Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.911
Filtrar
1.
Biol Res ; 57(1): 44, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965573

RESUMO

BACKGROUND: Exposure of humans and animals to heavy metals is increasing day-by-day; thus, lead even today remains of significant public health concern. According to CDC, blood lead reference value (BLRV) ranges from 3.5 µg/dl to 5 µg/dl in adults. Recently, almost 2.6% decline in male fertility per year has been reported but the cause is not well established. Lead (Pb2+) affects the size of testis, semen quality, and secretory functions of prostate. But the molecular mechanism(s) of lead toxicity in sperm cells is not clear. Thus, present study was undertaken to evaluate the adverse effects of lead acetate at environmentally relevant exposure levels (0.5, 5, 10 and 20 ppm) on functional and molecular dynamics of spermatozoa of bucks following in vitro exposure for 15 min and 3 h. RESULTS: Lead significantly decreased motility, viable count, and motion kinematic patterns of spermatozoa like curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency and maximum amplitude of head lateral displacement even at 5 ppm concentration. Pb2+ modulated intracellular cAMP and Ca2+ levels in sperm cells through L-type calcium channels and induced spontaneous or premature acrosome reaction (AR) by increasing tyrosine phosphorylation of sperm proteins and downregulated mitochondrial transmembrane potential. Lead significantly increased DNA damage and apoptosis as well. Electron microscopy studies revealed Pb2+ -induced deleterious effects on plasma membrane of head and acrosome including collapsed cristae in mitochondria. CONCLUSIONS: Pb2+ not only mimics Ca2+ but also affects cellular targets involved in generation of cAMP, mitochondrial transmembrane potential, and ionic exchange. Lead seems to interact with Ca2+ channels because of charge similarity and probably enters the sperm cell through these channels and results in hyperpolarization. Our findings also indicate lead-induced TP and intracellular Ca2+ release in spermatozoa which in turn may be responsible for premature acrosome exocytosis which is essential feature of capacitation for fertilization. Thus, lead seems to reduce the fertilizing capacity of spermatozoa even at 0.5 ppm concentrations.


Assuntos
Reação Acrossômica , Acrossomo , Cálcio , Chumbo , Motilidade dos Espermatozoides , Espermatozoides , Masculino , Espermatozoides/efeitos dos fármacos , Cálcio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Animais , Acrossomo/efeitos dos fármacos , Chumbo/toxicidade , Reação Acrossômica/efeitos dos fármacos , AMP Cíclico/metabolismo , Bovinos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Análise do Sêmen , Dano ao DNA/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Compostos Organometálicos/farmacologia
2.
Reprod Fertil Dev ; 362024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870344

RESUMO

In addition to its central role in cellular metabolism, adenosine 5'-triphosphate (ATP) is an important extracellular signalling molecule involved in various physiological processes. In reproduction, extracellular ATP participates in both autocrine and paracrine paths regulating gametogenesis, gamete maturation and fertilisation. This review focusses on how extracellular ATP modulates sperm physiology with emphasis on the mammalian acrosome reaction. The presence of extracellular ATP in the reproductive tract is primarily determined by the ion channels and transporters that influence its movement within the cells comprising the tract. The main targets of extracellular ATP in spermatozoa are its own transporters, particularly species-specific sperm purinergic receptors. We also discuss notable phenotypes from knock-out mouse models and human Mendelian inheritance related to ATP release mechanisms, along with immunological, proteomic, and functional observations regarding sperm purinergic receptors and their involvement in sperm signalling.


Assuntos
Trifosfato de Adenosina , Espermatozoides , Animais , Masculino , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Trifosfato de Adenosina/metabolismo , Humanos , Reação Acrossômica/fisiologia , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Mamíferos/fisiologia , Camundongos
3.
Sci Rep ; 14(1): 14287, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907001

RESUMO

To acquire the ability to fertilize the egg, mammalian spermatozoa must undergo a series of changes occurring within the highly synchronized and specialized environment of the female reproductive tract, collectively known as capacitation. In an attempt to replicate this process in vitro, various culture media for mouse sperm were formulated over the past decades, sharing a similar overall composition but differing mainly in ion concentrations and metabolic substrates. The widespread use of the different media to study the mechanisms of capacitation might hinder a comprehensive understanding of this process, as the medium could become a confounding variable in the analysis. In this context, the present side-by-side study compares the influence of four commonly used culture media (FD, HTF and two TYH versions) on mouse sperm capacitation. We evaluated the induction of protein kinase A phosphorylation pathway, motility, hyperactivation and acrosome reaction. Additionally, in vitro fertilization and embryo development were also assessed. By analyzing these outcomes in two mouse colonies with different reproductive performance, our study provides critical insights to improve the global understanding of sperm function. The results obtained highlight the importance of considering variations in medium composition, and their potential implications for the future interpretation of results.


