Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.343
Filtrar
1.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274874

RESUMO

Activation of the Hedgehog (Hh) signaling pathway is often associated with the progression of various types of cancer. The purpose of study was to search for inhibitors of the Hh signaling pathway among eight compounds belonging to the group of isoxazolyl steroids. The evaluation of the effectiveness of the compounds was based on the analysis of their cytotoxicity, effect on the cell cycle, on the expression of key Hh-signaling-pathway genes (Ptch1, Smo, and Gli1) and putative target genes MMP-2 and MMP-9. Four compounds with the most pronounced cytotoxic effect were identified: compounds 1, 2 (HeLa cells) and 3, 4 (A549 cells). Compounds 1 and 2 significantly reduced the expression of the Ptch1, Smo, Gli1 genes, but had the opposite effect on MMP-2 gene expression: Compound 1 increased it, and compound 2 decreased it. Compounds 3 and 4 did not have a noticeable inhibitory effect on the expression of the Shh pathway receptors, but significantly inhibited MMP-2 and MMP-9 expression. Thus, it was shown that inhibition of the Shh signaling pathway by isoxazolyl steroids can have the opposite effect on MMPs gene expression, which is what should be taken into account in further studies of these compounds as therapeutic agents.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog , Transdução de Sinais , Esteroides , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Transdução de Sinais/efeitos dos fármacos , Esteroides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células A549 , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Linhagem Celular Tumoral , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Antineoplásicos/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/antagonistas & inibidores , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Ciclo Celular/efeitos dos fármacos
2.
Commun Biol ; 7(1): 1207, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342033

RESUMO

Cyclopamine, a natural alkaloid, can act as an agonist when it binds to the Cysteine-Rich Domain (CRD) of Smoothened receptor and as an antagonist when it binds to the Transmembrane Domain (TMD). To study the effect of cyclopamine binding to each site experimentally, mutations in the other site are required. Hence, simulations are critical for understanding the WT activity due to binding at different sites. Using multi-milliseconds long aggregate MD simulations combined with Markov state models and machine learning, we explore the dynamic behavior of cyclopamine's interactions with different domains of WT SMO. A higher population of the active state at equilibrium, a lower free energy barrier of ~2 kcal/mol, and expansion of hydrophobic tunnel to facilitate cholesterol transport agrees with cyclopamine's agonistic behavior when bound to CRD. A higher population of the inactive state at equilibrium, a higher free energy barrier of ~4 kcal/mol and restricted hydrophobic tunnel shows cyclopamine's antagonistic behavior when bound to TMD. With cyclopamine bound to both sites, there is a slightly larger inactive population at equilibrium and an increased free energy barrier (~3.5 kcal/mol) exhibiting an overall weak antagonistic effect. These findings show cyclopamine's domain-specific modulation of SMO regulates Hedgehog signaling and cholesterol transport.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Receptor Smoothened , Alcaloides de Veratrum , Alcaloides de Veratrum/farmacologia , Alcaloides de Veratrum/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/química , Sítios de Ligação , Colesterol/metabolismo , Humanos , Animais , Mutação
3.
Eur J Drug Metab Pharmacokinet ; 49(5): 645-655, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39158678

RESUMO

BACKGROUND AND OBJECTIVES: Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research. METHODS: Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 → 100.0, 248.1 → 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability  study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1. RESULTS: The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (Cmax) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (Tmax) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC0-t) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC0-∞) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t1/2) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h). CONCLUSIONS: TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t1/2. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.


Assuntos
Disponibilidade Biológica , Piridinas , Ratos Sprague-Dawley , Receptor Smoothened , Espectrometria de Massas em Tandem , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ratos , Feminino , Cromatografia Líquida de Alta Pressão/métodos , Receptor Smoothened/antagonistas & inibidores , Espectrometria de Massas em Tandem/métodos , Piridinas/farmacocinética , Piridinas/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Administração Oral , Espectrometria de Massa com Cromatografia Líquida
4.
Bioorg Chem ; 151: 107681, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106711

