways provided stabilization of the resulting cationic fragments through hydrogen bonding, resulting in more favorable thermodynamics for the fragmentation process. These results indicate that non-covalent interactions with the environment have a profound impact on the structure and chemical fate of oxidized amino acids.


Assuntos
Aminoácidos , Cátions , Teoria da Densidade Funcional , Ligação de Hidrogênio , Aminoácidos/química , Cátions/química , Radicais Livres/química , Termodinâmica , Água/química , Modelos Moleculares
2.
J Photochem Photobiol B ; 255: 112925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703451

RESUMO

Visible light triggers free radical production in alive and intact Drosophila melanogaster. We exposed fruit flies to red (613-631 nm), green (515-535 nm), and blue (455-475 nm) light while we monitored changes in unpaired electron content with an electron spin resonance spectrometer (ESR/EPR). The immediate response to light is a rapid increase in spin content lasting approximately 10 s followed by a slower, linear increase for approximately 170 s. When the light is turned off, the spin population promptly decays with a similar time course, though never fully returning to baseline. The magnitude and time course of the spin production depends on the wavelength of the light. Initially, we surmised that eumelanin might be responsible for the spin change because of its documented ability for visible light absorption and its highly stable free radical content. To explore this, we utilized different fruit fly strains with varying eumelanin content and clarified the relation of melanin types with the spin response. Our findings revealed that flies with darker cuticle have at least three-fold more unpaired electrons than flies with yellow cuticle. However, to our surprise, the increase in unpaired electron population by light was not drastically different amongst the genotypes. This suggests that light-induced free radical production may not exclusively rely on the presence of black melanin, but may instead be dependent on light effects on quinone-based cuticular polymers.


Assuntos
Drosophila melanogaster , Luz , Melaninas , Animais , Radicais Livres/química , Drosophila melanogaster/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Melaninas/química , Melaninas/metabolismo , Melaninas/biossíntese
3.
Integr Cancer Ther ; 23: 15347354241253846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721848

RESUMO

Vikil 20 is an herbal formula produced in Ghana and is widely marketed as a product to boost immunity as well as for general well-being. However, the pharmacological effect of this herbal preparation has not been proven scientifically. Therefore, this study was aimed at investigating the antioxidative as well as the anti-prostate cancer effects of the product. To assess the antioxidative effect of Vikil 20, the DPPH and ABTS activities were investigated. The total phenolic content was investigated using the Folin-Ciocalteu method. The cytotoxic effect of Vikil 20 against prostate cancer (PC-3) cells as well as normal (RAW 264.7) cells was investigated using the MTT assay whereas its anti-metastatic effect was analyzed using the cell migration assay. The effect of Vikil 20 on cell adhesion was analyzed via the cell adhesion assay whereas its effect on TNF-α secretion was investigated using a TNF-α detection kit. Vikil 20 demonstrated significant antioxidant effects by suppressing 57.61% and 92.88% respectively of DPPH and ABTS radicals at 1000 µg/mL with total phenolic contents of 140.45 mg GAE/g. Vikil 20 suppressed the proliferation of PC-3 cells by reducing the number of viable cells to 49.5% while sparing the RAW, 264.7 cells. Further, Vikil 20 significantly suppressed both cellular migration and adhesion of prostate cancer cells. Finally, suppression of cellular migration and adhesion is associated with a reduction in TNF-α secretion by PC-3 cells. Taken together, Vikil 20 was found to possess significant antioxidant and anti-prostate cancer effects in vitro.