Assuntos
Reação Acrossômica , Meios de Cultura , Fertilização in vitro , Capacitação Espermática , Espermatozoides , Animais , Capacitação Espermática/efeitos dos fármacos , Masculino , Camundongos , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Espermatozoides/metabolismo , Fertilização in vitro/métodos , Feminino , Reação Acrossômica/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Fosforilação , Fertilização , Desenvolvimento Embrionário/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
4.
Sci Rep ; 14(1): 14925, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942812

RESUMO

Notch is a conserved cell-signaling pathway involved in spermatogenesis regulation. This study firstly evaluated the presence, localization patterns, acquisition origin and relation to acrosome reaction of Notch proteins in bull sperm. Western Blot analysis detected all Notch proteins in ejaculated bull sperm, and immunostaining described their specific sperm localization. Recovery of sperm from different segments showed that Notch proteins have testicular origin (NOTCH1, NOTCH2, DLL4), are sequentially acquired during sperm maturation along epididymal transit (NOTCH3, DLL3, JAGGED1-2), or post-ejaculation (DLL1, NOTCH4). Testis NOTCH2 is ubiquitously expressed in all germ-cell lines, whereas DLL4 is expressed in round and elongated spermatids during the Golgi, Cap, Acrosome and Maturation phases. In vitro spontaneous and induced sperm acrosome reaction induce consistent sperm regional relocation of NOTCH2, DLL4 and JAGGED1, and these relocation patterns are significantly associated to sperm acrosome status. NOTCH2 and JAGGED1 are relocated from the head apical to the post-equatorial regions, whereas DLL4 is lost along with the acrosome, evidencing that sperm spatial redistribution of NOTCH2 and JAGGED1 is linked to acrosome reaction onset, whereas DLL4 loss is linked to AR completion. Overall, results prompt for a relevant Notch role in bull sperm acrosome testicular development, epididymal maturation and acrosome reaction.


Assuntos
Reação Acrossômica , Receptores Notch , Espermatozoides , Masculino , Animais , Bovinos , Espermatozoides/metabolismo , Receptores Notch/metabolismo , Testículo/metabolismo , Espermatogênese/fisiologia , Epididimo/metabolismo , Acrossomo/metabolismo
5.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786087

RESUMO

As in most cells, intracellular pH regulation is fundamental for sperm physiology. Key sperm functions like swimming, maturation, and a unique exocytotic process, the acrosome reaction, necessary for gamete fusion, are deeply influenced by pH. Sperm pH regulation, both intracellularly and within organelles such as the acrosome, requires a coordinated interplay of various transporters and channels, ensuring that this cell is primed for fertilization. Consistent with the pivotal importance of pH regulation in mammalian sperm physiology, several of its unique transporters are dependent on cytosolic pH. Examples include the Ca2+ channel CatSper and the K+ channel Slo3. The absence of these channels leads to male infertility. This review outlines the main transport elements involved in pH regulation, including cytosolic and acrosomal pH, that participate in these complex functions. We present a glimpse of how these transporters are regulated and how distinct sets of them are orchestrated to allow sperm to fertilize the egg. Much research is needed to begin to envision the complete set of players and the choreography of how cytosolic and organellar pH are regulated in each sperm function.


