Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.755.773
Filtrar
1.
BMC Genomics ; 25(1): 450, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714918

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are a novel kind of non-coding RNAs proved to play crucial roles in the development of multiple diabetic complications. However, their expression and function in diabetes mellitus (DM)-impaired salivary glands are unknown. RESULTS: By using microarray technology, 663 upregulated and 999 downregulated circRNAs companied with 813 upregulated and 525 downregulated mRNAs were identified in the parotid glands (PGs) of type2 DM mice under a 2-fold change and P < 0.05 cutoff criteria. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of upregulated mRNAs showed enrichments in immune system process and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Infiltration of inflammatory cells and increased inflammatory cytokines were observed in diabetic PGs. Seven differently expressed circRNAs validated by qRT-PCR were selected for coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) networks analysis. PPAR signaling pathway was primarily enriched through analysis of circRNA-mRNA networks. Moreover, the circRNA-miRNA-mRNA networks highlighted an enrichment in the regulation of actin cytoskeleton. CONCLUSION: The inflammatory response is elevated in diabetic PGs. The selected seven distinct circRNAs may attribute to the injury of diabetic PG by modulating inflammatory response through PPAR signaling pathway and actin cytoskeleton in diabetic PGs.


Assuntos
Diabetes Mellitus Tipo 2 , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glândula Parótida , RNA Circular , Animais , RNA Circular/genética , Camundongos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glândula Parótida/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Transcriptoma , Ontologia Genética , Masculino , Transdução de Sinais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo
2.
Cell Mol Biol Lett ; 29(1): 65, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714951

RESUMO

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.


Assuntos
Sistemas CRISPR-Cas , Oxalato de Cálcio , Rim , Animais , Humanos , Masculino , Camundongos , Oxalato de Cálcio/metabolismo , Sistemas CRISPR-Cas/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Ferritinas , Ferroptose/genética , Edição de Genes/métodos , Células HEK293 , Rim/metabolismo , Rim/patologia , Cálculos Renais/genética , Cálculos Renais/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Biossíntese de Proteínas/genética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo
3.
BMC Biol ; 22(1): 106, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715001

RESUMO

BACKGROUND: The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS: In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS: Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.


Assuntos
Biossíntese de Proteínas , Edição de RNA , Retina , Animais , Camundongos , Retina/metabolismo , Retina/embriologia , Processamento Alternativo , Inosina/metabolismo , Inosina/genética , Adenosina/metabolismo
4.
Mol Cancer ; 23(1): 91, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715012

RESUMO

BACKGROUND: Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS: Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS: The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS: Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Receptor IGF Tipo 1 , Transdução de Sinais , Humanos , MicroRNAs/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Acrilamidas/farmacologia , RNA Circular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Compostos de Anilina/farmacologia , Linhagem Celular Tumoral , Animais , Camundongos , Apoptose , Movimento Celular/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Feminino , Indóis , Pirimidinas
5.
BMC Med ; 22(1): 189, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715017

RESUMO

BACKGROUND: Sleep loss is a common public health problem that causes hyperalgesia, especially that after surgery, which reduces the quality of life seriously. METHODS: The 48-h sleep restriction (SR) mouse model was created using restriction chambers. In vivo imaging, transmission electron microscopy (TEM), immunofluorescence staining and Western blot were performed to detect the status of the blood-spinal cord barrier (BSCB). Paw withdrawal mechanical threshold (PWMT) was measured to track mouse pain behavior. The role of infiltrating regulatory T cells (Tregs) and endothelial cells (ECs) in mouse glycolysis and BSCB damage were analyzed using flow cytometry, Western blot, CCK-8 assay, colorimetric method and lactate administration. RESULTS: The 48-h SR made mice in sleep disruption status and caused an acute damage to the BSCB, resulting in hyperalgesia and neuroinflammation in the spinal cord. In SR mice, the levels of glycolysis and glycolysis enzymes of ECs in the BSCB were found significantly decreased [CON group vs. SR group: CD31+Glut1+ cells: p < 0.001], which could cause dysfunction of ECs and this was confirmed in vitro. Increased numbers of infiltrating T cells [p < 0.0001] and Treg population [p < 0.05] were detected in the mouse spinal cord after 48-h SR. In the co-cultured system of ECs and Tregs in vitro, the competition of Tregs for glucose resulted in the glycolysis disorder of ECs [Glut1: p < 0.01, ENO1: p < 0.05, LDHα: p < 0.05; complete tubular structures formed: p < 0.0001; CCK8 assay: p < 0.001 on 24h, p < 0.0001 on 48h; glycolysis level: p < 0.0001]. An administration of sodium lactate partially rescued the function of ECs and relieved SR-induced hyperalgesia. Furthermore, the mTOR signaling pathway was excessively activated in ECs after SR in vivo and those under the inhibition of glycolysis or co-cultured with Tregs in vitro. CONCLUSIONS: Affected by glycolysis disorders of ECs due to glucose competition with infiltrating Tregs through regulating the mTOR signaling pathway, hyperalgesia induced by 48-h SR is attributed to neuroinflammation and damages to the barriers, which can be relieved by lactate supplementation.