RESUMO

Aberrant activation of the Hedgehog (Hh) signalling pathway has been associated with the development and progression of pancreatic cancer. For this reason, blockade of Hh pathway by inhibitors targeting the G protein-coupled receptor Smoothened (SMO) has been considered as a therapeutic target for the treatment of this cancer. In our previous work, we obtained a new SMO ligand based on a purine scaffold (compound I), which showed interesting antitumor activity in several cancer cell lines. In this work, we report the design and synthesis of 17 new purine derivatives, some of which showed high cytotoxic effect on Mia-PaCa-2 (Hh-dependent pancreatic cancer cell lines) and low toxicity on non-neoplastic HEK-293 cells compared with gemcitabine, such as 8f, 8g and 8h (IC50 = 4.56, 4.11 and 3.08 µM, respectively). Two of these purines also showed their ability to bind to SMO through NanoBRET assays (pKi = 5.17 for 8f and 5.01 for 8h), with higher affinities to compound I (pKi = 1.51). In addition, docking studies provided insight the purine substitution pattern is related to the affinity on SMO. Finally, studies of Hh inhibition for selected purines, using a transcriptional functional assay based on luciferase activity in NIH3T3 Shh-Light II cells, demonstrated that 8g reduced GLI activity with a IC50 = 6.4 µM as well as diminished the expression of Hh target genes in two specific Hh-dependent cell models, Med1 cells and Ptch1-/- mouse embryonic fibroblasts. Therefore, our results provide a platform for the design of SMO ligands that could be potential selective cytotoxic agents for the treatment of pancreatic cancer.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Purinas , Receptor Smoothened , Humanos , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/metabolismo , Purinas/química , Purinas/farmacologia , Purinas/síntese química , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Camundongos , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Linhagem Celular Tumoral , Células NIH 3T3 , Simulação de Acoplamento Molecular , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inibidores
5.
PLoS Biol ; 22(8): e3002685, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39138140

RESUMO

During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here, we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous mouse and zebrafish Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO and the ensuing PKA-C binding and inactivation are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.


Assuntos
Cílios , Proteínas Quinases Dependentes de AMP Cíclico , Quinase 2 de Receptor Acoplado a Proteína G , Proteínas Hedgehog , Transdução de Sinais , Receptor Smoothened , Peixe-Zebra , Animais , Cílios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Hedgehog/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Camundongos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Peixe-Zebra/metabolismo , Fosforilação , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Células NIH 3T3
6.
Acta Neuropathol Commun ; 12(1): 125, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107797

RESUMO

Sonic hedgehog subgroup of medulloblastoma (SHH-MB) is characterized by aberrant activation of the SHH signaling pathway. An inhibition of the positive SHH regulator Smoothened (SMO) has demonstrated promising clinical efficacy. Yet, primary and acquired resistance to SMO inhibitors limit their efficacy. An understanding of underlying molecular mechanisms of resistance to therapy is warranted to bridge this unmet need. Here, we make use of genome-wide CRISPR-Cas9 knockout screens in murine SMB21 and human DAOY cells, in order to unravel genetic dependencies and drug-related genetic interactors that could serve as alternative therapeutic targets for SHH-MB. Our screens reinforce SMB21 cells as a faithful model system for SHH-MB, as opposed to DAOY cells, and identify members of the epigenetic machinery including DNA methyltransferase 1 (DNMT1) as druggable targets in SHH-dependent tumors. We show that Dnmt1 plays a crucial role in normal murine cerebellar development and is required for SHH-MB growth in vivo. Additionally, DNMT1 pharmacological inhibition alone and in combination with SMO inhibition effectively inhibits tumor growth in murine and human SHH-MB cell models and prolongs survival of SHH-MB mouse models by inhibiting SHH signaling output downstream of SMO. In conclusion, our data highlight the potential of inhibiting epigenetic regulators as a novel therapeutic avenue in SMO-inhibitor sensitive as well as resistant SHH-MBs.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Cerebelares , DNA (Citosina-5-)-Metiltransferase 1 , Proteínas Hedgehog , Meduloblastoma , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Animais , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Humanos , Camundongos , Linhagem Celular Tumoral , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Técnicas de Inativação de Genes/métodos
7.
Life Sci Alliance ; 7(11)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39187374

