Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.867
Filtrar
1.
Food Res Int ; 186: 114333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729693

RESUMO

Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.


Assuntos
Acrilamida , Asparaginase , Asparagina , Coffea , Café , Paladar , Acrilamida/análise , Asparagina/análise , Coffea/química , Café/química , Humanos , Compostos Orgânicos Voláteis/análise , Culinária/métodos , Alcaloides/análise , Ácido Clorogênico/análise , Cafeína/análise , Masculino , Manipulação de Alimentos/métodos , Reação de Maillard , Temperatura Alta , Cromatografia Líquida de Alta Pressão , Sementes/química , Feminino
2.
Food Res Int ; 186: 114397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729739

RESUMO

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Assuntos
Glucose , Lisina , Reação de Maillard , Odorantes , Oxirredução , Óleo de Gergelim , Óleo de Gergelim/química , Glucose/química , Odorantes/análise , Lisina/química , Fenóis/química , Benzodioxóis
3.
J Agric Food Chem ; 72(19): 11153-11163, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695891

RESUMO

Maillard reaction (MR) plays a pivotal role in the food flavor industry, including a cascade of reactions starting with the reaction between amino compounds and reducing sugars, and thus provides various colors and flavors. A new group of volatile compounds called pyrazinones found in MR are now getting more attention. In this study, eight volatile pyrazinones were found in the asparagine MR systems, in which 3,5-dimethyl- and 3,6-dimethyl-2(1H)-pyrazinones were reported for the first time. The major formation pathways were the reactions between asparagine and α-dicarbonyls, with decarboxylation as a critical step. Besides, novel alternative pathways involving alanine amidation and successive reactions with α-dicarbonyls were explored and successfully formed eight pyrazinones. The major differences between alanine-amidated pathways and decarboxylation pathways are the amidation step and absence of the decarboxylation step. For the alanine-amidated pathways, the higher the temperature, the better the amidation effect. The optimal amidation temperature was 200 °C in this study. The reaction between the alanine amide and α-dicarbonyls after amidation can happen at low temperatures, such as 35 and 50 °C, proposing the possibility of pyrazinone formation in real food systems. Further investigations should be conducted to investigate volatile pyrazinones in various food systems as well as the biological effects and kinetic formation differences of the volatile pyrazinones.


Assuntos
Alanina , Asparagina , Reação de Maillard , Pirazinas , Compostos Orgânicos Voláteis , Pirazinas/química , Alanina/química , Asparagina/química , Compostos Orgânicos Voláteis/química , Aromatizantes/química
4.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731499

RESUMO

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Carbono , Reação de Maillard , Células-Tronco Mesenquimais , PPAR gama , Proteína de Ligação a Elemento Regulador de Esterol 1 , Humanos , Carbono/química , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Pontos Quânticos/química , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Enxofre/química
5.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731606

RESUMO

The polyphenol-Maillard reaction is considered one of the important pathways in the formation of humic-like substances (HLSs). Glucose serves as a microbial energy source that drives the humification process. However, the effects of changes in glucose, particularly its concentration, on abiotic pathways remain unclear. Given that the polyphenol-Maillard reaction requires high precursor concentrations and elevated temperatures (which are not present in soil), gibbsite was used as a catalyst to overcome energetic barriers. Catechol and glycine were introduced in fixed concentrations into a phosphate-buffered solution containing gibbsite using the liquid shake-flask incubation method, while the concentration of glucose was controlled in a sterile incubation system. The supernatant fluid and HLS components were dynamically extracted over a period of 360 h for analysis, thus revealing the influence of different glucose concentrations on abiotic humification pathways. The results showed the following: (1) The addition of glucose led to a higher degree of aromatic condensation in the supernatant fluid. In contrast, the supernatant fluid without glucose (Glu0) and the control group without any Maillard precursor (CK control group) exhibited lower degrees of aromatic condensation. Although the total organic C (TOC) content in the supernatant fluid decreased in all treatments during the incubation period, the addition of Maillard precursors effectively mitigated the decreasing trend of TOC content. (2) While the C content of humic-like acid (CHLA) and the CHLA/CFLA ratio (the ratio of humic-like acid to fulvic-like acid) showed varying increases after incubation, the addition of Maillard precursors resulted in a more noticeable increase in CHLA content and the CHLA/CFLA ratio compared to the CK control group. This indicated that more FLA was converted into HLA, which exhibited a higher degree of condensation and humification, thus improving the quality of HLS. The addition of glycine and catechol without glucose or with a glucose concentration of 0.06 mol/L was particularly beneficial in enhancing the degree of HLA humification. Furthermore, the presence of glycine and catechol, as well as higher concentrations of glucose, promoted the production of N-containing compounds in HLA. (3) The presence of Maillard precursors enhanced the stretching vibration of the hydroxyl group (-OH) of HLA. After the polyphenol-Maillard reaction of glycine and catechol with glucose concentrations of 0, 0.03, 0.06, 0.12, or 0.24 mol/L, the aromatic C structure in HLA products increased, while the carboxyl group decreased. The presence of Maillard precursors facilitated the accumulation of polysaccharides in HLA with higher glucose concentrations, ultimately promoting the formation of Al-O bonds. However, the quantities of phenolic groups and phenols in HLA decreased to varying extents.


Assuntos
Glucose , Substâncias Húmicas , Reação de Maillard , Polifenóis , Substâncias Húmicas/análise , Glucose/química , Glucose/metabolismo , Polifenóis/química , Catecóis/química
6.
Phytomedicine ; 128: 155589, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608487

RESUMO

BACKGROUND: Food products undergo a pronounced Maillard reaction (MR) during the cooking process, leading to the generation of substantial quantities of Maillard reaction products (MRPs). Within this category, advanced glycation end products (AGEs), acrylamide (AA), and heterocyclic amines (HAs) have been implicated as potential risk factors associated with the development of diseases. PURPOSE: To explore the effects of polyphenols, a class of bioactive compounds found in plants, on the inhibition of MRPs and related diseases. Previous research has mainly focused on their interactions with proteins and their effects on the gastrointestinal tract and other diseases, while fewer studies have examined their inhibitory effects on MRPs. The aim is to offer a scientific reference for future research investigating the inhibitory role of polyphenols in the MR. METHODS: The databases PubMed, Embase, Web of Science and The Cochrane Library were searched for appropriate research. RESULTS: Polyphenols have the potential to inhibit the formation of harmful MRPs and prevent related diseases. The inhibition of MRPs by polyphenols primarily occurs through the following mechanisms: trapping α-dicarbonyl compounds, scavenging free radicals, chelating metal ions, and preserving protein structure. Simultaneously, polyphenols exhibit the ability to impede the onset and progression of related diseases such as diabetes, atherosclerosis, cancer, and Alzheimer's disease through diverse pathways. CONCLUSION: This review presents that inhibition of polyphenols on Maillard reaction products and their induction of related diseases. Further research is imperative to enhance our comprehension of additional pathways affected by polyphenols and to fully uncover their potential application value in inhibiting MRPs.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Polifenóis , Polifenóis/farmacologia , Polifenóis/química , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Humanos , Acrilamida/química , Doença de Alzheimer/tratamento farmacológico , Neoplasias/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Animais
7.
Endocr Regul ; 58(1): 57-67, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563294

RESUMO

Advanced glycation end products (AGEs) are a diverse group of compounds that are formed as a result of the non-enzymatic reaction between a reducing sugar such as glucose and the free NH2 groups of an amino acid in a protein or other biomolecule. The chemical reaction, by which these products are generated, is known as the Maillard reaction and occurs as a part of the body's normal metabolism. Such a reaction is enhanced during diabetes due to hyperglycemia, but it can also occur during the preparation, processing, and preservation of certain foods. Therefore, AGEs can also be obtained from the diet (d-AGE) and contribute to an increase of the total serum pool of these compounds. They have been implicated in a wide variety of pathological processes, mainly because of their ability to induce inflammatory responses and oxidative stress increase. They are extensively accumulated as a part of the normal aging, especially in tissues rich in long half-life proteins, which can compromise the physiology of these tissues. d-AGEs are abundant in diets rich in processed fats and sugars. This review is addressed to the current knowledge on these products and their impact on the immunomodulation of various mechanisms that may contribute to exacerbation of the diabetes pathophysiology.


Assuntos
Diabetes Mellitus , Produtos Finais de Glicação Avançada , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Dieta/efeitos adversos , Reação de Maillard , Inflamação
8.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598270

RESUMO

Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156-0.366]) vs non-diabetic subjects 0.352% [0.269-0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46-30.10] vs non-diabetic subjects 76.24 MPa [26.81-132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=-0.7500, p=0.0255; r=-0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young's modulus was negatively correlated with SOST (r=-0.5675, p=0.0011), AXIN2 (r=-0.5523, p=0.0042), and SFRP5 (r=-0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.


Type 2 diabetes is a long-term metabolic disease characterised by chronic high blood sugar levels. This in turn has a negative impact on the health of other tissues and organs, including bones. Type 2 diabetes patients have an increased risk of fracturing bones compared to non-diabetics. This is particularly true for fragility fractures, which are fractures caused by falls from a short height (i.e., standing height or less), often affecting hips or wrists. Usually, a lower bone density is associated with higher risk of fractures. However, patients with type 2 diabetes have increased bone fragility despite normal or higher bone density. One reason for this could be the chronically high levels of blood sugar in type 2 diabetes, which alter the properties of proteins in the body. It has been shown that the excess sugar molecules effectively 'react' with many different proteins, producing harmful compounds in the process, called Advanced Glycation End-products, or AGEs. AGEs are ­ in turn ­thought to affect the structure of collagen proteins, which help hold our tissues together and decrease bone strength. However, the signalling pathways underlying this process are still unclear. To find out more, Leanza et al. studied a signalling molecule, called sclerostin, which inhibits a signalling pathway that regulates bone formation, known as Wnt signaling. The researchers compared bone samples from both diabetic and non-diabetic patients, who had undergone hip replacement surgery. Analyses of the samples, using a technique called real-time-PCR, revealed that gene expression of sclerostin was increased in samples of type 2 diabetes patients, which led to a downregulation of Wnt signaling related genes. Moreover, the downregulation of Wnt genes was correlated with lower bone strength (which was measured by compressing the bone tissue). Further biochemical analysis of the samples revealed that higher sclerostin activity was also associated with higher levels of AGEs. These results provide a clearer understanding of the biological mechanisms behind compromised bone strength in diabetes. In the future, Leanza et al. hope that this knowledge will help us develop treatments to reduce the risk of bone complications for type 2 diabetes patients.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Feminino , Reação de Maillard , Via de Sinalização Wnt , Osso e Ossos , Pesquisadores
9.
J Drugs Dermatol ; 23(4): SF378083s5-SF378083s10, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564405

RESUMO

Skin aging is influenced by various exogenous and endogenous factors, ranging from ultraviolet (UV) light exposure and environmental toxins to biological sources, such as those that arise from normal metabolic processes (eg, free radicals). Glycation is the normal process by which glucose and other reducing sugars react with proteins to form an array of heterogeneous biomolecular structures known as advanced glycation end-products (AGEs) over time. However, AGEs are toxic to human cells and are implicated in the acceleration of inflammatory and oxidative processes, with their accumulation in the skin being associated with increased skin dulling and yellowing, fine lines, wrinkles, and skin laxity. Clinicians should become cognizant of how AGEs develop, what their biological consequences are, and familiarize themselves with available strategies to mitigate their formation. J Drugs Dermatol.  2024;23:4(Suppl 1):s5-10.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/toxicidade , Açúcares/efeitos adversos , Açúcares/metabolismo , Pele/metabolismo , Radicais Livres/metabolismo
10.
Exp Dermatol ; 33(4): e15065, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563644

RESUMO

The advanced glycation end-products (AGEs) are produced through non-enzymatic glycation between reducing sugars and free amino groups, such as proteins, lipids or nucleic acids. AGEs can enter the body through daily dietary intake and can also be generated internally via normal metabolism and external stimuli. AGEs bind to cell surface receptors for AGEs, triggering oxidative stress and inflammation responses that lead to skin ageing and various diseases. Evidence shows that AGEs contribute to skin dysfunction and ageing. This review introduces the basic information, the sources, the metabolism and absorption of AGEs. We also summarise the detrimental mechanisms of AGEs to skin ageing and other chronic diseases. For the potential strategies for counteracting AGEs to skin and other organs, we summarised the pathways that could be utilised to resist glycation. Chemical and natural-derived anti-glycation approaches are overviewed. This work offers an understanding of AGEs to skin ageing and other chronic diseases and may provide perspectives for the development of anti-glycation strategies.


Assuntos
Reação de Maillard , Pele , Humanos , Estresse Oxidativo , Doença Crônica
11.
J Agric Food Chem ; 72(18): 10570-10578, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38652024

RESUMO

Amadori rearrangement products (ARPs) are gaining more attention for their potential usage in the food flavor industry. Peptide-ARPs have been studied, but pyrazinones that were theoretically found in the Maillard reaction (MR) have not been reported to be formed from small peptide-ARPs. This study found four pyrazinones: 1-methyl-, 1,5-dimethyl-, 1,6-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones in both MR and ARP systems. It was the first time 1-methyl-2(1H)-pyrazinone was reported, along with 1,5-dimethyl- and 1,5,6-trimethyl-2(1H)-pyrazinones being purified and analyzed by nuclear magnetic resonance for the first time. The primary formation routes of the pyrazinones were also proven as the reaction between diglycine and α-dicarbonyls, including glyoxal, methylglyoxal, and diacetyl. The pyrazinones, especially 1,5-dimethyl-2(1H)-pyrazinone, have strong fluorescence intensity, which may be the reason for the increase of fluorescence intensity in MR besides α-dicarbonyls. Cytotoxicity analysis showed that both Gly-/Digly-/Trigly-ARP and the three pyrazinones [1-methyl-, 1,5-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones] showed no prominent cytotoxicity in the HepG2 cell line below 100 µg/mL, further suggesting that ARPs or pyrazinones could be used as flavor additives in the future. Further research should be conducted to investigate pyrazinones in various systems, especially the peptide-ARPs, which are ubiquitous in real food systems.


Assuntos
Reação de Maillard , Pirazinas , Pirazinas/química , Humanos , Aromatizantes/química , Compostos Orgânicos Voláteis/química , Peptídeos/química , Glioxal/química
12.
Food Chem ; 449: 139237, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581780

RESUMO

Whole grains (WG) are beneficial to health but have reduced sensory quality, partly attributable to inhibition of Maillard reaction products (MRP) by WG phenolics. The study investigated how major flavonoid classes in cereals affect Maillard reaction pathways. Flavonoids were reacted with xylose-lysine aqueous system at 160 °C/12 min. Additionally, breads were made with catechin, and wheat and sorghum bran fortification. Low Mw MRP were profiled using UPLC-MS/MS, while melanoidins were characterized using fluorescence spectroscopy and HPSEC-MALS. The flavonoids significantly (p < 0.05) reduced both melanoidin content (by 33-86%) and Mw (3.5-15 kDa vs 20 kDa control), leading to lighter bread crust. Flavonoids inhibited MRP via direct condensation with early-stage amines and carbonyls into stable adducts, and reduction of late-stage polymerization reactions, increasing accumulation of cyclic N-containing intermediates. Inhibitory trend was flavones>flavanones>flavanols. C-Ring π-bond dramatically enhance flavonoid MRP inhibition; thus flavone-rich cereal grains are likely to strongly impact MRP-dependent sensory attributes of WG products.


Assuntos
Pão , Grão Comestível , Flavonoides , Reação de Maillard , Flavonoides/química , Flavonoides/farmacologia , Grão Comestível/química , Pão/análise , Manipulação de Alimentos , Triticum/química , Espectrometria de Massas em Tandem
13.
Food Chem ; 449: 139189, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593726

RESUMO

Non-enzymatic conversion of phenolic compounds plays an important role during thermal processing of plant-based food such as coffee, cocoa, and peanuts. However, the more prominent Maillard reaction is mainly studied at a mechanistic level for carbohydrates and amino compounds to clarify reactions that contribute to ('classic') melanoidin formation, but the role of phenolic compounds in such reactions is rarely discussed yet. To understand their contribution to non-enzymatic browning, reactions between ubiquitous phenolic acids, such as caffeic acid and ferulic acid, and prominent heterocyclic Maillard intermediates, namely furfural, hydroxymethylfurfural, and pyrrole-2-carbaldehyde were investigated. Following incubation under roasting conditions (220 °C, 0-30 min), heterogenous products were characterized by high-resolution mass spectrometry, and, after isolation, by nuclear magnetic resonance spectroscopy. By this, color precursors were identified, and it was shown that in addition to aromatic electrophilic substitution, nucleophilic and condensation reactions are key mechanisms contributing to the formation of phenol-containing melanoidins.


Assuntos
Ácidos Cumáricos , Reação de Maillard , Fenóis , Ácidos Cumáricos/química , Fenóis/química , Temperatura Alta , Polímeros/química , Corantes/química
14.
Plant Physiol Biochem ; 210: 108563, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554535

RESUMO

The purpose of this study was to investigate the effects of root biomass during the later stage of growth on fatty acid composition and lipid peroxidation, and to clarify the physiological mechanisms by which these differences affect internal browning (IB) development in radish roots. Therefore, we controlled the enlargement of roots by changing the thinning period and generated plots composed of roots with different biomass in the latter half of growth. The earlier the radish seedlings were thinned, the more vigorous the root growth from an earlier stage was achieved. Earlier thinning caused IB from the early stage of root maturation, and IB severity progressed with subsequent age progression; however, IB damage did not occur when root size during the later growth stage was kept small by later thinning. Higher levels of hydrogen peroxide, peroxidase activity, NADPH-dependent reactive oxygen species (ROS) burst-related genes, and carbonyl compounds were detected in earlier-thinned large-sized roots compared to later-thinned small-sized ones. Compared with the latter small-sized roots, the former large-sized roots had a lower ratio of linoleic acid (18:2) and a higher ratio of α-linolenic acid (α-18:3). Furthermore, in earlier-thinned large-sized roots, higher levels of phospholipase- and/or lipoxygenase-related genes were detected compared to later-thinned small-sized ones. These facts suggest the possibility that root biomass in the later stage of growth affects the desaturation of membrane fatty acids, ROS concentration, and activity of fatty acid degrading enzymes, and controls the occurrence of IB injury through membrane oxidative degradation.


Assuntos
Biomassa , Raízes de Plantas , Raphanus , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raphanus/crescimento & desenvolvimento , Raphanus/metabolismo , Ácidos Graxos/metabolismo , Peroxidação de Lipídeos , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação de Maillard , Ácido Linoleico/metabolismo , Ácido alfa-Linolênico/metabolismo
15.
Food Res Int ; 182: 114176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519189

RESUMO

In this work, the effects of Maillard reaction of different monosaccharide-modified fish gelatin were studied. The changes of gel properties, rheology and structure of fish gelatin before and after modification were compared and analyzed, and oil-in-woter emulsions were prepared. The results showed that the five-carbon monosaccharide had stronger modification ability than the six-carbon monosaccharide, which was mainly due to the different steric hindrance of the amino acids in the nuclear layer and the outer layer to the glycosylation reaction. With the progress of the Maillard reaction, the color of fish gelatin gradually became darker. The attachment of sugar chains inhibited the gelation process of fish gelatin, decreased the gelation rate, changed the secondary structure, increased the content of ß-turn or α-helix, increased the degree of fluorescence quenching, and enhanced the emulsifying properties and emulsion stability. This study provides useful information for the preparation of different types of monosaccharide-modified proteins and emulsions.


Assuntos
Gelatina , Monossacarídeos , Animais , Gelatina/química , Reação de Maillard , Emulsões/química , Carbono
16.
Artigo em Inglês | MEDLINE | ID: mdl-38460447

RESUMO

Human serum albumin (HSA) is known to undergo modifications by glucose during diabetes. This process produces glycated HSA that can have altered binding to some drugs. In this study, high-performance affinity microcolumns and competition studies were used to see how glycation affects the binding by two thiazolidinedione-class drugs (i.e., pioglitazone and rosiglitazone) at specific regions of HSA. These regions included Sudlow sites I and II, the tamoxifen and digitoxin sites, and a drug-binding site located in subdomain IB. At Sudlow site II, the association equilibrium constants (or binding constants) for pioglitazone and rosiglitazone with normal HSA were 1.7 × 105 M-1 and 2.0 × 105 M-1 at pH 7.4 and 37 °C, with values that changed by up to 5.7-fold for glycated HSA. Sudlow site I of normal HSA had binding constants for pioglitazone and rosiglitazone of 3.4 × 105 M-1 and 4.6 × 105 M-1, with these values changing by up to 1.5-fold for glycated HSA. Rosiglitazone was found to also bind a second region that had a positive allosteric effect on Sudlow site I for all the tested preparations of HSA (binding affinity, 1.1-3.2 × 105 M-1; coupling constant for Sudlow site I, 1.20-1.34). Both drugs had a strong positive allosteric effect on the tamoxifen site of HSA (coupling constants, 13.7-19.9 for pioglitazone and 3.7-11.5 for rosiglitazone). Rosiglitazone also had weak interactions at a site in subdomain IB, with a binding constant of 1.4 × 103 M-1 for normal HSA and a value that was altered by up to 6.8-fold with glycated HSA. Neither of the tested drugs had any significant binding at the digitoxin site. The results were used to produce affinity maps that described binding by these thiazolidinediones with HSA and the effects of glycation on these interactions during diabetes.


Assuntos
Diabetes Mellitus , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Hipoglicemiantes/química , Reação de Maillard , Rosiglitazona , Pioglitazona , Ligação Proteica , Albumina Sérica/química , Tamoxifeno , Digitoxina , Cromatografia de Afinidade/métodos , Sítios de Ligação
17.
Ann Med ; 56(1): 2330615, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38513606

RESUMO

BACKGROUND: A growing number of studies show that people with similar blood glucose levels have different levels of glycosylated haemoglobin (HbA1c), and relying only on HbA1c may lead to clinical decision-making errors. The haemoglobin glycation index (HGI) quantifies the difference in HbA1c among individuals and is strongly linked to the risk of cardiovascular disease. However, the connection between this phenomenon and the poor outcomes of patients with acute decompensated heart failure (ADHF) is currently unknown. PATIENTS AND METHODS: This retrospective, single-centre-based cohort study included 1531 hospitalized patients with ADHF from September 2010 to January 2020. The HGI is calculated from the difference between the observed and predicted HbA1c values [predicted HbA1c = 0.024 × fasting plasma glucose (FPG) (mg/dL)+3.1]. The endpoints examined in the study included all-cause death, cardiovascular (CV) death, and major adverse cardiac events (MACE). We fitted multivariable-adjusted Cox proportional hazard models to investigate the association between the HGI and clinical outcomes. RESULTS: During the five-year follow-up, 427 (27.9%) patients died from all causes, 232 (15.6%) from CV death, and 848 (55.4%) from MACE. The restricted cubic spline analysis also showed that the cumulative risk of all-cause and CV deaths decreased linearly with increasing HGI. According to multivariate Cox proportional hazard models, the highest tertile of the HGI was associated with a lower incidence of all-cause and cardiovascular deaths [all-cause death, adjusted hazard ratio (HR): 0.720, 95% confidence interval (CI): 0.563-0.921, p = 0.009; CV death, adjusted HR: 0.619, 95% CI: 0.445-0.861, p = 0.004]. A 1% increase in the HGI was associated with a 12.5% reduction in the risk of all-cause death and a 20.8% reduction in the risk of CV death. CONCLUSIONS: A high HGI was directly associated with a reduction in all-cause and CV deaths but was not associated with MACE. These findings may be helpful in the management of patients with ADHF.


Recent studies have demonstrated that significant discrepancies between HbA1c and actual blood glucose levels may lead to clinical decision-making errors.The inconsistency of previous research results suggests that the HGI may have different predictive ability in populations with different diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Hemoglobinas Glicadas , Diabetes Mellitus Tipo 2/complicações , Estudos de Coortes , Estudos Retrospectivos , Reação de Maillard , Hemoglobinas/análise , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/complicações , Glicemia/análise
18.
J Agric Food Chem ; 72(12): 6593-6600, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502529

RESUMO

Furpenthiazinate is a yellow pigment formed by the Maillard reaction between cysteine and furfural under strongly acidic conditions. Here, we describe the conditions and mechanism of pigment formation in a model system and in an acid hydrolyzate of food and analyze its biological properties. A reaction solution containing 32 mM cysteine and 128 mM furfural or 64 mM cysteine and 256 mM furfural in the presence of 2-6 M hydrochloric acid that was heated to 110 °C for 1-2 h yielded approximately 3 mM furpenthiazinate. Nuclear magnetic resonance analysis of furpenthiazinate prepared using 1-13C or 5-13C d-ribose suggests that it was formed through the condensation of cysteine and two C5 chains derived from pentose with the dehydration and elimination of formic acid. Furpenthiazinate was detected in mieki, a seasoning, and some acid hydrolyzates of food, and it did not show antibacterial or mutagenic activity.


Assuntos
Furaldeído , Reação de Maillard , Tiazinas , Cisteína , Furanos , Ácidos
19.
J Agric Food Chem ; 72(11): 5878-5886, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38462902

RESUMO

The involvement of exogenous alanine was observed to inhibit the generation of 2-furfural during the thermal degradation of the Amadori rearrangement product (ARP). To clarify the reason for the reduced yield of 2-furfural triggered by exogenous alanine, the evolution of the precursors of 2-furfural formed in the ARP model and ARP-alanine model was investigated, and a model including ARP and 15N-labeled alanine was used to differentiate the role of endogenous and exogenous alanine in the degradation of ARP. It was found that the condensation between ARP and 3-deoxyxylosone could occur during thermal treatment. Nevertheless, the interaction of ARP with 3-deoxyxylosone exhibited an accelerated pace in the presence of exogenous alanine. In this way, exogenous alanine blocked the recovery of endogenous alanine while simultaneously enhancing the consumption of ARP and 3-deoxyxylosone during the Maillard reaction. Hence, the yield of 2-furfural was diminished with the interference of exogenous alanine. Furthermore, the promotion of the reaction between ARP and deoxyxylosone induced by exogenous alanine blocked their retro-aldolization reaction to short-chain α-dicarbonyls (α-DCs) and consequently resulted in a lack of pyrazine formation during the ARP degradation. The present study provided a feasible method for the controlled formation of 2-furfural during the thermal treatment of ARP derived from alanine.


Assuntos
Alanina , Furaldeído , Reação de Maillard
20.
BMC Endocr Disord ; 24(1): 31, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443880

RESUMO

INTRODUCTION: The production of advanced glycation end-products (AGEs) is a key pathomechanism related to the complications of diabetes mellitus. The measurement of HbA1c as one of the AGEs is widely used in the clinic, but also other proteins undergo glycation in the course of diabetes. Here, we measure skin AGEs (SAGEs) in patients with diabetes type 1 (DM1) and type 2 (DM2) and correlate them with metabolic markers as well as non-invasively measured liver fibrosis and steatosis. PATIENTS AND METHODS: In this cross-sectional study, a total of 64 patients with either DM1 or DM2 and 28 healthy controls were recruited. SAGEs were measured using autofluorescence (AGE Reader). Liver fibrosis and steatosis were quantified using transient elastography, which determines liver stiffness measurement (LSM) and controlled attenuation parameter (CAP). FGF19, FGF21 and GDF-15 were measured in blood samples using ELISA. RESULTS: SAGEs were elevated in both groups of patients with diabetes as compared to healthy controls (both p < 0.001) and were higher in patients with DM2 in comparison to DM1 (p = 0.006). SAGEs correlated positively with HbA1c (r = 0.404, p < 0.001), CAP (r = 0.260, p = 0.016) and LSM (r = 0.356, p < 0.001), and negatively with insulin growth factor binding protein 3 (p < 0.001). We also detected a positive correlation between GDF15 and SAGEs (r = 0.469, p < 0.001). CONCLUSIONS: SAGEs are significantly elevated in patients with both DM types 1 and 2 and correlate with metabolic markers, including HbA1c and GDF15. They might also help to detect patients with advanced liver injury in the setting of diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Fígado Gorduroso , Humanos , Controle Glicêmico , Estudos Transversais , Hemoglobinas Glicadas , Reação de Maillard , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/etiologia , Metaboloma , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...