Assuntos
Células Endoteliais , Glucose , Hiperalgesia , Privação do Sono , Medula Espinal , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Glucose/metabolismo , Células Endoteliais/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Masculino , Privação do Sono/complicações , Glicólise/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
6.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715043

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Fibrose , Fatores de Diferenciação de Crescimento , Inflamassomos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Piroptose , Transdução de Sinais , Animais , Piroptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Linhagem Celular , Inflamassomos/metabolismo , Masculino , Fatores de Diferenciação de Crescimento/metabolismo , Ratos , Glicemia/metabolismo , Camundongos , Glucose/metabolismo , Glucose/toxicidade , Proteínas Morfogenéticas Ósseas , PPAR alfa
7.
J Nanobiotechnology ; 22(1): 228, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715049

RESUMO

Development of ferroptosis-inducible nanoplatforms with high efficiency and specificity is highly needed and challenging in tumor ferrotherapy. Here, we demonstrate highly effective tumor ferrotherapy using iron (II)-based metal-organic framework (FessMOF) nanoparticles, assembled from disulfide bonds and ferrous ions. The as-prepared FessMOF nanoparticles exhibit peroxidase-like activity and pH/glutathione-dependent degradability, which enables tumor-responsive catalytic therapy and glutathione depletion by the thiol/disulfide exchange to suppress glutathione peroxidase 4, respectively. Upon PEGylation and Actinomycin D (ActD) loading, the resulting FessMOF/ActD-PEG nanoplatform induces marked DNA damage and lipid peroxidation. Concurrently, we found that ActD can inhibit Xc- system and elicit ferritinophagy, which further boosts the ferrotherapeutic efficacy of the FessMOF/ActD-PEG. In vivo experiments demonstrate that our fabricated nanoplatform presents excellent biocompatibility and a high tumor inhibition rate of 91.89%.


Assuntos
Dano ao DNA , Ferroptose , Ferro , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Ferroptose/efeitos dos fármacos , Animais , Humanos , Camundongos , Dano ao DNA/efeitos dos fármacos , Ferro/química , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos BALB C , Feminino
8.
J Exp Clin Cancer Res ; 43(1): 138, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715057

RESUMO

BACKGROUND: Although immune checkpoint blockade (ICB) therapy has proven to be extremely effective at managing certain cancers, its efficacy in treating pancreatic ductal adenocarcinoma (PDAC) has been limited. Therefore, enhancing the effect of ICB could improve the prognosis of PDAC. In this study, we focused on the histamine receptor H1 (HRH1) and investigated its impact on ICB therapy for PDAC. METHODS: We assessed HRH1 expression in pancreatic cancer cell (PCC) specimens from PDAC patients through public data analysis and immunohistochemical (IHC) staining. The impact of HRH1 in PCCs was evaluated using HRH1 antagonists and small hairpin RNA (shRNA). Techniques including Western blot, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-PCR), and microarray analyses were performed to identify the relationships between HRH1 and major histocompatibility complex class I (MHC-I) expression in cancer cells. We combined HRH1 antagonism or knockdown with anti-programmed death receptor 1 (αPD-1) therapy in orthotopic models, employing IHC, immunofluorescence, and hematoxylin and eosin staining for assessment. RESULTS: HRH1 expression in cancer cells was negatively correlated with HLA-ABC expression, CD8+ T cells, and cytotoxic CD8+ T cells. Our findings indicate that HRH1 blockade upregulates MHC-I expression in PCCs via cholesterol biosynthesis signaling. In the orthotopic model, the combined inhibition of HRH1 and αPD-1 blockade enhanced cytotoxic CD8+ T cell penetration and efficacy, overcoming resistance to ICB therapy. CONCLUSIONS: HRH1 plays an immunosuppressive role in cancer cells. Consequently, HRH1 intervention may be a promising method to amplify the responsiveness of PDAC to immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Animais , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H1/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Linhagem Celular Tumoral , Feminino , Antagonistas dos Receptores Histamínicos H1/farmacologia , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Masculino
9.
J Neuroinflammation ; 21(1): 119, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715061

RESUMO

BACKGROUND: Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS: Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNß or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS: In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNß, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNß or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION: Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Malária Cerebral , Camundongos Endogâmicos C57BL , Neurônios , Fator de Transcrição STAT1 , Regulação para Cima , Animais , Camundongos , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/metabolismo , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Camundongos Knockout , Neurônios/metabolismo , Plasmodium berghei , Transdução de Sinais/fisiologia , Fator de Transcrição STAT1/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Stem Cell Res Ther ; 15(1): 134, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715091

RESUMO

BACKGROUND: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS: HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS: Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS: This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.


Assuntos
Administração Intranasal , Quimiocina CXCL10 , Hipóxia-Isquemia Encefálica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Camundongos , Feminino , Masculino , Animais Recém-Nascidos , Movimento Celular
11.
Parasit Vectors ; 17(1): 205, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715092

RESUMO

BACKGROUND: Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection has not been fully clarified. METHODS: In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒microRNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS: The pathological results showed that the degree of brain tissue damage increased with the duration of infection. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared with those in the control group, and several lncRNAs were highly expressed in the middle-late stages of mouse infection. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly in immune system processes and inflammatory response, among others, and several potential regulatory networks were constructed. CONCLUSIONS: This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. cantonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important roles in the infection of mice with A. cantonensis infection.


Assuntos
Angiostrongylus cantonensis , Encéfalo , Camundongos Endogâmicos BALB C , RNA Longo não Codificante , Infecções por Strongylida , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Angiostrongylus cantonensis/genética , Infecções por Strongylida/parasitologia , Infecções por Strongylida/genética , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Larva/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715090

RESUMO

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Assuntos
Encéfalo , Citocinas , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento , Placenta , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Feminino , Animais , Gravidez , Masculino , Citocinas/metabolismo , Citocinas/genética , Camundongos , Encéfalo/metabolismo , Encéfalo/imunologia , Encéfalo/embriologia , Placenta/metabolismo , Placenta/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/metabolismo , Poli I-C/toxicidade , Transcriptoma , Modelos Animais de Doenças , Feto/metabolismo
13.
Vet Res ; 55(1): 59, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715095

RESUMO

Klebsiella pneumoniae has become one of the most intractable gram-negative pathogens infecting humans and animals due to its severe antibiotic resistance. Bacteriophages and protein products derived from them are receiving increasing amounts of attention as potential alternatives to antibiotics. In this study, we isolated and investigated the characteristics of a new lytic phage, P1011, which lyses K5 K. pneumoniae specifically among 26 serotypes. The K5-specific capsular polysaccharide-degrading depolymerase dep1011 was identified and expressed. By establishing murine infection models using bovine strain B16 (capable of supporting phage proliferation) and human strain KP181 (incapable of sustaining phage expansion), we explored the safety and efficacy of phage and dep1011 treatments against K5 K. pneumoniae. Phage P1011 resulted in a 60% survival rate of the mice challenged with K. pneumoniae supporting phage multiplication, concurrently lowering the bacterial burden in their blood, liver, and lungs. Unexpectedly, even when confronted with bacteria impervious to phage multiplication, phage therapy markedly decreased the number of viable organisms. The protective efficacy of the depolymerase was significantly better than that of the phage. The depolymerase achieved 100% survival in both treatment groups regardless of phage propagation compatibility. These findings indicated that P1011 and dep1011 might be used as potential antibacterial agents to control K5 K. pneumoniae infection.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Klebsiella pneumoniae/virologia , Klebsiella pneumoniae/fisiologia , Camundongos , Infecções por Klebsiella/terapia , Infecções por Klebsiella/veterinária , Infecções por Klebsiella/microbiologia , Bacteriófagos/fisiologia , Modelos Animais de Doenças , Terapia por Fagos , Feminino , Glicosídeo Hidrolases/metabolismo , Bovinos
14.
Biol Sex Differ ; 15(1): 39, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715106

RESUMO

BACKGROUND: Early life adversity impairs hippocampal development and function across diverse species. While initial evidence indicated potential variations between males and females, further research is required to validate these observations and better understand the underlying mechanisms contributing to these sex differences. Furthermore, most of the preclinical work in rodents was performed in adult males, with only few studies examining sex differences during adolescence when such differences appear more pronounced. To address these concerns, we investigated the impact of limited bedding (LB), a mouse model of early adversity, on hippocampal development in prepubescent and adolescent male and female mice. METHODS: RNA sequencing, confocal microscopy, and electron microscopy were used to evaluate the impact of LB and sex on hippocampal development in prepubescent postnatal day 17 (P17) mice. Additional studies were conducted on adolescent mice aged P29-36, which included contextual fear conditioning, retrograde tracing, and ex vivo diffusion magnetic resonance imaging (dMRI). RESULTS: More severe deficits in axonal innervation and myelination were found in the perforant pathway of prepubescent and adolescent LB males compared to LB female littermates. These sex differences were due to a failure of reelin-positive neurons located in the lateral entorhinal cortex (LEC) to innervate the dorsal hippocampus via the perforant pathway in males, but not LB females, and were strongly correlated with deficits in contextual fear conditioning. CONCLUSIONS: LB impairs the capacity of reelin-positive cells located in the LEC to project and innervate the dorsal hippocampus in LB males but not female LB littermates. Given the critical role that these projections play in supporting normal hippocampal function, a failure to establish proper connectivity between the LEC and the dorsal hippocampus provides a compelling and novel mechanism to explain the more severe deficits in myelination and contextual freezing found in adolescent LB males.


Childhood adversity, such as severe deprivation and neglect, leads to structural changes in human brain development that are associated with learning deficits and behavioral difficulties. Some of the most consistent findings in individuals exposed to childhood adversity are reduced hippocampal volume and abnormal hippocampal function. This is important because the hippocampus is necessary for learning and memory, and it plays a crucial role in depression and anxiety. Although initial studies suggested more pronounced hippocampal deficits in men, additional research is needed to confirm these findings and to elucidate the mechanisms responsible for these sex differences. We found that male and female mice exposed to early impoverishment and deprivation exhibit similar structural changes to those observed in deprived children. Interestingly, adolescent male mice, but not females, display severe deficits in their ability to freeze when placed back in a box where they were previously shocked. The ability to associate "shock/danger" with a "box/place" is referred to as contextual fear conditioning and requires normal connections between the entorhinal cortex and the hippocampus. We found that these connections did not form properly in male mice exposed to impoverished conditions, but they were only minimally affected in females. These findings appear to explain why exposure to impoverished conditions impairs contextual fear conditioning in male mice but not in female mice. Additional work is needed to determine whether similar sex-specific changes in these connections are also observed in adolescents exposed to neglect and deprivation.


Assuntos
Hipocampo , Memória , Camundongos Endogâmicos C57BL , Via Perfurante , Proteína Reelina , Caracteres Sexuais , Animais , Masculino , Feminino , Hipocampo/metabolismo , Medo , Camundongos , Estresse Psicológico
15.
BMC Vet Res ; 20(1): 179, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715123

RESUMO

Salmonella infections pose a significant threat to animal and human health. Phytochemicals present a potential alternative treatment. Galla chinensis tannic acid (GCTA), a hydrolyzable polyphenolic compound, inhibits bacterial growth and demonstrates potential as an alternative or supplement to antibiotics to prevent Salmonella infections. However, little is known about the antimicrobial mechanism of GCTA against Salmonella. Here, we revealed 456 differentially expressed proteins upon GCTA treatment, impacting pathways related to DNA replication, repair, genomic stability, cell wall biogenesis, and lipid metabolism using TMT-labeled proteomic analysis. TEM analysis suggested altered bacterial morphology and structure post-treatment. A Salmonella-infected-mouse model indicated that GCTA administration improved inflammatory markers, alleviated intestinal histopathological alterations, and reduced Salmonella enterica serovar Enteritidis (S. Enteritidis) colonization in the liver and spleen of Salmonella-infected mice. The LD50 of GCTA was 4100 mg/kg with an oral single dose, vastly exceeding the therapeutic dose. Thus, GCTA exhibited antibacterial and anti-infective activity against S. Enteritidis. Our results provided insight into the molecular mechanisms of these antibacterial effects, and highlights the potential of GCTA as an alternative to antibiotics.


Assuntos
Proteômica , Salmonelose Animal , Salmonella enteritidis , Taninos , Animais , Salmonella enteritidis/efeitos dos fármacos , Camundongos , Taninos/farmacologia , Taninos/uso terapêutico , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Feminino , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Camundongos Endogâmicos BALB C , Medicamentos de Ervas Chinesas , Polifenóis
16.
Biol Direct ; 19(1): 35, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715121

RESUMO

BACKGROUND: Ubiquitin-conjugating enzyme E2 N (UBE2N) is recognized in the progression of some cancers; however, little research has been conducted to describe its role in prostate cancer. The purpose of this paper is to explore the function and mechanism of UBE2N in prostate cancer cells. METHODS: UBE2N expression was detected in Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data, prostate cancer tissue microarrays, and prostate cancer cell lines, respectively. UBE2N knockdown or overexpression was used to analyze its role in cell viability and glycolysis of prostate cancer cells and tumor growth. XAV939 or Axin1 overexpression was co-treated with UBE2N overexpression to detect the involvement of the Wnt/ß-catenin signaling and Axin1 in the UBE2N function. UBE2N interacting with Axin1 was analyzed by co-immunoprecipitation assay. RESULTS: UBE2N was upregulated in prostate cancer and the UBE2N-high expression correlated with the poor prognosis of prostate cancer. UBE2N knockdown inhibited cell viability and glycolysis in prostate cancer cells and restricted tumor formation in tumor-bearing mice. Wnt/ß-catenin inhibition and Axin1 overexpression reversed the promoting viability and glycolysis function of UBE2N. UBE2N promoted Axin1 ubiquitination and decreased Axin1 protein level.


Assuntos
Proteína Axina , Sobrevivência Celular , Glicólise , Neoplasias da Próstata , Enzimas de Conjugação de Ubiquitina , Ubiquitinação , Animais , Humanos , Masculino , Camundongos , Proteína Axina/metabolismo , Proteína Axina/genética , Linhagem Celular Tumoral , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Via de Sinalização Wnt
17.
Stem Cell Res Ther ; 15(1): 135, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715130

RESUMO

BACKGROUND: Biomaterials used in bone tissue engineering must fulfill the requirements of osteoconduction, osteoinduction, and osseointegration. However, biomaterials with good osteoconductive properties face several challenges, including inadequate vascularization, limited osteoinduction and barrier ability, as well as the potential to trigger immune and inflammatory responses. Therefore, there is an urgent need to develop guided bone regeneration membranes as a crucial component of tissue engineering strategies for repairing bone defects. METHODS: The mZIF-8/PLA membrane was prepared using electrospinning technology and simulated body fluid external mineralization method. Its ability to induce biomimetic mineralization was evaluated through TEM, EDS, XRD, FT-IR, zeta potential, and wettability techniques. The biocompatibility, osteoinduction properties, and osteo-immunomodulatory effects of the mZIF-8/PLA membrane were comprehensively evaluated by examining cell behaviors of surface-seeded BMSCs and macrophages, as well as the regulation of cellular genes and protein levels using PCR and WB. In vivo, the mZIF-8/PLA membrane's potential to promote bone regeneration and angiogenesis was assessed through Micro-CT and immunohistochemical staining. RESULTS: The mineralized deposition enhances hydrophilicity and cell compatibility of mZIF-8/PLA membrane. mZIF-8/PLA membrane promotes up-regulation of osteogenesis and angiogenesis related factors in BMSCs. Moreover, it induces the polarization of macrophages towards the M2 phenotype and modulates the local immune microenvironment. After 4-weeks of implantation, the mZIF-8/PLA membrane successfully bridges critical bone defects and almost completely repairs the defect area after 12-weeks, while significantly improving the strength and vascularization of new bone. CONCLUSIONS: The mZIF-8/PLA membrane with dual osteoconductive and immunomodulatory abilities could pave new research paths for bone tissue engineering.


Assuntos
Regeneração Óssea , Regeneração Óssea/efeitos dos fármacos , Animais , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Membranas Artificiais , Regeneração Tecidual Guiada/métodos , Alicerces Teciduais/química , Poliésteres/química , Poliésteres/farmacologia , Ratos
18.
J Neuroinflammation ; 21(1): 117, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715127

RESUMO

BACKGROUND: Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS: We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS: The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION: Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Camundongos Endogâmicos C57BL , Neuralgia , Doenças Neuroinflamatórias , Medula Espinal , Animais , Camundongos , Neuralgia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Masculino , Medula Espinal/metabolismo , Medula Espinal/patologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Modelos Animais de Doenças , Camundongos Knockout , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , Hiperalgesia/metabolismo , Hiperalgesia/etiologia , Camundongos Transgênicos
19.
Biol Direct ; 19(1): 36, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715141

RESUMO

Epidermal growth factor receptor (EGFR)-targeted therapy is an important treatment for RAS wild-type metastatic colorectal cancer (mCRC), but the resistance mechanism remains unclear. Here, the differential expression of circRNAs between Cetuximab sensitive and resistant cell lines was analyzed using whole-transcriptome sequencing. We identified that the expression of circHIF1A was significantly higher in LIM1215-R than in LIM1215. When treated with Cetuximab, downregulation of circHIF1A level weakened the proliferation and clonal formation ability of LIM1215-R, caused more cells to enter G0-G1 phase, and significantly reduced the basal respiration, ATP production, and maximal respiration, as well as the glycolytic capacity and glycolytic reserve. The response rate and prognosis of circHIF1A-positive patients were inferior to those of negative patients. Mechanistically, circHIF1A can upregulate the level of hypoxia-inducible factor 1 A (HIF1A) by competitively binding to miR-361-5p, inducing the overexpression of enzymes such as glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). In a xenograft model, inhibition of circHIF1A expression increased the sensitivity to Cetuximab treatment. In conclusion, circHIF1A can promote HIF1α-mediated glycometabolism alteration to induce Cetuximab resistance in CRC. It has the potential to become a screening indicator for the Cetuximab beneficial population in mCRC and a new therapeutic target for enhancing treatment efficacy.


Assuntos
Cetuximab , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Cetuximab/farmacologia , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral , Camundongos , Animais , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Antineoplásicos Imunológicos/farmacologia , Glicólise , Proliferação de Células/efeitos dos fármacos
20.
Microbiome ; 12(1): 80, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715137

RESUMO

BACKGROUND: Antibiotic exposure can occur in medical settings and from environmental sources. Long-term effects of brief antibiotic exposure in early life are largely unknown. RESULTS: Post a short-term treatment by ceftriaxone to C57BL/6 mice in early life, a 14-month observation was performed using 16S rRNA gene-sequencing technique, metabolomics analysis, and metagenomics analysis on the effects of ceftriaxone exposure. Firstly, the results showed that antibiotic pre-treatment significantly disturbed gut microbial α and ß diversities (P < 0.05). Both Chao1 indices and Shannon indices manifested recovery trends over time, but they didn't entirely recover to the baseline of control throughout the experiment. Secondly, antibiotic pre-treatment reduced the complexity of gut molecular ecological networks (MENs). Various network parameters were affected and manifested recovery trends over time with different degrees, such as nodes (P < 0.001, R2 = 0.6563), links (P < 0.01, R2 = 0.4543), number of modules (P = 0.0672, R2 = 0.2523), relative modularity (P = 0.6714, R2 = 0.0155), number of keystones (P = 0.1003, R2 = 0.2090), robustness_random (P = 0.79, R2 = 0.0063), and vulnerability (P = 0.0528, R2 = 0.28). The network parameters didn't entirely recover. Antibiotic exposure obviously reduced the number of key species in gut MENs. Interestingly, new keystones appeared during the recovery process of network complexity. Changes in network stability might be caused by variations in network complexity, which supports the ecological theory that complexity begets stability. Besides, the metabolism profiles of the antibiotic group and control were significantly different. Correlation analysis showed that antibiotic-induced differences in gut microbial metabolism were related to MEN changes. Antibiotic exposure also caused long-term effects on gut microbial functional networks in mice. CONCLUSIONS: These results suggest that short-term antibiotic exposure in early life will cause long-term negative impacts on gut microbial diversity, MENs, and microbial metabolism. Therefore, great concern should be raised about children's brief exposure to antibiotics if the results observed in mice are applicable to humans. Video Abstract.


Assuntos
Antibacterianos , Bactérias , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/efeitos adversos , Camundongos , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Ceftriaxona/farmacologia , Metagenômica/métodos , Masculino , Metabolômica , Fezes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...