RESUMO

The mTORC1-complex is negatively regulated by TSC1 and TSC2. Activation of Hedgehog signaling is strictly dependent on communication between Smoothened and the Hedgehog-signaling effector and transcription factor, GLI2, in the primary cilium. Details about this communication are not known, and we wanted to explore this further. Here we report that in Tsc2 -/- MEFs constitutively activated mTORC1 led to mis-localization of Smoothened to the plasma membrane, combined with increased concentration of GLI2 in the cilia and reduced Hedgehog signaling, measured by reduced expression of the Hedgehog target gene, Gli1 Inhibition of mTORC1 rescued the cellular localization of Smoothened to the cilia, reduced the cilia concentration of GLI2, and restored Hedgehog signaling. Our results reveal evidence for a two-step activation process of GLI2. The first step includes GLI2 stabilization and cilium localization, whereas the second step includes communication with cilia-localized Smoothened. We found that mTORC1 inhibits the second step. This is the first demonstration that mTORC1 is involved in the regulation of Hedgehog signaling.


Assuntos
Proteínas Hedgehog , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Receptor Smoothened , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor , Proteína Gli2 com Dedos de Zinco , Animais , Camundongos , Membrana Celular/metabolismo , Cílios/metabolismo , Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética
8.
Dev Biol ; 516: 138-147, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39173434

RESUMO

The teleost Astyanax mexicanus consists of surface dwelling (surface fish) and cave dwelling (cavefish) forms. Cavefish have evolved in subterranean habitats characterized by reduced oxygen levels (hypoxia) and exhibit a subset of phenotypic traits controlled by increased Sonic hedgehog (Shh) signaling along the embryonic midline. The enhancement of primitive hematopoietic domains, which are formed bilaterally in the anterior and posterior lateral plate mesoderm, are responsible for the development of more larval erythrocytes in cavefish relative to surface fish. In this study, we determine the role of hypoxia and Shh signaling in the development and evolution of primitive hematopoiesis in cavefish. We show that hypoxia treatment during embryogenesis increases primitive hematopoiesis and erythrocyte development in surface fish. We also demonstrate that upregulation of Shh midline signaling by the Smoothened agonist SAG increases primitive hematopoiesis and erythrocyte development in surface fish, whereas Shh downregulation via treatment with the Smoothened inhibitor cyclopamine decreases these traits in cavefish. Together these results suggest that hematopoietic enhancement is regulated by hypoxia and Shh signaling. Lastly, we demonstrate that hypoxia enhances expression of Shh signaling along the midline of surface fish embryos. We conclude that hypoxia-mediated Shh plasticity may be a driving force for the adaptive evolution of primitive hematopoiesis and erythrocyte development in cavefish.


Assuntos
Characidae , Proteínas Hedgehog , Hematopoese , Transdução de Sinais , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Hematopoese/fisiologia , Characidae/embriologia , Hipóxia/metabolismo , Evolução Biológica , Embrião não Mamífero/metabolismo , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Alcaloides de Veratrum/farmacologia , Cavernas , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Eritrócitos/metabolismo
9.
J Clin Invest ; 134(19)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190624

RESUMO

The burden of senescent hepatocytes correlates with the severity of metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanisms driving senescence and how it exacerbates MASLD are poorly understood. Hepatocytes experience lipotoxicity and become senescent when Smoothened (Smo) is deleted to disrupt Hedgehog signaling. We aimed to determine whether the secretomes of Smo-deficient hepatocytes perpetuate senescence to drive MASLD progression. RNA-Seq analysis of liver samples from human and murine cohorts with MASLD confirmed that hepatocyte populations in MASLD livers were depleted of Smo+ cells and enriched with senescent cells. When fed a choline-deficient, amino acid-restricted high-fat diet (CDA-HFD) to induce MASLD, Smo- mice had lower antioxidant markers and developed worse DNA damage, senescence, steatohepatitis, and fibrosis than did Smo+ mice. Sera and hepatocyte-conditioned medium from Smo- mice were depleted of thymidine phosphorylase (TP), a protein that maintains mitochondrial fitness. Treating Smo- hepatocytes with TP reduced senescence and lipotoxicity, whereas inhibiting TP in Smo+ hepatocytes had the opposite effect and exacerbated hepatocyte senescence, steatohepatitis, and fibrosis in CDA-HFD-fed mice. We conclude that inhibition of Hedgehog signaling in hepatocytes promoted MASLD by suppressing hepatocyte production of proteins that prevent lipotoxicity and senescence.


Assuntos
Senescência Celular , Proteínas Hedgehog , Hepatócitos , Receptor Smoothened , Animais , Hepatócitos/metabolismo , Hepatócitos/patologia , Camundongos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Humanos , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Transdução de Sinais , Camundongos Knockout , Progressão da Doença
10.
J Int Med Res ; 52(7): 3000605241258171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39053449

RESUMO

OBJECTIVE: Apart from the role of the retinoblastoma gene, the genomic events associated with poor outcomes in patients with ophthalmic tumors are poorly understood. METHODS: We retrospectively analyzed 48 patients with six types of ophthalmic tumors. We searched for high-frequency mutated genes and susceptibility genes in these patients using combined exome and transcriptome analysis. RESULTS: We identified four clearly causative genes (TP53, PTCH1, SMO, BAP1). Susceptibility gene analysis identified hotspot genes, including RUNX1, APC, IDH2, and BRCA2, and high-frequency gene analysis identified several genes, including TP53, TTN, and MUC16. Transcriptome analysis identified 5868 differentially expressed genes, of which TOP2A and ZWINT were upregulated in all samples, while CFD, ELANE, HBA1, and HBB were downregulated. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the phosphoinositide 3-kinase (PI3K)-Akt and Transcriptional misregulation in cancer signaling pathways may be involved in ophthalmic tumorigenesis. CONCLUSIONS: TP53 is clearly involved in ophthalmic tumorigenesis, especially in basal cell carcinoma, and the PI3K-Akt signaling pathway may be an essential pathway involved in ophthalmic tumorigenesis. RUNX1, SMO, TOP2A, and ZWINT are also highly likely to be involved in ophthalmic tumorigenesis, but further functional experiments are needed to verify the mechanisms of these genes in regulating tumorigenesis.


Assuntos
Neoplasias Oculares , Genômica , Mutação , Proteína Supressora de Tumor p53 , Humanos , Feminino , Masculino , Proteína Supressora de Tumor p53/genética , Genômica/métodos , Neoplasias Oculares/genética , Estudos Retrospectivos , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Receptor Patched-1/genética , Perfilação da Expressão Gênica , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas Supressoras de Tumor/genética , Idoso , Proteínas de Ligação a Poli-ADP-Ribose/genética , Adulto , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Biomarcadores Tumorais/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , DNA Topoisomerases Tipo II , Ubiquitina Tiolesterase , Subunidade alfa 2 de Fator de Ligação ao Core
11.
Int Immunopharmacol ; 139: 112771, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39074418

RESUMO

Asthma is the most prevalent chronic inflammatory disease of the airways in children. The most prevalent phenotype of asthma is eosinophilic asthma, which is driven by a Th2 immune response and can be effectively managed by inhaled corticosteroid therapy. However, there are phenotypes of asthma with Th17 immune response that are insensitive to corticosteroid therapy and manifest a more severe phenotype. The treatment of this corticosteroid-insensitive asthma is currently immature and requires further attention. The objective of this study is to elucidate the regulation of the Hedgehog signaling pathway in Th17 cell differentiation in asthma. The study demonstrated that both Smo and Gli3, key components of the Hedgehog signaling pathway, were upregulated in Th17 polarization in vitro and in a Th17-dominant asthma model in vivo. Inhibiting Smo with a small molecule inhibitor or genetically knocking down Gli3 was found to suppress Th17 polarization. Smo was found to increase in Th1, Th2, Th17 and Treg polarization, while Gli3 specifically increased in Th17 polarization. ChIP-qPCR analyses indicated that Gli3 can directly interact with IL-6 in T cells, inducing STAT3 phosphorylation and promoting Th17 cell differentiation. Furthermore, the study demonstrated a correlation between elevated Gli3 expression and IL-17A and IL-6 expression in children with asthma. In conclusion, the study demonstrated that the Hedgehog signaling pathway plays an important role in the pathogenesis of asthma, as it regulates the differentiation of Th17 cells through the IL-6/STAT3 signaling. This may provide a potential therapeutic target for corticosteroid-insensitive asthma driven by Th17 cells.


Assuntos
Asma , Diferenciação Celular , Proteínas Hedgehog , Interleucina-6 , Fator de Transcrição STAT3 , Transdução de Sinais , Células Th17 , Proteína Gli3 com Dedos de Zinco , Asma/imunologia , Asma/metabolismo , Asma/tratamento farmacológico , Células Th17/imunologia , Fator de Transcrição STAT3/metabolismo , Animais , Interleucina-6/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Camundongos , Criança , Masculino , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Feminino , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Células Cultivadas , Proteínas do Tecido Nervoso
12.
Brain Res Bull ; 216: 111037, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084569

RESUMO

The purpose of this study was to investigate the effects of BOC on glioblastoma cells and its underlying mechanisms. In vitro, BOC-knockdown was performed in glioma cell lines. CCK-8 and Transwell were used to assess the impact of BOC on the viability, invasion, and migration of gliobma cells. RNA-seq technology was employed to analyze the differential gene expression between BOC-knockdown glioma cells and the control group, and qRT-PCR was used to validate the expression of downstream differential genes. SMO-overexpression was performed to investigate the effects of SMO on glioma cells. A BOC-knockdown mouse subcutaneous tumor model was to verify the effects of BOC on mouse tumors. Tissue microarray technology was used to detect the expression of BOC and SMO in samples of normal human brain tissue and glioma tissue. In vitro, BOC-knockdown inhibited the viability, invasion, and migration of glioma cells, as well as downregulated the expression of downstream differential genes SMO, EGFR, HRAS, and MRAS. Conversely, SMO-overexpression upregulated the viability, invasion, and migration abilities of BOC-knockdown cells. In vivo, BOC-knockdown suppressed tumor growth in mice and downregulated the expression of downstream differential genes SMO, EGFR, HRAS, and MRAS. Tissue microarray results showed that both BOC and SMO were highly expressed in glioma tissues. BOC is aberrantly overexpressed in glioma patients and promotes glioma development. Mechanistically, BOC activates the Hedgehog (Hh) and RAS signaling pathways by upregulating the expression of SMO, EGFR, HRAS, and MRAS, thereby facilitating the Proliferation, invasion and migration of glioma cells.


Assuntos
Neoplasias Encefálicas , Movimento Celular , Proliferação de Células , Glioma , Proteínas Hedgehog , Invasividade Neoplásica , Transdução de Sinais , Receptor Smoothened , Animais , Movimento Celular/fisiologia , Humanos , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Proliferação de Células/fisiologia , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Camundongos , Linhagem Celular Tumoral , Transdução de Sinais/fisiologia , Invasividade Neoplásica/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Masculino
13.
J Mol Histol ; 55(4): 379-389, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954185

RESUMO

INTRODUCTION: Oral cancer poses a significant burden on public health in India, with higher incidence and mortality rates. Despite advancements in treatment modalities, prognosis remains poor due to factors such as localized recurrence and lymph node metastasis, potentially influenced by cancer stem cells. Among signaling pathways implicated in CSC regulation, the Hedgehog pathway plays a crucial role in oral squamous cell carcinoma (OSCC). MATERIAL & METHODS: 97 OSCC patients' tissue samples were collected and subjected to RNA isolation, cDNA synthesis and quantitative real-time PCR to analyze PTCH1 and SMO expression. Protein expression was assessed through immunohistochemistry. Clinicopathological parameters were correlated with gene and protein expression. Statistical analysis included Pearson chi-square tests, co-relation co-efficient tests, Kaplan-Meier survival analysis and ROC curve analysis. RESULTS: PTCH1 expression correlated with lymphatic permeation (p = 0.002) and tumor stage (p = 0.002), while SMO expression correlated with lymph node status (p = 0.034) and tumor stage (p = 0.021). PTCH1 gene expression correlated with lymph node status (p = 0.024). High PTCH1 gene expression was associated with shorter survival in tongue cancer patients. ROC curve analysis indicated diagnostic potential for PTCH1 and SMO gene and cytoplasmic SMO expression in distinguishing malignant tissues from adjacent normal tissues. CONCLUSION: PTCH1 and SMO play a crucial role in oral cancer progression, correlating with tumor stages and metastatic potential. Despite not directly influencing overall survival, PTCH1 expression at specific anatomical sites hints at its prognostic implications. PTCH1 and SMO exhibit diagnostic potential, suggesting their utility as molecular markers in oral cancer management and therapeutic strategies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Receptor Patched-1 , Receptor Smoothened , Humanos , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/mortalidade , Neoplasias Bucais/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/diagnóstico , Adulto , Idoso , Regulação Neoplásica da Expressão Gênica , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estimativa de Kaplan-Meier , Curva ROC , Metástase Linfática/genética , Estadiamento de Neoplasias
14.
J Am Acad Dermatol ; 91(4): 706-711, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38950707

RESUMO

Although smoothened inhibitors (SMOi) have demonstrated efficacy in the management of basal cell carcinoma, no guidelines are available on how to utilize SMOi in the treatment of Gorlin syndrome (GS). This review's objective is to assess the clinical response to SMOi in GS, provide practical guidance for clinicians, and identify areas for future research. Through comprehensive searches of previous publications and expert opinion, this review demonstrates that intermittent dosing of SMOi and daily dosing have similar efficacy. While the adverse events of SMOi may result in their discontinuation during treatment of GS, intermittent dosing may improve compliance.


Assuntos
Síndrome do Nevo Basocelular , Piridinas , Neoplasias Cutâneas , Receptor Smoothened , Síndrome do Nevo Basocelular/tratamento farmacológico , Humanos , Receptor Smoothened/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Piridinas/uso terapêutico , Administração Oral , Anilidas/administração & dosagem , Anilidas/efeitos adversos , Anilidas/uso terapêutico , Resultado do Tratamento , Masculino , Feminino , Antineoplásicos/efeitos adversos , Antineoplásicos/administração & dosagem , Quinazolinas/administração & dosagem , Quinazolinas/uso terapêutico , Quinazolinas/efeitos adversos , Compostos de Bifenilo/administração & dosagem , Esquema de Medicação , Benzimidazóis , Compostos de Fenilureia
16.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968120

RESUMO

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Assuntos
Quinases Dyrk , Proteínas Hedgehog , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco , Animais , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proliferação de Células , Cílios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Nucleares , Proteínas Repressoras
17.
Arch Pharm (Weinheim) ; 357(10): e2400218, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38963677

RESUMO

The Hedgehog (Hh) signaling pathway plays important roles in various physiological functions. Several malignancies, such as basal cell carcinoma (BCC) and medulloblastoma (MB), have been linked to the aberrant activation of Hh signaling. Although therapeutic drugs have been developed to inhibit Hh pathway-dependent cancer growth, drug resistance remains a major obstacle in cancer treatment. Here, we show that the newly identified, 2-{3-[1-(benzylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]-2-methyl-1H-indol-1-yl}-1-(pyrrolidin-1-yl)ethenone analog (LKD1214) exhibits comparable potency to vismodegib in suppressing the Hh pathway activation. LKD1214 represses Smoothened (SMO) activity by blocking its ciliary translocation. Interestingly, we also identified that it has a distinctive binding interface with SMO compared with other SMO-regulating chemicals. Notably, it maintains an inhibitory activity against the SmoD477H mutant, as observed in a patient with vismodegib-resistant BCC. Furthermore, LKD1214 inhibits tumor growth in the mouse model of MB. Collectively, these findings suggest that LKD1214 has the therapeutic potential to overcome drug-resistance in Hh-dependent cancers.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog , Indóis , Transdução de Sinais , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Camundongos , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/patologia , Carcinoma Basocelular/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Microb Pathog ; 192: 106723, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823465

RESUMO

The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 µg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.


Assuntos
Enterotoxinas , Proteínas Hedgehog , Transdução de Sinais , Linfócitos T , Timo , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Feminino , Gravidez , Ratos , Timo/metabolismo , Timo/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino
19.
J Neurosci ; 44(30)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38886055

RESUMO

During nervous system development, Sonic hedgehog (Shh) guides developing commissural axons toward the floor plate of the spinal cord. To guide axons, Shh binds to its receptor Boc and activates downstream effectors such as Smoothened (Smo) and Src family kinases (SFKs). SFK activation requires Smo activity and is also required for Shh-mediated axon guidance. Here we report that ß-arrestin1 and ß-arrestin2 (ß-arrestins) serve as scaffolding proteins that link Smo and SFKs in Shh-mediated axon guidance. We found that ß-arrestins are expressed in rat commissural neurons. We also found that Smo, ß-arrestins, and SFKs form a tripartite complex, with the complex formation dependent on ß-arrestins. ß-arrestin knockdown blocked the Shh-mediated increase in Src phosphorylation, demonstrating that ß-arrestins are required to activate Src kinase downstream of Shh. ß-arrestin knockdown also led to the loss of Shh-mediated attraction of rat commissural axons in axon turning assays. Expression of two different dominant-negative ß-arrestins, ß-arrestin1 V53D which blocks the internalization of Smo and ß-arrestin1 P91G-P121E which blocks its interaction with SFKs, also led to the loss of Shh-mediated attraction of commissural axons. In vivo, the expression of these dominant-negative ß-arrestins caused defects in commissural axon guidance in the spinal cord of chick embryos of mixed sexes. Thus we show that ß-arrestins are essential scaffolding proteins that connect Smo to SFKs and are required for Shh-mediated axon guidance.


Assuntos
Orientação de Axônios , Proteínas Hedgehog , beta-Arrestinas , Animais , Proteínas Hedgehog/metabolismo , Ratos , Orientação de Axônios/fisiologia , beta-Arrestinas/metabolismo , Arrestinas/metabolismo , Arrestinas/genética , Feminino , Axônios/fisiologia , Axônios/metabolismo , Ratos Sprague-Dawley , Células Cultivadas , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Quinases da Família src/metabolismo , Masculino , Medula Espinal/metabolismo , Medula Espinal/embriologia , Medula Espinal/citologia , Embrião de Galinha , Humanos
20.
Stem Cells Dev ; 33(11-12): 306-320, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38753688

RESUMO

Lower population of dopaminergic (DA) neurons is known to increase susceptibility to Parkinson's disease (PD), and our earlier study showed a lower yield of DA neurons in Leucine-Rich Repeat Kinase Isoleucine 1371 Valine (LRRK2-I1371V) mutation-carrying PD patient-derived induced Pluripotent Stem Cells (iPSCs). Although the role of Sonic Hedgehog (SHH) in DA neurogenesis of floor plate cells (FPCs) is known, the effect of LRRK2 mutations on SHH responsiveness of FPCs impacting DA neuronal yield has not been studied. We investigated SHH responsiveness of FPCs derived from LRRK2-I1371V PD patient iPSCs with regard to the expression of SHH receptors Patched1 (Ptch1) and Smoothened (Smo), in conjunction with nuclear Gli1 (glioma-associated oncogene 1) expression, intracellular Ca2+ rise, and cytosolic cyclic adenosine monophosphate (cAMP) levels upon SHH induction. In addition, we examined the mechanistic link with LRRK2-I1371V gain-of-function by assessing membrane fluidity and Rab8A and Rab10 phosphorylation in SH-SY5Y cells and healthy control (HC) FPCs overexpressing LRRK2-I1371V as well as FPCs. Although total expression of Ptch1 and Smo was comparable, receptor expression on cell surface was significantly lower in LRRK2-I1371V FPCs than in HC FPCs, with distinctly lower nuclear expression of the downstream transcription factor Gli1. HC-FPCs transfected with LRRK2-I1371V exhibited a similarly reduced cell surface expression of Ptch1 and Smo. Intracellular Ca2+ response was significantly lower with corresponding elevated cAMP levels in LRRK2-I1371V FPCs compared with HC FPCs upon SHH stimulation. The LRRK2-I1371V mutant FPCs and LRRK2-I1371V-transfected SH-SY5Y and HC FPCs too exhibited higher autophosphorylation of phospho LRRK2 (pLRRK2) serine1292 and serine935, as well as substrate phosphorylation of Rab8A and Rab10. Concurrent increase in membrane fluidity, accompanied by a decrease in membrane cholesterol, and lower expression of lipid raft marker caveolin 1 were also observed in them. These findings suggest that impaired SHH responsiveness of LRRK2-I1371V PD FPCs indeed leads to lower yield of DA neurons during ontogeny. Reduced cell surface expression of SHH receptors is influenced by alteration in membrane fluidity owing to the increased substrate phosphorylation of Rab8A and reduced membrane protein trafficking due to pRab10, both results of the LRRK2-I1371V mutation.


Assuntos
Neurônios Dopaminérgicos , Proteínas Hedgehog , Células-Tronco Pluripotentes Induzidas , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Receptor Patched-1 , Proteína GLI1 em Dedos de Zinco , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Dopaminérgicos/metabolismo , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , AMP Cíclico/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Mutação/genética , Cálcio/metabolismo , Diferenciação Celular/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA