Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Cell Mol Life Sci ; 81(1): 159, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558087

RESUMO

Both EphB2- and EphB3-deficient mice exhibit profound histological alterations in the thymic epithelial network but few changes in T-cell differentiation, suggesting that this organization would be sufficient to produce functional T lymphocytes. Also, other antigen-presenting cells involved in immunological education could substitute the thymic epithelium. Accordingly, we found an increased frequency of plasmacytoid dendritic cells but not of conventional dendritic cells, medullary fibroblasts or intrathymic B lymphocytes. In addition, there are no lymphoid infiltrates in the organs of mutant mice nor do they contain circulating autoantibodies. Furthermore, attempts to induce arthritic lesions after chicken type II collagen administration fail totally in EphB2-deficient mice whereas all WT and half of the immunized EphB3-/- mice develop a typical collagen-induced arthritis. Our results point out that Th17 cells, IL4-producing Th2 cells and regulatory T cells are key for the induction of disease, but mutant mice appear to have deficits in T cell activation or cell migration properties. EphB2-/- T cells show reduced in vitro proliferative responses to anti-CD3/anti-CD28 antibodies, produce low levels of anti-type II collagen antibodies, and exhibit low proportions of T follicular helper cells. On the contrary, EphB3-/- lymph node cells respond accurately to the different immune stimuli although in lower levels than WT cells but show a significantly reduced migration in in vitro transwell assays, suggesting that no sufficient type II collagen-dependent activated lymphoid cells reached the joints, resulting in reduced arthritic lesions.


Assuntos
Artrite Experimental , Animais , Camundongos , Colágeno , Colágeno Tipo II , Epitélio , Timo , Receptor EphB3/metabolismo
2.
Brain Res ; 1830: 148796, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341169

RESUMO

Eph receptors are the largest subfamily of receptor tyrosine kinases, and they have been shown to play a crucial role in glioma. The EphB3 receptor is a member of this family, and its effect on the invasion, migration and proliferation of glioma cells was examined in this study. It was found that the expression of EphB3 was decreased in glioma specimens with increasing tumor grade. Additionally, the U87MG and U251 cell lines showed low levels of EphB3 expression. This finding was consistent with the negative correlation between EphB3 expression in glioma tissues and tumor grade. Depletion of EphB3 gene in U87MG and U251 cell lines resulted in a substantial enhancement of their invasion, migration, and proliferation capacities in vitro. Furthermore, the knockdown of EphB3 led to an upregulation of EGFR, p-PI3K, and p-AKT protein levels. On the other hand, EphB3 overexpression reduced the invasiveness, proliferative capacity and migration rate of U87MG and U251 cells, and downregulated EGFR, p-PI3K and p-AKT. These findings indicate that EphB3 functions as a tumor suppressor in glioma, and its downregulation enhances the malignant potential of glioma cells by activating the EGFR-PI3K/AKT pathway. Thus, EphB3 is a promising diagnostic marker for glioma, and the EphB3-EGFR-PI3K / AKT axis deserves further investigation as a potential therapeutic target.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor EphB3/genética , Receptor EphB3/metabolismo , Proliferação de Células/genética , Transdução de Sinais , Glioma/metabolismo , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Invasividade Neoplásica
3.
Ann Diagn Pathol ; 69: 152262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150866

RESUMO

OBJECTIVE: To investigate the expression of ephrin type B receptor 3 (EphB3) in thyroid tumors and its usage as an ancillary diagnostic biomarker for thyroid tumors. METHODS: Formalin-fixed and paraffin-embedded (FFPE) tissue samples (78 cases) and FNAC samples (57 cases) were assessed with the EphB3 antibody using immunohistochemistry. PTC and other thyroid follicular tumors were compared regarding their EphB3 expression. Sanger sequencing was used to assess for the presence of a BRAF V600E mutation. RESULTS: EphB3 was positive in 81.8 % (27/33) of papillary thyroid carcinoma (PTC), 83.3 % (5/6) of medullary thyroid carcinoma (MTC), 25 % (1/4) of hyperplastic/adenomatoid nodule (HN), 14.3 % (1/7) of follicular adenoma (FA), and negative in follicular tumors of uncertain malignant potential (FT-UMP) (0/13), noninvasive follicular neoplasm with papillary-like nuclear features (NIFTP) (0/7), thyroid follicular carcinoma (TFC) (0/4), Hashimoto's thyroiditis (0/4), and normal thyroid follicular tissues (0/33). In cellular blocks, EphB3 was positive in 87.1 % (20/23) of PTC, 75 % (3/4) of MTC, 20 % (2/10) of HN, and negative in atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS) (0/20) and normal thyroid follicular cells (0/10). CONCLUSION: EphB3 is expressed in the majority of PTC, but less so in benign follicular nodules. EphB3 expression in fine needle aspiration cytology (FNAC) specimens can be used as a diagnostic tool to differentiate thyroid cancer from other follicular lesions in its differential diagnosis, especially AUS/FLUS and PTC.