Assuntos
Antioxidantes , Movimento Celular , Proliferação de Células , Extratos Vegetais , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proliferação de Células/efeitos dos fármacos , Células PC-3 , Antioxidantes/farmacologia , Movimento Celular/efeitos dos fármacos , Camundongos , Animais , Células RAW 264.7 , Radicais Livres/metabolismo , Extratos Vegetais/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Fenóis/farmacologia
4.
Nature ; 629(8010): 98-104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693411

RESUMO

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Assuntos
Aminoácidos , Biocatálise , Acoplamento Oxidativo , Processos Fotoquímicos , Aminoácidos/biossíntese , Aminoácidos/química , Aminoácidos/metabolismo , Biocatálise/efeitos da radiação , Evolução Molecular Direcionada , Radicais Livres/química , Radicais Livres/metabolismo , Glicina/química , Glicina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/química , Indicadores e Reagentes , Luz , Acoplamento Oxidativo/efeitos da radiação , Fosfato de Piridoxal/metabolismo , Estereoisomerismo , Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo
5.
J Am Chem Soc ; 146(19): 13598-13606, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691811

RESUMO

Nucleic acid-binding dyes (NuABDs) are fluorogenic probes that light up after binding to nucleic acids. Taking advantage of their fluorogenicity, NuABDs have been widely utilized in the fields of nanotechnology and biotechnology for diagnostic and analytical applications. We demonstrate the potential of NuABDs together with an appropriate nucleic acid scaffold as an intriguing photocatalyst for precisely controlled atom-transfer radical polymerization (ATRP). Additionally, we systematically investigated the thermodynamic and electrochemical properties of the dyes, providing insights into the mechanism that drives the photopolymerization. The versatility of the NuABD-based platform was also demonstrated through successful polymerizations using several NuABDs in conjunction with diverse nucleic acid scaffolds, such as G-quadruplex DNA or DNA nanoflowers. This study not only extends the horizons of controlled photopolymerization but also broadens opportunities for nucleic acid-based materials and technologies, including nucleic acid-polymer biohybrids and stimuli-responsive ATRP platforms.


Assuntos
Corantes Fluorescentes , Processos Fotoquímicos , Polimerização , Catálise , Corantes Fluorescentes/química , Radicais Livres/química , DNA/química , Ácidos Nucleicos/química , Quadruplex G
6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731964

RESUMO

Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of -32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD.


Assuntos
Canabidiol , Citocinas , Inflamação , Nanopartículas , Canabidiol/química , Canabidiol/farmacologia , Nanopartículas/química , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Humanos , Animais , Radicais Livres , Camundongos , Portadores de Fármacos/química , Lipídeos/química , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Lipossomos
7.
J Drugs Dermatol ; 23(4): SF378083s5-SF378083s10, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564405

RESUMO

Skin aging is influenced by various exogenous and endogenous factors, ranging from ultraviolet (UV) light exposure and environmental toxins to biological sources, such as those that arise from normal metabolic processes (eg, free radicals). Glycation is the normal process by which glucose and other reducing sugars react with proteins to form an array of heterogeneous biomolecular structures known as advanced glycation end-products (AGEs) over time. However, AGEs are toxic to human cells and are implicated in the acceleration of inflammatory and oxidative processes, with their accumulation in the skin being associated with increased skin dulling and yellowing, fine lines, wrinkles, and skin laxity. Clinicians should become cognizant of how AGEs develop, what their biological consequences are, and familiarize themselves with available strategies to mitigate their formation. J Drugs Dermatol.  2024;23:4(Suppl 1):s5-10.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/toxicidade , Açúcares/efeitos adversos , Açúcares/metabolismo , Pele/metabolismo , Radicais Livres/metabolismo
8.
Sci Rep ; 14(1): 8488, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605145