Assuntos
Acrossomo , Citosol , Espermatozoides , Masculino , Concentração de Íons de Hidrogênio , Animais , Citosol/metabolismo , Humanos , Acrossomo/metabolismo , Espermatozoides/metabolismo , Mamíferos/metabolismo , Reação Acrossômica
6.
Sci Rep ; 14(1): 12446, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816557

RESUMO

Thoroughbred stallions that carry a double-homozygous genotype A/A-A/A for SNPs rs397316122 and rs69101140 in exon 5 of the FKBP6 gene (chr13; EquCab3.0) are uniquely subfertile due to impaired acrosomal exocytosis (IAE). In this study, the sperm proteome in frozen/thawed semen from subfertile Thoroughbred stallions was studied and compared to that of frozen/thawed sperm from fertile Thoroughbred stallions. A total of 2,220 proteins was identified, of which 140 proteins were found to be differentially abundant in sperm from the subfertile stallions compared to that of fertile stallions (83 less and 57 more abundant). Proteins of differential abundance in sperm from the subfertile stallions were mainly overrepresented in the "metabolism" and the "metabolism of lipids" pathways. One of these proteins, arylsulfatase F (ARSF), was studied by immunofluorescence. A lower proportion of sperm displaying ARSF signal at the acrosome region was observed in sperm from subfertile Thoroughbred stallions. In addition, heterologous zona pellucida binding assays revealed that sperm from subfertile Thoroughbred stallions bound at a lower proportion to zonae pellucidae than sperm from fertile Thoroughbred stallions. In conclusion, a group of differential abundance proteins, including some of acrosome origin, were identified in sperm from subfertile stallions with acrosome dysfunction.


Assuntos
Reação Acrossômica , Proteômica , Espermatozoides , Animais , Masculino , Cavalos , Proteômica/métodos , Espermatozoides/metabolismo , Exocitose , Acrossomo/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/veterinária , Infertilidade Masculina/genética , Proteoma/metabolismo , Fertilidade/genética , Zona Pelúcida/metabolismo
7.
Theriogenology ; 223: 108-114, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703550

RESUMO

Protein glycosylation is a post-translational modification involved in wide range of biological processes. In mammalian spermatozoa this modification has been identified in numerous proteins, and membrane glycoproteins are involved in the fertilization process. The objective of the present study was to identify changes in protein glycosylation after acrosome reaction (AR) induction using the 4-Br-A23187 ionophore. Our results showed that treatment with 10 µM of 4-Br-A23187 for 20 min significantly increased the percentage of live acrosome-reacted spermatozoa compared to the control (69.8 ± 0.8 vs. 6.4 ± 0.5; mean % ± SEM, respectively). Also, we observed an increase in 32 kDa tyrosine-phosphorylated protein (p32) and a decrease in serine/threonine phosphorylation of the protein kinase A substrates (phospho-PKA-substrates) after ionophore treatment. Furthermore, changes in glycosylated proteins following AR induction were analyzed using different HRP-conjugated lectins (GNA, DSA, and SNA), revealing changes in mannose and sialic acid residues. Proteomic analysis of isolated proteins using GNA lectin revealed that 50 proteins exhibited significantly different abundance (q-value < 0.01). Subsequent analysis using Uniprot database identified 39 downregulated and 11 upregulated proteins in the presence of 4-Br-A23187. Notably, six of these proteins were classified as transmembrane proteins, namely LRRC37A/B like protein 1 C-terminal domain-containing protein, Membrane metalloendopeptidase like 1, VWFA domain-containing protein, Syndecan, Membrane spanning 4-domains A14 and Serine protease 54. This study shows a novel protocol to induce acrosome reaction in boar spermatozoa and identifies new transmembrane proteins containing mannose residues. Further work is needed to elucidate the role of these proteins in sperm-oocyte fusion.


Assuntos
Reação Acrossômica , Calcimicina , Espermatozoides , Animais , Masculino , Reação Acrossômica/efeitos dos fármacos , Suínos , Espermatozoides/metabolismo , Espermatozoides/efeitos dos fármacos , Calcimicina/farmacologia , Glicoproteínas/metabolismo , Glicosilação , Proteoma , Ionóforos de Cálcio/farmacologia
8.
PeerJ ; 12: e16875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680889