Assuntos
Adenocarcinoma Folicular , Adenoma , Carcinoma Neuroendócrino , Carcinoma Papilar , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Adenocarcinoma Folicular/patologia , Biomarcadores , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/patologia , Hiperplasia , Estudos Retrospectivos , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/patologia , Receptor EphB3
4.
PLoS Genet ; 18(1): e1009984, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100265

RESUMO

Existing studies of chromatin conformation have primarily focused on potential enhancers interacting with gene promoters. By contrast, the interactivity of promoters per se, while equally critical to understanding transcriptional control, has been largely unexplored, particularly in a cell type-specific manner for blood lineage cell types. In this study, we leverage promoter capture Hi-C data across a compendium of blood lineage cell types to identify and characterize cell type-specific super-interactive promoters (SIPs). Notably, promoter-interacting regions (PIRs) of SIPs are more likely to overlap with cell type-specific ATAC-seq peaks and GWAS variants for relevant blood cell traits than PIRs of non-SIPs. Moreover, PIRs of cell-type-specific SIPs show enriched heritability of relevant blood cell trait (s), and are more enriched with GWAS variants associated with blood cell traits compared to PIRs of non-SIPs. Further, SIP genes tend to express at a higher level in the corresponding cell type. Importantly, SIP subnetworks incorporating cell-type-specific SIPs and ATAC-seq peaks help interpret GWAS variants. Examples include GWAS variants associated with platelet count near the megakaryocyte SIP gene EPHB3 and variants associated lymphocyte count near the native CD4 T-Cell SIP gene ETS1. Interestingly, around 25.7% ~ 39.6% blood cell traits GWAS variants residing in SIP PIR regions disrupt transcription factor binding motifs. Importantly, our analysis shows the potential of using promoter-centric analyses of chromatin spatial organization data to identify biologically important genes and their regulatory regions.


Assuntos
Células Sanguíneas/metabolismo , Linhagem da Célula/genética , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Estudo de Associação Genômica Ampla , Humanos , Proteína Proto-Oncogênica c-ets-1/genética , Receptor EphB3/genética
5.
Dev Dyn ; 251(7): 1138-1155, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35025117

RESUMO

BACKGROUND: Variation in facial shape may arise from the combinatorial or overlapping actions of paralogous genes. Given its many members, and overlapping expression and functions, the EPH receptor family is a compelling candidate source of craniofacial morphological variation. We performed a detailed morphometric analysis of an allelic series of E14.5 Ephb1-3 receptor mutants to determine the effect of each paralogous receptor gene on craniofacial morphology. RESULTS: We found that Ephb1, Ephb2, and Ephb3 genotypes significantly influenced facial shape, but Ephb1 effects were weaker than Ephb2 and Ephb3 effects. Ephb2-/- and Ephb3-/- mutations affected similar aspects of facial morphology, but Ephb3-/- mutants had additional facial shape effects. Craniofacial differences across the allelic series were largely consistent with predicted additive genetic effects. However, we identified a potentially important nonadditive effect where Ephb1 mutants displayed different morphologies depending on the combination of other Ephb paralogs present, where Ephb1+/- , Ephb1-/- , and Ephb1-/- ; Ephb3-/- mutants exhibited a consistent deviation from their predicted facial shapes. CONCLUSIONS: This study provides a detailed assessment of the effects of Ephb receptor gene paralogs on E14.5 mouse facial morphology and demonstrates how the loss of specific receptors contributes to facial dysmorphology.


Assuntos
Efrina-B1 , Desenvolvimento Maxilofacial , Receptor EphB1 , Receptor EphB3 , Receptores da Família Eph , Animais , Efrina-B1/genética , Efrina-B1/metabolismo , Face , Camundongos , Mutação , Receptor EphB1/genética , Receptor EphB2/genética , Receptor EphB3/genética , Receptores da Família Eph/metabolismo
6.
Science ; 372(6540)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888612

RESUMO

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.


Assuntos
Astrócitos/fisiologia , Comunicação Celular , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Microglia/fisiologia , Esclerose Múltipla/fisiopatologia , Análise de Célula Única , Animais , Antígenos CD/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Sistema Nervoso Central/fisiopatologia , Encefalomielite Autoimune Experimental/patologia , Efrina-B3/metabolismo , Herpesvirus Suídeo 1/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Esclerose Múltipla/patologia , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Receptor EphB3/antagonistas & inibidores , Receptor EphB3/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Linfócitos T/fisiologia , Serina-Treonina Quinases TOR/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 320(4): H1634-H1645, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33635162

RESUMO

Wnt/ß-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/ß-catenin interaction factor may provide a tissue-specific clinical targeting strategy. Drosophila Pygo encodes the core interaction factor of Wnt/ß-catenin. Two Pygo homologs (Pygo1 and Pygo2) have been identified in mammals. Different from the ubiquitous expression profile of Pygo2, Pygo1 is enriched in cardiac tissue. However, the role of Pygo1 in mammalian cardiac disease is yet to be elucidated. In this study, we found that Pygo1 was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of Pygo1 in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical ß-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in Pygo1-overexpressing transgenic (Pygo1-TG) cardiac tissue, and the downstream genes of Wnt signaling, that is, Axin2, Ephb3, and c-Myc, were upregulated. A tail vein injection of ß-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in Pygo1-TG mice. Furthermore, in vivo downregulated pygo1 during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that Pygo1 regulates pathological cardiac hypertrophy in a canonical Wnt/ß-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway.NEW & NOTEWORTHY In this study, we found that Pygo1 is associated with human pathological hypertrophy. Cardiac-specific overexpression of Pygo1 in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of Pygo1 was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that Pygo1 regulates pathological cardiac hypertrophy in a canonical Wnt/ß-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Via de Sinalização Wnt , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/prevenção & controle , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/patologia , Isoproterenol , Masculino , Camundongos Transgênicos , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Receptor EphB3/genética , Receptor EphB3/metabolismo , Tiazolidinas/farmacologia , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
8.
Nat Commun ; 11(1): 3708, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709899

RESUMO

The Cre-loxP recombination system is a powerful tool for genetic manipulation. However, there are widely recognized limitations with chemically inducible Cre-loxP systems, and the UV and blue-light induced systems have phototoxicity and minimal capacity for deep tissue penetration. Here, we develop a far-red light-induced split Cre-loxP system (FISC system) based on a bacteriophytochrome optogenetic system and split-Cre recombinase, enabling optogenetical regulation of genome engineering in vivo solely by utilizing a far-red light (FRL). The FISC system exhibits low background and no detectable photocytotoxicity, while offering efficient FRL-induced DNA recombination. Our in vivo studies showcase the strong organ-penetration capacity of FISC system, markedly outperforming two blue-light-based Cre systems for recombination induction in the liver. Demonstrating its strong clinical relevance, we successfully deploy a FISC system using adeno-associated virus (AAV) delivery. Thus, the FISC system expands the optogenetic toolbox for DNA recombination to achieve spatiotemporally controlled, non-invasive genome engineering in living systems.


Assuntos
Engenharia Genética , Integrases/metabolismo , Integrases/efeitos da radiação , Luz , Recombinação Genética , Animais , Linhagem Celular , Sobrevivência Celular , Dependovirus/genética , Vetores Genéticos , Genoma , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Optogenética , Receptor EphB3
9.
Dev Dyn ; 249(10): 1243-1258, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32506584

RESUMO

BACKGROUND: The epithelial microenvironment is involved in thymus aging, but the possible role of EphB receptors that govern the thymic epithelium development has not been investigated. Herein, we study the changes undergone by the thymus of EphB-deficient mice throughout their life. RESULTS: Immune alterations occurring throughout life were more severe in mutant than in wild-type (WT) mice. Mutant thymuses exhibit lower cellularity than WT ones, as well as lower proportions of early thymic progenitors cells and double-positive (CD4+ CD8+ ) thymocytes, but higher of double-negative (CD4- CD8- ) and single-positive (CD4+ CD8- , CD4- CD8+ ) cells. Throughout life, CD4+ naïve cells decreased particularly in mutant mice. In correlation, memory T cells, largely CD8+ cells, increased. Aged thymic epithelium undergoes changes including appearance of big epithelial free areas, decrease of K8+ K5- areas, which, however, contain higher proportions of Ly51+ UEA1- cortical epithelial cells, in correlation with reduced Aire+ medullary epithelial cells. Also, aged thymuses particularly those derived from mutant mice exhibited increased collagen IV, fat-storing cells, and connective cells. CONCLUSIONS: The absence of EphB accelerates the alterations undergone throughout life by both thymic epithelium and thymocytes, and the proportions of peripheral naïve and memory T cells, all of which are hallmarks of immune aging.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptor EphB2/genética , Receptor EphB3/genética , Timo/crescimento & desenvolvimento , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Células Epiteliais/imunologia , Sistema Imunitário , Masculino , Camundongos , Mutação , Transdução de Sinais , Timócitos/citologia , Timo/imunologia , Timo/metabolismo
10.
Biomolecules ; 10(4)2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32294981

RESUMO

The protein tyrosine kinase Ephrin type-B receptor 3 (EPHB3) is expressed in cells at the base of intestinal crypts, acting as a cellular guide in the maintenance of intestinal crypt architecture. We aimed to investigate the expression profile of EPHB3 in colorectal precancerous lesions and colorectal cancers (CRCs), and assess its prognostic value. EPHB3 expression was higher in CRCs than in normal mucosa and was associated with the intestinal stem cell markers EPHB2, OLFM4, LRIG1, and a proposed cancer stem cell marker, CD44. Enhanced EPHB3 expression significantly declined during the transformation from adenoma to carcinoma and as the tumor invaded into deeper tissue layers. Namely, a substantial reduction of EPHB3 expression was observed in the budding cancer cells at the invasive tumor fronts, which was more extensive than E-cadherin downregulation. In an azoxymethane/dextran sulfate sodium-induced, colitis-associated, CRC model, EPHB3 expression increased along with tumor development. In a large cohort of CRC patients, EPHB3 positivity was observed in 24% of 610 CRCs and was negatively correlated with tumor differentiation, lympho-vascular invasion, and tumor, node, and metastasis stages. EPHB3 was positively associated with microsatellite instability but was associated with neither CpG island methylation, nor with KRAS and BRAF mutations. Notably, EPHB3 positivity was associated with better clinical outcomes, although it was not an independent prognostic marker. Overexpression of EPHB3 in the colon cancer cell line, DLD1, led to decreased cell growth and migration and reduced mitogen-activated protein kinase signaling. Taken together, our data demonstrate the suppressive role of EPHB3 in CRC progression.


Assuntos
Neoplasias Colorretais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Receptor EphB3/genética , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Regulação para Baixo/genética , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Prognóstico , Receptor EphB3/metabolismo
11.
Tissue Eng Part A ; 26(11-12): 672-682, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32000627

RESUMO

One million estimated cases of spinal cord injury (SCI) have been reported in the United States and repairing an injury has constituted a difficult clinical challenge. The complex, dynamic, inhibitory microenvironment postinjury, which is characterized by proinflammatory signaling from invading leukocytes and lack of sufficient factors that promote axonal survival and elongation, limits regeneration. Herein, we investigated the delivery of polycistronic vectors, which have the potential to coexpress factors that target distinct barriers to regeneration, from a multiple channel poly(lactide-co-glycolide) (PLG) bridge to enhance spinal cord regeneration. In this study, we investigated polycistronic delivery of IL-10 that targets proinflammatory signaling, and NT-3 that targets axonal survival and elongation. A significant increase was observed in the density of regenerative macrophages for IL-10+NT-3 condition relative to conditions without IL-10. Furthermore, combined delivery of IL-10+NT-3 produced a significant increase of axonal density and notably myelinated axons compared with all other conditions. A significant increase in functional recovery was observed for IL-10+NT-3 delivery at 12 weeks postinjury that was positively correlated to oligodendrocyte myelinated axon density, suggesting oligodendrocyte-mediated myelination as an important target to improve functional recovery. These results further support the use of multiple channel PLG bridges as a growth supportive substrate and platform to deliver bioactive agents to modulate the SCI microenvironment and promote regeneration and functional recovery. Impact statement Spinal cord injury (SCI) results in a complex microenvironment that contains multiple barriers to regeneration and functional recovery. Multiple factors are necessary to address these barriers to regeneration, and polycistronic lentiviral gene therapy represents a strategy to locally express multiple factors simultaneously. A bicistronic vector encoding IL-10 and NT-3 was delivered from a poly(lactide-co-glycolide) bridge, which provides structural support that guides regeneration, resulting in increased axonal growth, myelination, and subsequent functional recovery. These results demonstrate the opportunity of targeting multiple barriers to SCI regeneration for additive effects.


Assuntos
Interleucina-10/fisiologia , Fatores de Crescimento Neural/fisiologia , Regeneração Nervosa/fisiologia , Animais , Western Blotting , Feminino , Imuno-Histoquímica , Interleucina-10/genética , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Fatores de Crescimento Neural/genética , Regeneração Nervosa/genética , Oligodendroglia/metabolismo , Receptor EphB3/metabolismo , Traumatismos da Medula Espinal
12.
Biochim Biophys Acta Mol Cell Res ; 1867(3): 118509, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31306714

RESUMO

The components of the cardiac conduction system, responsible for coordinated activation of the heart chambers, are well defined and their cells differ in gene expression profile and phenotype from those of the surrounding working myocardium. Yet, when and on what basis the myocardium of each of the conduction system components become distinguishable from other myocardium during heart development has not been well established. To identify and assess cell type-specific expression profiles and differentiation markers, we performed transcriptome analysis on fluorescence activated cell sorted purified conduction system (Venus+) and chamber myocardial cells (Katushka+) of Tbx3+/Venus;TgNppb(Katushka) double transgenic mouse fetuses. We found that transcripts associated with nervous system development and ion channel activity were enriched in Tbx3+ conduction system cells, whereas transcripts associated with mitochondrial function, muscle contraction and fatty acid metabolism were enriched in the Nppb+ working myocardium. We analyzed spatio-temporal expression patterns of several candidate markers (Cacna2d2, Cacna1g, Ephb3, Tnni1), reviewed those of established conduction system markers (Tbx3, Hcn4, Gja5, Cntn2), and placed the patterns in the context of conduction system development. The overview indicates that different properties of conduction system components develop gradually and at different developmental stages, and that chamber myocardium gradually differentiates and diverges from conduction system myocardium until after birth.


Assuntos
Marcadores Genéticos/genética , Sistema de Condução Cardíaco/metabolismo , Miócitos Cardíacos/metabolismo , Transcriptoma/genética , Animais , Canais de Cálcio/genética , Canais de Cálcio Tipo T/genética , Diferenciação Celular/genética , Conexinas/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Camundongos Transgênicos/genética , Miocárdio/metabolismo , Receptor EphB3/genética , Receptores Notch/genética , Transdução de Sinais/genética , Proteínas com Domínio T/genética
13.
Pathol Oncol Res ; 26(1): 541-549, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30535864

RESUMO

Although EphB3 expression is down-regulated in colorectal cancer (CRC) cells compared with normal intestinal epithelial cells, the relationship between EphB3 expression and clinicopathological parameters in CRC is unclear. We examined EphB3 expression in 128 CRC tissue specimens and in 19 adenoma specimens using immunohistochemistry. The relationships between EphB3 expression and clinicopathological parameters, KRAS mutations, BRAF V600E mutation, MSI and survival were evaluated using Spearman's rank correlation and Kaplan-Meier survival analyses, respectively. CpG methylation in the EphB3 promoter was examined in four human CRC cell lines and tissues. EphB3 was strongly expressed in all normal intestinal epithelial cells (128/128) and adenoma cells (19/19). In CRC tumor cells, EphB3 expression was negative or weak in 41.4% (53/128), moderate in 26.6% (34/128), and strong in 32.0% (41/128) of samples. EphB3 expression was negatively associated with invasive depth (P = 0.016, rs = -0.213), lymph node metastasis (P = 0.000, rs = -0.490), and TNM stage (P = 0.000, rs = -0.390), and was positively associated with poor differentiation (P = 0.001, rs = 0.290), BRAF V600E mutation (P = 0.008, rs = 0.235), and longer overall survival (P < 0.001). In multivariate analysis, EphB3 expression (P = 0.007) and lymph node metastasis (P < 0.001) were independent prognostic factors for poor survival. Hypermethylation of the EphB3 promoter was detected in cell lines and CRC tissues. EphB3 is down-regulated in CRC compared to normal mucosa. Hypermethylation of CpG island is contributed to downregulation of EphB3 in CRC. EphB3 expression in tumor cells may be a useful prognostic indicator for patients with CRC.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/análise , Neoplasias Colorretais/patologia , Receptor EphB3/metabolismo , Adenocarcinoma/enzimologia , Adulto , Idoso , Neoplasias Colorretais/enzimologia , Metilação de DNA , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
14.
Development ; 147(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31826865

RESUMO

Neural crest migration requires cells to move through an environment filled with dense extracellular matrix and mesoderm to reach targets throughout the vertebrate embryo. Here, we use high-resolution microscopy, computational modeling, and in vitro and in vivo cell invasion assays to investigate the function of Aquaporin 1 (AQP-1) signaling. We find that migrating lead cranial neural crest cells express AQP-1 mRNA and protein, implicating a biological role for water channel protein function during invasion. Differential AQP-1 levels affect neural crest cell speed and direction, as well as the length and stability of cell filopodia. Furthermore, AQP-1 enhances matrix metalloprotease activity and colocalizes with phosphorylated focal adhesion kinases. Colocalization of AQP-1 with EphB guidance receptors in the same migrating neural crest cells has novel implications for the concept of guided bulldozing by lead cells during migration.


Assuntos
Aquaporina 1/fisiologia , Movimento Celular/fisiologia , Crista Neural/citologia , Pseudópodes/fisiologia , Animais , Região Branquial/citologia , Região Branquial/embriologia , Membrana Celular/fisiologia , Microambiente Celular , Embrião de Galinha , Biologia Computacional , Adesões Focais , Crista Neural/embriologia , Receptor EphB1/metabolismo , Receptor EphB3/metabolismo
15.
Eur J Pharm Sci ; 138: 105046, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421254

RESUMO

HDAC8 has been established as one of the vital targets as far as the cancer is concerned. Different compounds having potential HDAC inhibitory activity have been approved by USFDA. However, none of these compounds are selective towards specific HDAC isoform. In this current study, some new hydroxamate derivatives with alkylpiperidine and alkylpiperazine linker moieties have been designed, synthesized and biologically evaluated. All these compounds are effective HDAC8 inhibitors comprising more or less similar cytotoxic potential against different cancer cell lines. It is observed that the piperazine scaffold containing compound is more active than the compound with piperidine scaffold for exerting HDAC8 inhibitory activity. Moreover, the 4-quinolyl cap group is better than the biphenyl group which is better than the benzyl group for producing higher HDAC8 inhibition as well as cytotoxicity. These compounds displayed selective HDAC8 inhibition over HDAC3. Moreover, these compounds showed an increased caspase3/7 activity suggesting their anticancer potential through modulation of apoptotic pathways. Molecular docking study with three potent compounds was performed with both HDAC3 and HDAC8 enzymes to understand the selectivity profile of these compounds. Compound containing 4-quinolyl cap group with alkyl piperazinyl urea linker moiety has been emerged out as the lead molecule that may be further modified to design more effective and selective HDAC8 inhibitors in future.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Piperazina/farmacologia , Piperidinas/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Células A549 , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Células HeLa , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Células Jurkat , Células MCF-7 , Melanoma Experimental , Camundongos , Simulação de Acoplamento Molecular , Piperazina/química , Piperidinas/química , Receptor EphB3/metabolismo
16.
Theranostics ; 9(8): 2235-2251, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149041

RESUMO

A major problem of colorectal cancer (CRC) targeted therapies is relapse caused by drug resistance. In most cases of CRC, patients develop resistance to anticancer drugs. Cetuximab does not show many of the side effects of other anticancer drugs and improves the survival of patients with metastatic CRC. However, the molecular mechanism of cetuximab resistance is not fully understood. Methods: EPHB3-mediated cetuximab resistance was confirmed by in vitro western blotting, colony-forming assays, WST-1 colorimetric assay, and in vivo xenograft models (n = 7 per group). RNA-seq analysis and receptor tyrosine kinase assays were performed to identify the cetuximab resistance mechanism of EPHB3. All statistical tests were two-sided. Results: The expression of EFNB3, which upregulates the EPHB3 receptor, was shown to be increased via microarray analysis. When resistance to cetuximab was acquired, EPHB3 protein levels increased. Hedgehog signaling, cancer stemness, and epithelial-mesenchymal transition signaling proteins were also increased in the cetuximab-resistant human colon cancer cell line SW48R. Despite cells acquiring resistance to cetuximab, STAT3 was still responsive to EGF and cetuximab treatment. Moreover, inhibition of EPHB3 was associated with decreased STAT3 activity. Co-immunoprecipitation confirmed that EGFR and EPHB3 bind to each other and this binding increases upon resistance acquisition, suggesting that STAT3 is activated by the binding between EGFR and EPHB3. Protein levels of GLI-1, SOX2, and Vimentin, which are affected by STAT3, also increased. Similar results were obtained in samples from patients with CRC. Conclusion: EPHB3 expression is associated with anticancer drug resistance.


Assuntos
Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/metabolismo , Receptor EphB3/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/uso terapêutico , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Células HCT116 , Células HT29 , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor EphB3/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Vimentina/genética , Vimentina/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
17.
Int J Mol Sci ; 20(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159225

RESUMO

Flavonoids have been demonstrated to affect the activity of many mammalian enzyme systems. Their functional phenolic groups are able to mediate antioxidant effects by scavenging free radicals. Molecules of this class have been found able to modulate the activity of kinases, phospholipase A2, cyclooxygenases, lipoxygenase, glutathione S-transferase, and many others. Recently, it has been demonstrated that luteolin, in the form of Luteolin-7-O-ß-d-glucoside (LUT-7G) is able to induce the keratinocyte differentiation process in vitro. This flavonoid is able to counteract the proliferative effects of IL-22/IL6 pathway by the inhibition of STAT3 activity also in vivo in a psoriatic mouse model. Observations on energy metabolism changes of differentiating cells led us to perform a complete metabolomics analysis using human primary keratinocytes treated with LUT-7G. Our results show that LUT-7G, is not only able to impair the nuclear translocation of STAT3, but it also blocks the energy metabolism pathway, depressing the glycolytic and Krebs pathway by the inhibition of hexokinase 2 activity. These data confirm that LUT-7G can be proposed as a potential candidate for the treatment of inflammatory and proliferative diseases, but its role as a hexokinase 2 (HEK2) inhibitor opens new perspectives in nutritional science, and especially in cancer therapy, in which the inhibition of the Warburg effect could be relevant.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Glucosídeos/metabolismo , Glucosídeos/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Luteolina/metabolismo , Luteolina/farmacologia , Receptor EphB3/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Glucosídeos/química , Hexoquinase/química , Hexoquinase/metabolismo , Humanos , Luteolina/química , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptor EphB3/química , Relação Estrutura-Atividade
18.
Biochem Biophys Res Commun ; 508(2): 465-471, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30503499

RESUMO

Tumor vessel normalization can increase pericyte coverage, perfusion efficiency and immune infiltration, while reducing hypoxia, vessel leakage, CTC and metastasis. In this study, we systemically presented the expression pattern of tumor angiogenesis gene signatures in 31 cancer types and its association with immune infiltration and cancer metastasis. Specifically, READ, COAD etc. have relatively similar expression patterns with low GPAGs and high PPAGs. Patients with this expression pattern may benefit from tumor vessel normalization. COAD was selected for further investigation and we found GPAG CXCL12 was downregulated while PPAG EPHB3 was overexpressed in COAD, which were further validated using two independent colon cancer dataset. Further study indicated that CXCL12 expression was positively correlated innate inflammation pathways such as NFκB and negatively correlated with metastasis, while EPHB3 had a reverse result. Moreover, CXCL12 was positively correlated with cancer immune infiltration while EPHB3 was negatively correlated with cancer immune infiltration. Besides, the association between CXCL12/EPHB3 and mutation/CNA landscape were also explored. We also discussed the potential application of gut microbiota in cancer treatment. In summary, blood vessel normalization could promote immune infiltration and repress cancer metastasis while immune cell infiltration can promote blood vessel normalization through a positive feedback loop.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/genética , Neovascularização Patológica/genética , Inibidores da Angiogênese/uso terapêutico , Quimiocina CXCL12/genética , Análise por Conglomerados , Feminino , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Regulação Neoplásica da Expressão Gênica , Testes Genéticos , Humanos , Masculino , Mutação , Neoplasias/terapia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/imunologia , Receptor EphB3/genética , Transcriptoma
19.
Gene ; 686: 118-124, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30408551

RESUMO

EphB3 is a member of the EPH family of receptors and has been found to play a role in the carcinogenesis of some human cancers. However, its expression and clinical significance in gastric cancer (GC) have not been well documented. In the present study, we detected the expression of EphB3 in GC and adjacent noncancerous tissues and explored its relationships with the clinicopathological features and prognosis of GC patients. It was found that EphB3 silenced GC cells epigenetically by direct transcriptional repression of GC cells via polycomb group protein EZH2 mediation. EphB3 was downregulated in GC cells and tissues, and EphB3 depletion promoted GC cell growth and invasion, while ectopic overexpression of EphB3 produced a significant anti-tumor effect. EphB3 was found to be involved in epithelial-mesenchymal transition by regulating E-cadherin and vimentin expression. In addition, patients with reduced EphB3 expression had shorter disease-free survival (DFS), indicating that EphB3 may prove to be a biomarker for prognosis of GC. These results demonstrated that EphB3 functioned as a tumor-suppressor and prognostic biomarker in GC.


Assuntos
Caderinas/biossíntese , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Receptor EphB3/biossíntese , Neoplasias Gástricas/metabolismo , Vimentina/biossíntese , Caderinas/genética , Linhagem Celular Tumoral , Intervalo Livre de Doença , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Receptor EphB3/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Taxa de Sobrevida , Vimentina/genética
20.
Drug Metab Dispos ; 46(10): 1396-1402, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30045842

RESUMO

The mitochondrial amidoxime reducing component is a recently discovered molybdenum enzyme in mammals which, in concert with the electron transport proteins cytochrome b5 and NADH cytochrome b5 reductase, catalyzes the reduction of N-oxygenated structures. This three component enzyme system plays a major role in N-reductive drug metabolism. Belonging to the group of N-hydroxylated structures, hydroxamic acids are also potential substrates of the mARC-system. Hydroxamic acids show a variety of pharmacological activities and are therefore often found in drug candidates. They can also exhibit toxic properties as is the case for many aryl hydroxamic acids formed during the metabolism of arylamides. Biotransformation assays using recombinant human proteins, subcellular porcine tissue fractions as well as human cell culture were performed. Here the mARC-dependent reduction of the model compound benzhydroxamic acid is reported in addition to the reduction of three drugs. In comparison with other known substrates of the molybdenum depending enzyme system (e.g., amidoxime prodrugs) the conversion rates measured here are slower, thereby reflecting the mediocre metabolic stability and oral bioavailability of distinct hydroxamic acids. Moreover, the toxic N-hydroxylated metabolite of the analgesic phenacetin, N-hydroxyphenacetin, is not reduced by the mARC-system under the chosen conditions. This confirms the high toxicity of this component, as it needs to be detoxified by other pathways. This work highlights the need to monitor the N-reductive metabolism of new drug candidates by the mARC-system when evaluating the metabolic stability of hydroxamic acid-containing structures or the potential risks of toxic metabolites.


Assuntos
Ácidos Hidroxâmicos/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Animais , Biotransformação , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/metabolismo , Humanos , Oxirredução , Receptor EphB3 , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...