RESUMO

In the last few decades, researchers have thoroughly studied the use of plants in Palestine, one of them is Cyclamen persicum Mill. (C. persicum). Cyclamen persicum has been historically cultivated since the 1700s due to its tuber. The tuber is known to stimulate the nasal receptors, thus triggering the sensory neurons. Cyclamen persicum has anti-inflammatory effects, reduces cholesterol levels, treats diabetes, and inhibits tumor growth. In this respect, in-vitro examination of antibacterial and anticancer activities and antioxidative potency of C. persicum ethanolic extract were evaluated. The antioxidative potency of the extracted plant material was determined spectrophotometrically using the DPPH free radical scavenging method and the HPLC-PDA method to evaluate its total phenolic content (TPC) and total flavonoid content (TFC). The experimental results revealed weak antibacterial activity of C. persicum extract against both gram negative (E. coli) and gram positive (Streptococcus aureus and S. aureus) bacterial strains, with the zones of inhibition found to be less than 8 mm. On the other hand, powerful activity against MCF7 breast cancer as well as HT29 colon cancer cell lines was obtained. The findings also revealed potent inhibition of free radicals and the presence of maximal levels of natural products such as phenolic compounds and flavonoids, which supportits biological activities and powerful ability to scavenge free radicals. HPLC results showed the presence of numerous flavonoid and phenolic compounds such as rutin, chlorogenic acid, kaempferol, trans-cinnamic acid, quercetin, sinapic acid, and p-coumaric acid.


Assuntos
Neoplasias da Mama , Cyclamen , Humanos , Feminino , Antioxidantes/farmacologia , Antioxidantes/química , Cyclamen/química , Staphylococcus aureus , Escherichia coli , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/farmacologia , Fenóis/farmacologia , Antibacterianos/farmacologia , Radicais Livres
9.
Environ Int ; 186: 108640, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38608385

RESUMO

Tire wear particles (TWP) are a prevalent form of microplastics (MPs) extensively distributed in the environment, raising concerns about their environmental behaviors and risks. However, knowledge regarding the properties and toxicity of these particles at environmentally relevant concentrations, specifically regarding the role of environmentally persistent free radicals (EPFRs) generated during TWP photoaging, remains limited. In this study, the evolution of EPFRs on TWP under different photoaging times and their adverse effects on Caenorhabditis elegans were systematically investigated. The photoaging process primarily resulted in the formation of EPFRs and reactive oxygen species (O2•-, ⋅OH, and 1O2), altering the physicochemical properties of TWP. The exposure of nematodes to 100 µg/L of TWP-50 (TWP with a photoaging time of 50 d) led to a significant decrease in locomotory behaviors (e.g., head thrashes, body bends, and wavelength) and neurotransmitter contents (e.g., dopamine, glutamate, and serotonin). Similarly, the expression of neurotransmission-related genes was reduced in nematodes exposed to TWP-50. Furthermore, the addition of free-radical inhibitors significantly suppressed TWP-induced neurotoxicity. Notably, correlation analysis revealed a significantly negative correlation between EPFRs levels and the locomotory behaviors and neurotransmitter contents of nematodes. Thus, it was concluded that EPFRs on photoaged TWP induce neurotoxicity by affecting neurotransmission. These findings elucidate the toxicity effects and mechanisms of EPFRs, emphasizing the importance of considering their contributions when evaluating the environmental risks associated with TWP.


Assuntos
Caenorhabditis elegans , Microplásticos , Transmissão Sináptica , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Radicais Livres , Microplásticos/toxicidade , Transmissão Sináptica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
Sci Total Environ ; 927: 172202, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599399

RESUMO

As an emerging atmospheric pollutant, airborne environmentally persistent free radicals (EPFRs) are formed during many combustion processes and pose various adverse health effects. In health-oriented air pollution control, it is vital to evaluate the health effects of atmospheric fine particulate matter (PM2.5) from different emission sources. In this study, various types of combustion-derived PM2.5 were collected on filters in a partial-flow dilution tunnel sampling system from three typical emission sources: coal combustion, biomass burning, and automobile exhaust. Substantial concentrations of EPFRs were determined in PM2.5 samples and associated with significant potential exposure risks. Results from in vitro cytotoxicity and oxidative potential assays suggest that EPFRs may cause substantial generation of reactive oxygen species (ROS) upon inhalation exposure to PM2.5 from anthropogenic combustion sources, especially from automobile exhaust. This study provides important evidence for the source- and concentration-dependent health effects of EPFRs in PM2.5 and motivates further assessments to advance public health-oriented PM2.5 emission control.


Assuntos
Poluentes Atmosféricos , Material Particulado , Emissões de Veículos , Material Particulado/análise , Poluentes Atmosféricos/análise , Radicais Livres , Emissões de Veículos/análise , Monitoramento Ambiental , Humanos , Poluição do Ar/estatística & dados numéricos , Espécies Reativas de Oxigênio , Exposição Ambiental
11.
Acc Chem Res ; 57(9): 1446-1457, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38603772

RESUMO

ConspectusEnzymes are desired catalysts for chemical synthesis, because they can be engineered to provide unparalleled levels of efficiency and selectivity. Yet, despite the astonishing array of reactions catalyzed by natural enzymes, many reactivity patterns found in small molecule catalysts have no counterpart in the living world. With a detailed understanding of the mechanisms utilized by small molecule catalysts, we can identify existing enzymes with the potential to catalyze reactions that are currently unknown in nature. Over the past eight years, our group has demonstrated that flavin-dependent "ene"-reductases (EREDs) can catalyze various radical-mediated reactions with unparalleled levels of selectivity, solving long-standing challenges in asymmetric synthesis.This Account presents our development of EREDs as general catalysts for asymmetric radical reactions. While we have developed multiple mechanisms for generating radicals within protein active sites, this account will focus on examples where flavin mononucleotide hydroquinone (FMNhq) serves as an electron transfer radical initiator. While our initial mechanistic hypotheses were rooted in electron-transfer-based radical initiation mechanisms commonly used by synthetic organic chemists, we ultimately uncovered emergent mechanisms of radical initiation that are unique to the protein active site. We will begin by covering intramolecular reactions and discussing how the protein activates the substrate for reduction by altering the redox-potential of alkyl halides and templating the charge transfer complex between the substrate and flavin-cofactor. Protein engineering has been used to modify the fundamental photophysics of these reactions, highlighting the opportunity to tune these systems further by using directed evolution. This section highlights the range of coupling partners and radical termination mechanisms available to intramolecular reactions.The next section will focus on intermolecular reactions and the role of enzyme-templated ternary charge transfer complexes among the cofactor, alkyl halide, and coupling partner in gating electron transfer to ensure that it only occurs when both substrates are bound within the protein active site. We will highlight the synthetic applications available to this activation mode, including olefin hydroalkylation, carbohydroxylation, arene functionalization, and nitronate alkylation. This section also discusses how the protein can favor mechanistic steps that are elusive in solution for the asymmetric reductive coupling of alkyl halides and nitroalkanes. We are aware of several recent EREDs-catalyzed photoenzymatic transformations from other groups. We will discuss results from these papers in the context of understanding the nuances of radical initiation with various substrates.These biocatalytic asymmetric radical reactions often complement the state-of-the-art small-molecule-catalyzed reactions, making EREDs a valuable addition to a chemist's synthetic toolbox. Moreover, the underlying principles studied with these systems are potentially operative with other cofactor-dependent proteins, opening the door to different types of enzyme-catalyzed radical reactions. We anticipate that this Account will serve as a guide and inspire broad interest in repurposing existing enzymes to access new transformations.


Assuntos
Oxirredutases , Oxirredutases/metabolismo , Oxirredutases/química , Radicais Livres/química , Radicais Livres/metabolismo , Biocatálise , Flavinas/química , Flavinas/metabolismo , Hidroquinonas/química , Hidroquinonas/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Transporte de Elétrons
12.
Biochemistry (Mosc) ; 89(Suppl 1): S148-S179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621749

RESUMO

The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys. The branching step of the oxidative chain is the reaction of RHS with lipid hydroperoxides, in which peroxyl and alkoxyl radicals are formed. The role of RHS-induced LPO in the development of human inflammatory diseases (cardiovascular and neurodegenerative diseases, cancer, diabetes, rheumatoid arthritis) is discussed in detail.


Assuntos
Halogênios , Peróxidos Lipídicos , Animais , Humanos , Peroxidação de Lipídeos , Radicais Livres , Oxirredução , Mamíferos
13.
J Am Chem Soc ; 146(17): 12087-12099, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647488

RESUMO

Electron transfer during solid-liquid contact electrification has been demonstrated to produce reactive oxygen species (ROS) such as hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). Here, we show that such a process also occurs in liquid-liquid contact electrification. By preparing perfluorocarbon nanoemulsions to construct a perfluorocarbon-water "liquid-liquid" interface, we confirmed that electrons were transferred from water to perfluorocarbon in ultrasonication-induced high-frequency liquid-liquid contact to produce •OH and •O2-. The produced ROS could be applied to ablate tumors by triggering large-scale immunogenic cell death in tumor cells, promoting dendritic cell maturation and macrophage polarization, ultimately activating T cell-mediated antitumor immune response. Importantly, the raw material for producing •OH is water, so the tumor therapy is not limited by the endogenous substances (O2, H2O2, etc.) in the tumor microenvironment. This work provides new perspectives for elucidating the mechanism of generation of free radicals in liquid-liquid contact and provides an excellent tumor therapeutic modality.


Assuntos
Fluorocarbonos , Água , Fluorocarbonos/química , Água/química , Camundongos , Animais , Neoplasias/tratamento farmacológico , Radicais Livres/química , Humanos , Radical Hidroxila/química , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia
14.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674159

RESUMO

Sepsis continues to overwhelm hospital systems with its high mortality rate and prevalence. A strategy to reduce the strain of sepsis on hospital systems is to develop a diagnostic/prognostic measure that identifies patients who are more susceptible to septic death. Current biomarkers fail to achieve this outcome, as they only have moderate diagnostic power and limited prognostic capabilities. Sepsis disrupts a multitude of pathways in many different organ systems, making the identification of a single powerful biomarker difficult to achieve. However, a common feature of many of these perturbed pathways is the increased generation of reactive oxygen species (ROS), which can alter gene expression, changes in which may precede the clinical manifestation of severe sepsis. Therefore, the aim of this study was to evaluate whether ROS-related circulating molecular signature can be used as a tool to predict sepsis survival. Here we created a ROS-related gene signature and used two Gene Expression Omnibus datasets from whole blood samples of septic patients to generate a 37-gene molecular signature that can predict survival of sepsis patients. Our results indicate that peripheral blood gene expression data can be used to predict the survival of sepsis patients by assessing the gene expression pattern of free radical-associated -related genes in patients, warranting further exploration.


Assuntos
Espécies Reativas de Oxigênio , Sepse , Humanos , Sepse/genética , Sepse/mortalidade , Sepse/sangue , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Biomarcadores , Transcriptoma , Perfilação da Expressão Gênica , Radicais Livres/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade
15.
ACS Nano ; 18(17): 11042-11057, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38627898

RESUMO

PD-1 blockade is a first-line treatment for recurrent/metastatic cervical cancer but benefits only a small number of patients due to low preexisting tumor immunogenicity. Using immunogenic cell death (ICD) inducers is a promising strategy for improving immunotherapy, but these compounds are limited by the hypoxic environment of solid tumors. To overcome this issue, the nanosensitizer AIBA@MSNs were designed based on sonodynamic therapy (SDT), which induces tumor cell death under hypoxic conditions through azo free radicals in a method of nonoxygen radicals. Mechanistically, the azo free radicals disrupt both the structure and function of tumor mitochondria by reversing the mitochondrial membrane potential and facilitating the collapse of electron transport chain complexes. More importantly, the AIBA@MSN-based SDT serves as an effective ICD inducer and improves the antitumor immune capacity. The combination of an AIBA@MSN-based SDT with a PD-1 blockade has the potential to improve response rates and provide protection against relapse. This study provides insights into the use of azo free radicals as a promising SDT strategy for cancer treatment and establishes a basic foundation for nonoxygen-dependent SDT-triggered immunotherapy in cervical cancer treatment.


Assuntos
Imunoterapia , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/imunologia , Feminino , Radicais Livres/química , Humanos , Camundongos , Animais , Compostos Azo/química , Compostos Azo/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
16.
J Phys Chem B ; 128(18): 4367-4376, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38686959

RESUMO

The migration of an electron-loss center (hole) in calf thymus DNA to bisbenzimidazole ligands bound in the minor groove is followed by pulse radiolysis combined with time-resolved spectrophotometry. The initially observed absorption spectrum upon oxidation of DNA by the selenite radical is consistent with spin on cytosine (C), as the GC• pair neutral radical, followed by the spectra of oxidized ligands. The rate of oxidation of bound ligands increased with an increase in the ratio (r) ligands per base pair from 0.005 to 0.04. Both the rate of ligand oxidation and the estimated range of hole transfer (up to 30 DNA base pairs) decrease with the decrease in one-electron reduction potential between the GC• pair neutral radical of ca. 1.54 V and that of the ligand radicals (E0', 0.90-0.99 V). Linear plots of log of the rate of hole transfer versus r give a common intercept at r = 0 and a free energy change of 12.2 ± 0.3 kcal mol-1, ascribed to the GC• pair neutral radical undergoing a structural change, which is in competition to the observed hole transfer along DNA. The rate of hole transfer to the ligands at distance, R, from the GC• pair radical, k2, is described by the relationship k2 = k0 exp(constant/R), where k0 includes the rate constant for surmounting a small barrier.


Assuntos
Pareamento de Bases , DNA , DNA/química , Radicais Livres/química , Oxirredução , Benzimidazóis/química , Animais , Bovinos , Ligantes , Bisbenzimidazol/química , Reparo do DNA , Dano ao DNA , Citosina/química
17.
Environ Sci Technol ; 58(18): 8065-8075, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38597221

RESUMO

We report a previously unrecognized but efficient reductive degradation pathway in peroxydisulfate (PDS)-driven soil remediation. With supplements of naturally occurring low-molecular-weight organic acids (LMWOAs) in anaerobic biochar-activated PDS systems, degradation rates of 12 γ-hexachlorocyclohexanes (HCH)-spiked soils boosted from 40% without LMWOAs to a maximum of 99% with 1 mM malic acid. Structural analysis revealed that an increase in α-hydroxyl groups and a diminution in pKa1 values of LMWOAs facilitated the formation of reductive carboxyl anion radicals (COO•-) via electrophilic attack by SO4•-/•OH. Furthermore, degradation kinetics were strongly correlated with soil organic matter (SOM) contents than iron minerals. Combining a newly developed in situ fluorescence detector of reductive radicals with quenching experiments, we showed that for soils with high, medium, and low SOM contents, dominant reactive species switched from singlet oxygen/semiquinone radicals to SO4•-/•OH and then to COO•- (contribution increased from 30.8 to 66.7%), yielding superior HCH degradation. Validation experiments using SOM model compounds highlighted critical roles of redox-active moieties, such as phenolic - OH and quinones, in radical formation and conversion. Our study provides insights into environmental behaviors related to radical activation of persulfate in a broader soil horizon and inspiration for more advanced reduction technologies.


Assuntos
Solo , Solo/química , Radicais Livres/química , Poluentes do Solo/química , Oxirredução , Halogenação
18.
Environ Pollut ; 349: 123827, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574947

RESUMO

Microplastics (MPs) in sludge can affect the ability of biochar-activated peroxymonosulfate (PMS) to degrade antibiotics. In this work, biochar was prepared by mixing sludge and polystyrene (PS) through hydrothermal carbonization (HTC) and high-temperature pyrolysis processes. The resulting biochar was used to activate PMS to degrade ofloxacin (OFX), levofloxacin (LEV), and pefloxacin (PFX). The addition of PS significantly enhanced the ability of biochar/PMS to degrade antibiotics and the levels of environmentally persistent free radicals (EPFRs, 4.59 × 1020 spin/g) due to the decomposition of PS. The addition of PS resulted in a slight decrease in the specific surface area of biochar (2-3 m2/g on average), but a significant increase in the concentration of EPFRs increased the removal efficiency. The activation of PMS by biochar is dominated by free radicals, accounting for about 70%, in which SO4•- and •OH contribute the most and O2•- the least. However, 1O2 contributes 15-20% to the degradation of antibiotics in non-free radical processes. Overall, the process of biochar/PMS degradation of antibiotics is mainly dominated by free radicals, and the effect of non-free radicals is not obvious. Both hydrochar and pyrocarbon samples showed good hydrophilicity, and this property should improve the ability of active sites on biochar to degrade antibiotics. In the HTC process, PS can decompose during hydrochar preparation, with a maximum reduction value of 40.09%. The three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) and total organic carbon (TOC) results show that the protein content in sludge plays a major role in reducing PS, with little effect of polysaccharide and SiO2. There are six to seven degradation intermediates of quinolone antibiotics, which are eventually degraded into CO2, H2O, and inorganic substances. The regeneration experiment showed good reusability of hydrochar and pyrocarbon, further demonstrating the suitability of biochar for the degradation of antibiotics.


Assuntos
Antibacterianos , Carvão Vegetal , Microplásticos , Peróxidos , Poluentes Químicos da Água , Carvão Vegetal/química , Antibacterianos/química , Microplásticos/química , Peróxidos/química , Radicais Livres/química , Poluentes Químicos da Água/química , Esgotos/química
19.
Yakugaku Zasshi ; 144(4): 339-344, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38556304

RESUMO

Excessive production of reactive oxygen species (ROS) causes oxidative stress and is involved in the development and progression of a wide variety of diseases. Therefore, techniques for measuring oxidative stress are indispensable for analysis of the mechanisms of various diseases. The method involving ESR and the durable nitroxyl radical (ESR/spin probe method) is useful for this purpose, because the ESR signal intensity of the spin probe changes on reacting with ROS and other unstable radicals. In this review, the author's research applying the ESR/spin probe method to clarify disease mechanisms in vivo and in vitro is presented. The ESR signal of the probe injected into animals may decay through a few mechanisms besides reaction with ROS; thus, interpretation of the results is complicated. As the first approach to solving this problem, a probe resistant to enzymatic reduction by introducing a bulky group adjacent to the nitroxy group was created. The second approach was the use of a hydroxylamine probe which dominantly oxidized to nitroxyl radicals by reacting with superoxide anion radicals and oxidants. Using acyl-protected hydroxyl amine, it was demonstrated that sepsis model mice are under oxidative stress due to ROS production by activated phagocytes. On the other hand, it was shown in vitro that the UV-induced radical reaction of ketoprofen also occurs in lipid membranes, and that the reaction is related to ROS generation and membrane disruption. We believe that use of the ESR/spin probe method with ingenuity will clarify the mechanisms of various diseases.


Assuntos
Óxidos de Nitrogênio , Estresse Oxidativo , Camundongos , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espécies Reativas de Oxigênio , Radicais Livres
20.
Yakugaku Zasshi ; 144(4): 419-429, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38556317

RESUMO

In view of the current claim by many researchers that biological aging is a treatable disease, the possibility is discussed whether the claim is realistic, based on several proposed mechanisms of aging. The definition of biological aging is stated referring to physiological aging and pathological aging, since biological aging must be defined for the discussion of whether it can be cured. Aging in animal model is compared with that in humans in terms of common age-associated phenotypes. Major proposed mechanisms of aging are next examined including Genome Instability Theory of aging, Free Radical or Oxidative Stress Theory of Aging, Mitochondrial Theory of Aging, Error Catastrophe Theory of Aging/Translational Error Theory of Aging, Altered Protein Theory of Aging/Proteostasis Theory of Aging, and Epigenetic Theory of Aging. Finally, we discuss whether treatment of aging as a disease is realistic in comparison with possible lifespan extension by retardation of biological aging.


Assuntos
Envelhecimento , Estresse Oxidativo , Animais , Humanos , Envelhecimento/metabolismo , Estresse Oxidativo/fisiologia , Radicais Livres/metabolismo , Longevidade/genética , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...