RESUMO

Background: Extracellular vesicles (EVs) are membrane-bound vesicles containing various proteins, lipids, and nucleic acids. EVs are found in many body fluids, such as blood and urine. The release of EVs can facilitate intercellular communication through fusion with the plasma membrane or endocytosis into the recipient cell or through internalization of the contents. Recent studies have reported that EVs isolated from human endometrial epithelial cells (EECs) promote sperm fertilization ability. EVs from uterine flushing fluid more closely resemble the physiological condition of the uterus. However, it is unclear whether EVs derived directly from uterine flushing fluid have the same effect on sperm. This study aimed to research the effect of EVs from uterine flushing fluid on sperm. Methods: EVs were isolated from the uterine flushing fluid. The presence of EVs was confirmed by nanoparticle tracking analysis (NTA), Western blot, and transmission electron microscopy (TEM). EVs were incubated with human sperm for 2 h and 4 h. The effects of EVs on sperm were evaluated by analyzing acrosome reaction, sperm motility, and reactive oxygen species (ROS). Results: The EVs fractions isolated from the uterine fluid were observed in cup-shaped vesicles of different sizes by TEM. All isolated vesicles contained similar numbers of vesicles in the expected size range (30-200 nm) by NTA. CD9 and CD63 were detected in EVs by western blot. Comparing the motility of the two groups incubated sperm motility significantly differed at 4 h. The acrosome reactions were promoted by incubating with EVs significantly. ROS were increased in sperm incubated with EVs. Conclusion: Our results showed EVs present in the uterine fluid. Acrosome reactions and ROS levels increased in human sperm incubated with EVs. EVs from uterine fluid can promote the capacitation of human sperm. The increased capacitation after sperm interaction with EVs suggests a possible physiological effect during the transit of the uterus.


Assuntos
Exossomos , Espécies Reativas de Oxigênio , Capacitação Espermática , Espermatozoides , Útero , Humanos , Masculino , Feminino , Exossomos/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Útero/metabolismo , Útero/fisiologia , Motilidade dos Espermatozoides/fisiologia , Líquidos Corporais/química , Líquidos Corporais/metabolismo , Reação Acrossômica/fisiologia , Microscopia Eletrônica de Transmissão
9.
PLoS One ; 19(2): e0297666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38377053

RESUMO

Male contraceptive options and infertility treatments are limited, and almost all innovation has been limited to updates to medically assisted reproduction protocols and methods. To accelerate the development of drugs that can either improve or inhibit fertility, we established a small molecule library as a toolbox for assay development and screening campaigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in several automated high-throughput assays that measure stimulation or inhibition of sperm motility or the acrosome reaction. We have assayed motility under non-capacitating and capacitating conditions to distinguish between pathways operating under these different physiological states. We also assayed cell viability to ensure any effects on sperm function are specific. A key advantage of our studies is that all compounds are assayed together in the same experimental conditions, which allows quantitative comparisons of their effects in complementary functional assays. We have combined the resulting datasets to generate fingerprints of the Sperm Toolbox compounds on sperm function. The data are included in an on-line R-based app for convenient querying.


Assuntos
Sêmen , Motilidade dos Espermatozoides , Humanos , Masculino , Espermatozoides/metabolismo , Reação Acrossômica , Fertilidade
10.
Andrology ; 12(2): 459-471, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37300872

RESUMO

BACKGROUND: Equine spermatozoa appear to differ from spermatozoa of other species in using oxidative phosphorylation preferentially over glycolysis. However, there is little information regarding effects of different energy sources on measured parameters in equine spermatozoa. OBJECTIVE: To determine the effect of three individual energy substrates, glucose, pyruvate, and lactate, on motion characteristics, membrane integrity, and acrosomal status of stallion spermatozoa. MATERIALS AND METHODS: Freshly ejaculated stallion spermatozoa were incubated with combinations of glucose (5 mm), pyruvate (10 mm), and lactate (10 mm) for 0.5 to 4 h. Response to calcium ionophore A23187 (5 µm) was used to evaluate capacitation status. Motility was evaluated using computer-assisted sperm analysis, and plasma membrane and acrosomal integrity were evaluated by flow cytometry. RESULTS: Incubation with lactate alone for 2 h increased acrosomal sensitivity to A23187. Notably, incubation with lactate alone for 4 h induced a significant spontaneous increase in acrosome-reacted, membrane-intact (viable) spermatozoa, to approximately 50% of the live population, whereas no increase was seen with incubation in glucose or pyruvate alone. This acrosomal effect was observed in spermatozoa incubated at physiological pH as well as under alkaline conditions (medium pH approximately 8.5). Sperm motility declined concomitantly with the increase in acrosome-reacted spermatozoa. Sperm motility was significantly higher in pyruvate-only medium than in glucose or lactate. The addition of pyruvate to lactate-containing medium increased sperm motility but reduced the proportion of live acrosome-reacted spermatozoa in a dose-dependent fashion. DISCUSSION: This is the first study to demonstrate that incubation with a specific energy substrate, lactate, is associated with spontaneous acrosome reaction in spermatozoa. The proportion of live, acrosome-reacted spermatozoa obtained is among the highest reported for equine spermatozoa. CONCLUSION: These findings highlight the delicate control of key sperm functions, and may serve as a basis to increase our understanding of stallion sperm physiology.


Assuntos
Reação Acrossômica , Ácido Láctico , Masculino , Animais , Cavalos , Reação Acrossômica/fisiologia , Ácido Láctico/metabolismo , Calcimicina/farmacologia , Sêmen , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Acrossomo , Piruvatos/metabolismo , Piruvatos/farmacologia , Glucose/metabolismo , Capacitação Espermática
11.
Vet Res Commun ; 48(2): 773-786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37906355

RESUMO

Before fertilization of the oocyte, the spermatozoa must undergo through a series of biochemical changes in the female reproductive tract named sperm capacitation. Spermatozoa regulates its functions by post-translational modifications, being historically the most studied protein phosphorylation. In addition to phosphorylation, recently, protein acetylation has been described as an important molecular mechanism with regulatory roles in several reproductive processes. However, its role on the mammal's sperm capacitation process remains unraveled. Sirtuins are a deacetylase protein family with 7 members that regulate protein acetylation. Here, we investigated the possible role of SIRT1 on pig sperm capacitation-related events by using YK 3-237, a commercial SIRT1 activator drug. SIRT1 is localized in the midpiece of pig spermatozoa. Protein tyrosine phosphorylation (focused at p32) is an event associated to pig sperm capacitation that increases when spermatozoa are in vitro capacitated in presence of YK 3-237. Eventually, YK 3-237 induces acrosome reaction in capacitated spermatozoa: YK 3-237 treatment tripled (3.40 ± 0.40 fold increase) the percentage of acrosome-reacted spermatozoa compared to the control. In addition, YK 3-237 induces sperm intracellular pH alkalinization and raises the intracellular calcium levels through a CatSper independent mechanism. YK 3-237 was not able to bypass sAC inhibition by LRE1. In summary, YK 3-237 promotes pig sperm capacitation by a mechanism upstream of sAC activation and independent of CatSper calcium channel.


Assuntos
Sirtuína 1 , Capacitação Espermática , Suínos , Masculino , Feminino , Animais , Capacitação Espermática/fisiologia , Sirtuína 1/metabolismo , Sêmen , Espermatozoides/fisiologia , Reação Acrossômica/fisiologia , Mamíferos
12.
Reprod Domest Anim ; 59(1): e14511, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018440

RESUMO

The current study aimed to investigate the impact of nano-formulations of clove bud ethanolic extract (CBENF) in the extender on sperm characteristics, antioxidant capacity, oxidative biomarkers, enzymatic activity, apoptosis and fertility of post-thawed rabbit semen. Twelve mature male rabbits semen samples were pooled and cryopreserved in a Tris-egg yolk-based extender containing varying concentrations of CBENF (0, 25, 50, 75 and 100 µg/mL). After the equilibration and freezing-thawing process, CBENF (100 µg /mL) significantly enhanced progressive motility, viability and membrane integrity. Conversely, sperm abnormality was significantly reduced by CBENF supplementation. Total antioxidant capacity was increased in the post-thawed sperm medium, while nitric oxide and malondialdehyde were decreased in all CBENF concentrations. The lactic dehydrogenase and caspase-3 activities were decreased, whereas the number of live spermatozoa with an intact acrosome was increased in all CBENF concentrations. Conception rate and litter size per doe were higher in doe rabbits inseminated with semen supplemented with 100 µg CBENF/mL than un-supplemented group (76% vs. 52% and 8.4 vs. 7.7/doe), with no statistical differences. These findings suggest that supplementing rabbit extenders with 100 µg of CBENF/mL could be an effective strategy for enhancing freeze-thawing rabbit sperm attributes and fertility.


Assuntos
Preservação do Sêmen , Syzygium , Masculino , Coelhos , Animais , Congelamento , Antioxidantes/farmacologia , Caspase 3 , Reação Acrossômica , Crioprotetores , Motilidade dos Espermatozoides , Sementes , Espermatozoides , Criopreservação/veterinária , Fertilidade , Preservação do Sêmen/veterinária
13.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069328

RESUMO

To acquire the capacity to fertilize the oocyte, mammalian spermatozoa must undergo a series of biochemical reactions in the female reproductive tract, which are collectively called capacitation. The capacitated spermatozoa subsequently interact with the oocyte zona-pellucida and undergo the acrosome reaction, which enables the penetration of the oocyte and subsequent fertilization. However, the spontaneous acrosome reaction (sAR) can occur prematurely in the sperm before reaching the oocyte cumulus oophorus, thereby jeopardizing fertilization. One of the main processes in capacitation involves actin polymerization, and the resulting F-actin is subsequently dispersed prior to the acrosome reaction. Several biochemical reactions that occur during sperm capacitation, including actin polymerization, protect sperm from sAR. In the present review, we describe the protective mechanisms that regulate sperm capacitation and prevent sAR.


Assuntos
Reação Acrossômica , Actinas , Animais , Masculino , Feminino , Reação Acrossômica/fisiologia , Sêmen , Espermatozoides/fisiologia , Citoesqueleto de Actina , Mamíferos , Acrossomo
14.
Front Endocrinol (Lausanne) ; 14: 1273878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027124

RESUMO

Introduction: Lipidomics elucidates the roles of lipids in both physiological and pathological processes, intersecting with many diseases and cellular functions. The maintenance of lipid homeostasis, essential for cell health, significantly influences the survival, maturation, and functionality of sperm during fertilization. While capacitation and the acrosome reaction, key processes before fertilization, involve substantial lipidomic alterations, a comprehensive understanding of the changes in human spermatozoa's lipidomic profiles during these processes remains unknown. This study aims to explicate global lipidomic changes during capacitation and the acrosome reaction in human sperm, employing an untargeted lipidomic strategy using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Methods: Twelve semen specimens, exceeding the WHO reference values for semen parameters, were collected. After discontinuous density gradient separation, sperm concentration was adjusted to 2 x 106 cells/ml and divided into three groups: uncapacitated, capacitated, and acrosome-reacted. UPLC-MS analysis was performed after lipid extraction from these groups. Spectral peak alignment and statistical analysis, using unsupervised principal component analysis (PCA), bidirectional orthogonal partial least squares discriminant analysis (O2PLS-DA) analysis, and supervised partial least-squares-latent structure discriminate analysis (PLS-DA), were employed to identify the most discriminative lipids. Results: The 1176 lipid peaks overlapped across the twelve individuals in the uncapacitated, capacitated, and acrosome-reacted groups: 1180 peaks between the uncapacitated and capacitated groups, 1184 peaks between the uncapacitated and acrosome-reacted groups, and 1178 peaks between the capacitated and acrosome-reacted groups. The count of overlapping peaks varied among individuals, ranging from 739 to 963 across sperm samples. Moreover, 137 lipids had VIP values > 1.0 and twenty-two lipids had VIP > 1.5, based on the O2PLS-DA model. Furthermore, the identified twelve lipids encompassed increases in PI 44:10, LPS 20:4, LPA 20:5, and LPE 20:4, and decreases in 16-phenyl-tetranor-PGE2, PC 40:6, PS 35:4, PA 29:1, 20-carboxy-LTB4, and 2-oxo-4-methylthio-butanoic acid. Discussion: This study has been the first time to investigate the lipidomics profiles associated with acrosome reaction and capacitation in human sperm, utilizing UPLC-MS in conjunction with multivariate data analysis. These findings corroborate earlier discoveries on lipids during the acrosome reaction and unveil new metabolites. Furthermore, this research highlights the effective utility of UPLC-MS-based lipidomics for exploring diverse physiological states in sperm. This study offers novel insights into lipidomic changes associated with capacitation and the acrosome reaction in human sperm, which are closely related to male reproduction.


Assuntos
Reação Acrossômica , Lipidômica , Humanos , Masculino , Reação Acrossômica/fisiologia , Sêmen , Cromatografia Líquida , Capacitação Espermática/fisiologia , Espectrometria de Massas em Tandem , Espermatozoides/fisiologia , Lipídeos
15.
Res Vet Sci ; 164: 105013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742485

RESUMO

Ejaculated boar spermatozoa can be liquid preserved for several days and be easily activated to produce physiological changes. One of the major changes is acrosome exocytosis that is physiologically related to capacitation. Glycolysis and reactive oxygen species (ROS) were studied regarding several boar sperm functions, but data available about their effect on boar sperm acrosome exocytosis are scarce. The objective of this work was to evaluate the effect of glucose and ROS on boar sperm acrosome exocytosis. We evaluated acrosome exocytosis by progesterone induction of capacitated sperm and assess viability, kinematics parameters, ROS levels, ATP content and Protein Kinase A activity in media with or without glucose and hydrogen peroxide or potassium chromate, as source of ROS. Our results show that glucose has no effect on acrosome exocytosis and also, it is not necessary for boar sperm capacitation, although it has a positive effect in the presence of ROS. On the other hand, ROS effects are related to spontaneous acrosome reaction. We conclude that glycolysis may function as a metabolic pathway that provides sustain but is not directly involved in boar sperm acrosome exocytosis and capacitation. Also, ROS do not promote capacitation in boar sperm, but affect spontaneous acrosome exocytosis.


Assuntos
Reação Acrossômica , Acrossomo , Suínos , Masculino , Animais , Espécies Reativas de Oxigênio/metabolismo , Reação Acrossômica/fisiologia , Glucose/farmacologia , Glucose/metabolismo , Sêmen , Espermatozoides , Exocitose
17.
Theriogenology ; 211: 11-18, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37556930

RESUMO

The progesterone (P4) secreted by cumulus cells has gained attention for its role as a possible physiological inducer of sperm acrosome exocytosis. In mammals, it is generally accepted that fertilization rates of oocytes without cumulus are markedly low. This study assessed the integrity of capacitated bovine sperm acrosome when exposed to increasing concentrations of P4, and evaluated whether exogenous P4 during in vitro fertilization (IVF) increases the developmental competence of partially cumulus-denuded oocytes in serum-free conditions. After a 4-h capacitation induction, sperm were incubated with increasing concentrations of P4 (0, 0.1, 10 and 100 µM) and evaluated for viability, caspase activation and acrosome status at three different times (4, 5, and 22 h), including the capacitation induction period. Progesterone induced sperm acrosomal exocytosis without compromising sperm viability or activating sperm caspases. Sperm undergoing acrosome reaction exhibited three differential Concanavalin A patterns, corresponding to early, intermediate and late acrosomal exocytosis. The percentage of these patterns significantly increased over time, regardless of P4 concentration, except for those spermatozoa with late acrosomal exocytosis, which only showed an increase at 22 h of incubation. After incubation for 1 h with 100 µM P4, spermatozoa showing intermediate acrosomal exocytosis significantly increased. At 22 h of incubation, the pattern corresponding to early acrosomal exocytosis evidenced a dose-dependent increase. However, prematurely high levels of acrosome reaction induced by 100 µM P4 led to inefficient IVF outcomes (P < 0.05). Therefore, IVF trials with partially cumulus-denuded oocytes were carried out with lower P4 concentrations (0, 0.1, 1, 5, 10 µM). Cleavage rate significantly increased at 1 µM P4, which translated to increased total embryo production after 7 days of in vitro culture (P < 0.05). Significantly higher percentages of expanded blastocysts were observed at both 1 µM and 10 µM P4 as compared to the other experimental conditions. In conclusion, the different patterns of acrosomal exocytosis identified over time by incubation of live sperm with a fluorescent lectin revealed the existence of sperm subpopulations heterogeneous in their physiological states. Moreover, exogenous P4 at 1 µM during IVF improved the developmental competence of partially cumulus-denuded oocytes in serum-free conditions.


Assuntos
Progesterona , Sêmen , Masculino , Bovinos , Animais , Progesterona/farmacologia , Fertilização in vitro/veterinária , Espermatozoides/fisiologia , Oócitos/fisiologia , Reação Acrossômica , Capacitação Espermática , Mamíferos
18.
J Assist Reprod Genet ; 40(8): 1787-1805, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37289376

RESUMO

Fertilization failure refers to the failure in the pronucleus formation, evaluating 16-18 h post in vitro fertilization or intracytoplasmic sperm injection. It can be caused by sperm, oocytes, and sperm-oocyte interaction and lead to great financial and physical stress to the patients. Recent advancements in genetics, molecular biology, and clinical-assisted reproductive technology have greatly enhanced research into the causes and treatment of fertilization failure. Here, we review the causes that have been reported to lead to fertilization failure in fertilization processes, including the sperm acrosome reaction, penetration of the cumulus and zona pellucida, recognition and fusion of the sperm and oocyte membranes, oocyte activation, and pronucleus formation. Additionally, we summarize the progress of corresponding treatment methods of fertilization failure. This review will provide the latest research advances in the genetic aspects of fertilization failure and will benefit both researchers and clinical practitioners in reproduction and genetics.


Assuntos
Sêmen , Espermatozoides , Masculino , Animais , Espermatozoides/fisiologia , Fertilização in vitro , Interações Espermatozoide-Óvulo/genética , Reação Acrossômica , Oócitos/fisiologia , Zona Pelúcida/fisiologia , Fertilização/genética
19.
Biochem Biophys Res Commun ; 671: 318-326, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37327703

RESUMO

Scanning ion-conductance microscopy allowed us to document an external Ca2+ dependent ATP driven volume increase (ATPVI) in capacitated human sperm heads. We examined the involvement of purinergic receptors (PRs) P2X2R and P2X4R in ATPVI using their co-agonists progesterone and Ivermectin (Iver), and Cu2+, which co-activates P2X2Rs and inhibits P2X4Rs. Iver enhanced ATPVI and Cu2+ and 5BDBD inhibited it, indicating P2X4Rs contributed to this response. Moreover, Cu2+ and 5BDBD inhibited the ATP-induced acrosome reaction (AR) which was enhanced by Iver. ATP increased the concentration of intracellular Ca2+ ([Ca2+]i) in >45% of individual sperm, most of which underwent AR monitored using FM4-64. Our findings suggest that human sperm P2X4R activation by ATP increases [Ca2+]i mainly due to Ca2+ influx which leads to a sperm head volume increase, likely involving acrosomal swelling, and resulting in AR.


Assuntos
Sêmen , Espermatozoides , Humanos , Masculino , Espermatozoides/fisiologia , Reação Acrossômica/fisiologia , Trifosfato de Adenosina , Cálcio , Acrossomo/fisiologia
20.
Mol Hum Reprod ; 29(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37184908

RESUMO

Fertilization failure is a significant manifestation of unexplained male infertility. Previous work has suggested a genetic origin. In this study, we report on a man with unexplained infertility from a large consanguineous marriage family. Whole-exome sequencing and Sanger sequencing identified a homozygous frameshift variation of the IQ motif containing N (IQCN; GenBank: NM_001145304.1; c.1061_1062delAT; p.Y354Sfs*13) in the proband and one of his two brothers, who also remained infertile. Analyses of spermatozoa by quantitative RT-PCR indicated that the level of IQCN mRNA was significantly reduced compared to fertile men and the protein could not be detected by western blotting and immunofluorescent staining in the proband. Immunofluorescent staining of spermatozoa from fertile men showed that IQCN was located in the acrosomal region and translocated to the equatorial segment after the acrosome reaction. The proband spermatozoa had abnormal morphology and function. Finally, the proband couple underwent IVF with donor sperm and a healthy baby was born. Furthermore, we developed an Iqcn-KO mouse model using the CRISPR/Cas9 technique. Sperm quality, except for sperm motility, and the fertility of male Iqcn-/- mice were consistent with those of the proband. In conclusion, the findings in humans and mice demonstrate that the homozygous frameshift variant of IQCN causes male infertility owing to autosomal-recessive fertilization failure.


Assuntos
Infertilidade Masculina , Sêmen , Animais , Humanos , Masculino , Camundongos , Reação Acrossômica , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Mutação , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA