Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Eur. j. haematol ; ago.2024.
Artigo em Inglês | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1567870

RESUMO

BACKGROUND: Chimeric antigen receptor T-cell (CAR-T) therapy has shown promise in treating hematologic malignancies, yet its potential cardiotoxic effects require thorough investigation. OBJECTIVES: We aim to conduct a systematic review and meta-analysis to examine the cardiotoxic effects of CAR-T therapy in adults with hematologic malignancies. METHODS: We searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials for studies reporting cardiovascular outcomes, such as arrhythmias, heart failure, and reduced left ventricle ejection fraction (LVEF). RESULTS: Our analysis of 20 studies involving 4789 patients revealed a 19.68% incidence rate of cardiovascular events, with arrhythmias (7.70%), heart failure (5.73%), and reduced LVEF (3.86%) being the most prevalent. Troponin elevation was observed in 23.61% of patients, while NT-Pro-BNP elevation was observed in 9.4. Subgroup analysis showed higher risks in patients with pre-existing conditions, such as atrial arrhythmia (OR 3.12; p < .001), hypertension (OR 1.85; p = .002), previous heart failure (OR 3.38; p = .003), and coronary artery disease (OR 2.80; p = .003). CONCLUSION: Vigilant cardiovascular monitoring is crucial for patients undergoing CAR-T therapy to enhance safety and treatment efficacy.Novelty Statements.


Assuntos
Arritmias Cardíacas , Neoplasias Hematológicas , Cardiotoxicidade , Receptores de Antígenos Quiméricos , Troponina , Linfócitos T , Imunoterapia Adotiva , Ventrículos do Coração
2.
Cytotherapy ; 26(11): 1320-1330, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38970613

RESUMO

Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais , Receptores de Antígenos Quiméricos , Ensaios Antitumorais Modelo de Xenoenxerto , Células Matadoras Naturais/imunologia , Humanos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Camundongos , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Antígenos CD19/imunologia , Proliferação de Células , Linfoma de Células B/terapia , Linfoma de Células B/imunologia , Citotoxicidade Imunológica
5.
Hematol., Transfus. Cell Ther. (Impr.) ; 46(1): 58-66, Jan.-Mar. 2024. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1557889

RESUMO

Abstract Introduction Chimeric Antigen Receptor (CAR) T cells have tremendous potentials for cancer treatment; however, various challenges impede their universal use. These restrictions include the poor function of T cells in tumor microenvironments, the shortage of tumor-specific antigens and, finally, the high cost and time-consuming process, as well as the poor scalability of the method. Creative gene-editing tools have addressed each of these limitations and introduced next generation products for cell therapy. The clustered regularly interspaced short palindromic repeats-associated endonuclease 9 (CRISPR/Cas9) system has triggered a revolution in biology fields, as it has a great capacity for genetic manipulation. Method In this review, we considered the latest development of CRISPR/Cas9 methods for the chimeric antigen receptor T cell (CAR T)-based immunotherapy. Results The ability of the CRISPR/Cas9 system to generate the universal CAR T cells and also potent T cells that are persistent against exhaustion and inhibition was explored. Conclusion: We explained CRISPR delivery methods, as well as addressing safety concerns related to the use of the CRISPR/Cas9 system and their potential solutions.


Assuntos
Neoplasias , Terapia Genética , Imunoterapia Adotiva , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Receptores de Antígenos Quiméricos
6.
Blood Adv ; 8(9): 2182-2192, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38386999

RESUMO

ABSTRACT: Relapse after CD19-directed chimeric antigen receptor (CAR)-modified T cells remains a substantial challenge. Short CAR T-cell persistence contributes to relapse risk, necessitating novel approaches to prolong durability. CAR T-cell reinfusion (CARTr) represents a potential strategy to reduce the risk of or treat relapsed disease after initial CAR T-cell infusion (CARTi). We conducted a retrospective review of reinfusion of murine (CTL019) or humanized (huCART19) anti-CD19/4-1BB CAR T cells across 3 clinical trials or commercial tisagenlecleucel for relapse prevention (peripheral B-cell recovery [BCR] or marrow hematogones ≤6 months after CARTi), minimal residual disease (MRD) or relapse, or nonresponse to CARTi. The primary endpoint was complete response (CR) at day 28 after CARTr, defined as complete remission with B-cell aplasia. Of 262 primary treatments, 81 were followed by ≥1 reinfusion (investigational CTL019, n = 44; huCART19, n = 26; tisagenlecleucel, n = 11), representing 79 patients. Of 63 reinfusions for relapse prevention, 52% achieved CR (BCR, 15/40 [38%]; hematogones, 18/23 [78%]). Lymphodepletion was associated with response to CARTr for BCR (odds ratio [OR], 33.57; P = .015) but not hematogones (OR, 0.30; P = .291). The cumulative incidence of relapse was 29% at 24 months for CR vs 61% for nonresponse to CARTr (P = .259). For MRD/relapse, CR rate to CARTr was 50% (5/10), but 0/8 for nonresponse to CARTi. Toxicity was generally mild, with the only grade ≥3 cytokine release syndrome (n = 6) or neurotoxicity (n = 1) observed in MRD/relapse treatment. Reinfusion of CTL019/tisagenlecleucel or huCART19 is safe, may reduce relapse risk in a subset of patients, and can reinduce remission in CD19+ relapse.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Antígenos CD19/imunologia , Antígenos CD19/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Pré-Escolar , Feminino , Masculino , Receptores de Antígenos Quiméricos/uso terapêutico , Adolescente , Recidiva , Estudos Retrospectivos , Lactente , Receptores de Antígenos de Linfócitos T/uso terapêutico , Resultado do Tratamento , Linfócitos T/imunologia
7.
J Immunol ; 212(8): 1381-1391, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416029

RESUMO

Granzymes are a family of proteases used by CD8 T cells to mediate cytotoxicity and other less-defined activities. The substrate and mechanism of action of many granzymes are unknown, although they diverge among the family members. In this study, we show that mouse CD8+ tumor-infiltrating lymphocytes (TILs) express a unique array of granzymes relative to CD8 T cells outside the tumor microenvironment in multiple tumor models. Granzyme F was one of the most highly upregulated genes in TILs and was exclusively detected in PD1/TIM3 double-positive CD8 TILs. To determine the function of granzyme F and to improve the cytotoxic response to leukemia, we constructed chimeric Ag receptor T cells to overexpress a single granzyme, granzyme F or the better-characterized granzyme A or B. Using these doubly recombinant T cells, we demonstrated that granzyme F expression improved T cell-mediated cytotoxicity against target leukemia cells and induced a form of cell death other than chimeric Ag receptor T cells expressing only endogenous granzymes or exogenous granzyme A or B. However, increasing expression of granzyme F also had a detrimental impact on the viability of the host T cells, decreasing their persistence in circulation in vivo. These results suggest a unique role for granzyme F as a marker of terminally differentiated CD8 T cells with increased cytotoxicity, but also increased self-directed cytotoxicity, suggesting a potential mechanism for the end of the terminal exhaustion pathway.


Assuntos
Leucemia , Receptores de Antígenos Quiméricos , Animais , Camundongos , Linfócitos T CD8-Positivos , Granzimas , Leucemia/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Microambiente Tumoral , Citotoxicidade Imunológica
8.
Clin Transl Oncol ; 26(6): 1300-1318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38244129

RESUMO

In recent years, cancer has become one of the primary causes of mortality, approximately 10 million deaths worldwide each year. The most advanced, chimeric antigen receptor (CAR) T cell immunotherapy has turned out as a promising treatment for cancer. CAR-T cell therapy involves the genetic modification of T cells obtained from the patient's blood, and infusion back to the patients. CAR-T cell immunotherapy has led to a significant improvement in the remission rates of hematological cancers. CAR-T cell therapy presently limited to hematological cancers, there are ongoing efforts to develop additional CAR constructs such as bispecific CAR, tandem CAR, inhibitory CAR, combined antigens, CRISPR gene-editing, and nanoparticle delivery. With these advancements, CAR-T cell therapy holds promise concerning potential to improve upon traditional cancer treatments such as chemotherapy and radiation while reducing associated toxicities. This review covers recent advances and advantages of CAR-T cell immunotherapy.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias Hematológicas/terapia , Edição de Genes/métodos , Linfócitos T/imunologia , Linfócitos T/transplante
9.
Hematology Am Soc Hematol Educ Program ; 2023(1): 370-381, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066907

RESUMO

Patients with relapsed and refractory (R/R) aggressive B-cell non-Hodgkin lymphomas have historically poor survival outcomes, with chimeric antigen receptor T-cell (CAR-T) therapy now presenting a curative option for a subset of those patients. However, with the approval of several novel bispecific monoclonal antibody (BsAb) therapies with considerable activity in R/R aggressive large B-cell lymphomas (LBCL), patients and oncologists will be faced with decisions regarding how to sequence CAR-T and BsAb therapies based on patient- and disease-related factors. In this review, we compare CAR-T and BsAb therapies for R/R LBCL, highlighting data on the efficacy and toxicity of each treatment paradigm, and provide a roadmap for sequencing these highly effective therapies.


Assuntos
Anticorpos Biespecíficos , Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B/patologia , Anticorpos Biespecíficos/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos
10.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958672

RESUMO

Cancer is a worldwide health problem. Nevertheless, new technologies in the immunotherapy field have emerged. Chimeric antigen receptor (CAR) technology is a novel biological form to treat cancer; CAR-T cell genetic engineering has positively revolutionized cancer immunotherapy. In this paper, we review the latest developments in CAR-T in cancer treatment. We present the structure of the different generations and variants of CAR-T cells including TRUCK (T cells redirected for universal cytokine killing. We explain the approaches of the CAR-T cells manufactured ex vivo and in vivo. Moreover, we describe the limitations and areas of opportunity for this immunotherapy and the current challenges of treating hematological and solid cancer using CAR-T technology as well as its constraints and engineering approaches. We summarize other immune cells that have been using CAR technology, such as natural killer (NK), macrophages (M), and dendritic cells (DC). We conclude that CAR-T cells have the potential to treat not only cancer but other chronic diseases.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva , Linfócitos T , Neoplasias/genética , Terapia Baseada em Transplante de Células e Tecidos
11.
Bioengineered ; 14(1): 2281059, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37978838

RESUMO

Cryptococcus spp. has a polysaccharide capsule composed of glucuronoxylomannan-GXM, a major virulence factor that can prevent the recognition of fungi by immune cells. Chimeric Antigen Receptor (CAR) redirects T cells to target Cryptococcus spp. as previously demonstrated by a CAR specific to GXM, GXMR-CAR. The current study evaluated the strength of the signal transduction triggered by GXMR-CAR, composed of a distinct antigen-binding domain sourced from a single-chain variable fragment (scFv). GXM-specific scFv derived from mAbs 2H1 and 18B7, 2H1-GXMR-CAR and 18B7-GXMR-CAR, respectively, were designed to express CD8 molecule as hinge/transmembrane, and the costimulatory molecule CD137 (4-1BB) coupled to CD3ζ. The 2H1-GXMR-CAR or 18B7-GXMR-CAR Jurkat cells recognized soluble GXM from C. gattii and C. neoformans, and the levels of IL-2 released by the modified cells did not differ between the GXMR-CAR constructs after exposure to Cryptococcus spp. 18B7-GXMR-CAR triggered tonic signaling was more pronounced in modified Jurkat cells, and a protein kinase inhibitor of the Src family (dasatinib) significantly reduced GXMR-CAR tonic signaling and inhibited cell activation against ligands. 18B7 scFv showed a structural modification of the variable heavy (VH) chain that clarified the difference in the strength of tonic signaling and the level of cell activation between 2H1-GXMR-CAR and 18B7-GXMR-CAR. GXMR-CAR constructs induced T-cell activation against clinical isolates of Cryptococcus spp. and serum from patients with cryptococcosis induced high levels of IL-2, mainly in cells modified with 18B7-GXMR-CAR. Thus, 18B7-GXMR-CAR and 2H1-GXMR-CAR mediated T cell activation against Cryptococcus spp. and 18B7 and 2H1 scFv influenced the strength of tonic signaling.


2H1-GXMR-CAR and 18B7-GXMR-CAR are efficiently expressed on the cell surface;2H1-GXMR-CAR and 18B7-GXMR-CAR redirected T cells toward the ligands;18B7-GXMR-CAR provided highest levels of tonic signaling;Binding pocket of 18B7 scFv favored the tonic signaling triggered by GXMR-CAR;Binding pocket of 18B7 scFv favored the tonic signaling triggered by GXMR-CAR.


Assuntos
Cryptococcus neoformans , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Interleucina-2 , Polissacarídeos/química , Cryptococcus neoformans/química , Transdução de Sinais
12.
Front Immunol ; 14: 1226518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818365

RESUMO

Introduction: Natural killer 92 (NK-92) cells are an attractive therapeutic approach as alternative chimeric antigen receptor (CAR) carriers, different from T cells, once they can be used in the allogeneic setting. The modest in vivo outcomes observed with NK-92 cells continue to present hurdles in successfully translating NK-92 cell therapies into clinical applications. Adoptive transfer of CAR-NK-92 cells holds out the promise of therapeutic benefit at a lower rate of adverse events due to the absence of GvHD and cytokine release syndrome. However, it has not achieved breakthrough clinical results yet, and further improvement of CAR-NK-92 cells is necessary. Methods: In this study, we conducted a comparative analysis between CD19-targeted CAR (CAR.19) co-expressing IL-15 (CAR.19-IL15) with IL-15/IL-15Rα (CAR.19-IL15/IL15Rα) to promote NK cell proliferation, activation, and cytotoxic activity against B-cell leukemia. CAR constructs were cloned into lentiviral vector and transduced into NK-92 cell line. Potency of CAR-NK cells were assessed against CD19-expressing cell lines NALM-6 or Raji in vitro and in vivo in a murine model. Tumor burden was measured by bioluminescence. Results: We demonstrated that a fourth- generation CD19-targeted CAR (CAR.19) co-expressing IL-15 linked to its receptor IL-15/IL-15Rα (CAR.19-IL-15/IL-15Rα) significantly enhanced NK-92 cell proliferation, proinflammatory cytokine secretion, and cytotoxic activity against B-cell cancer cell lines in vitro and in a xenograft mouse model. Conclusion: Together with the results of the systematic analysis of the transcriptome of activated NK-92 CAR variants, this supports the notion that IL-15/IL-15Rα comprising fourth-generation CARs may overcome the limitations of NK-92 cell-based targeted tumor therapies in vivo by providing the necessary growth and activation signals.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais , Antígenos CD19 , Proliferação de Células
13.
Mol Cancer Ther ; 22(11): 1261-1269, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37596239

RESUMO

In immunotherapy with T cells genetically modified to express chimeric antigen receptors (CAR), autologous lymphocytes are extracted from the patient, genetically modified to obtain CAR-T cells, and reintroduced into the patient to attack cancer cells. The success of this therapy has been achieved in the area of CD19-positive leukemias and lymphomas, being approved for the treatment of non-Hodgkin's lymphomas, acute lymphoblastic leukemia, and multiple myeloma. CARs are proteins that combine antibody specificity with T-cell cytotoxicity. The most common toxicities associated with therapy were not predicted by preclinical testing and include cytokine release syndrome, neurotoxicity, and cytopenias. These toxicities are usually reversible. One of the main challenges facing the field is the high economic cost that therapy entails, so the search for ways to reduce this cost must be a priority. In addition, other challenges to overcome include the situation that not all patients are supplied with the product and the existence of long waiting times for the start of therapy. The aim of this review is to present the development of the structure of CAR-T cells, the therapies approved to date, the toxicity associated with them, and the advantages and limitations that they present as immunotherapy.


Assuntos
Linfoma , Mieloma Múltiplo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/metabolismo , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva , Antígenos CD19 , Linfoma/metabolismo , Imunoterapia , Linfócitos T , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
14.
Adv Exp Med Biol ; 1429: 85-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486518

RESUMO

Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Edição de Genes , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Neoplasias/genética , Neoplasias/terapia , Engenharia Celular
15.
Oncoimmunology ; 12(1): 2225291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363103

RESUMO

Gallbladder cancer (GBC) is commonly diagnosed at late stages when conventional treatments achieve only modest clinical benefit. Therefore, effective treatments for advanced GBC are needed. In this context, the administration of T cells genetically engineered with chimeric antigen receptors (CAR) has shown remarkable results in hematological cancers and is being extensively studied for solid tumors. Interestingly, GBC tumors express canonical tumor-associated antigens, including the carcinoembryonic antigen (CEA). However, the potential of CEA as a relevant antigen in GBC to be targeted by CAR-T cell-based immunotherapy has not been addressed. Here we show that CEA was expressed in 88% of GBC tumors, with higher levels associated with advanced disease stages. CAR-T cells specifically recognized plate-bound CEA as evidenced by up-regulation of 4-1BB, CD69 and PD-1, and production of effector cytokines IFN-γ and TNF-α. In addition, CD8+ CAR-T cells up-regulated the cytotoxic molecules granzyme B and perforin. Interestingly, CAR-T cell activation occurred even in the presence of PD-L1. Consistent with these results, CAR-T cells efficiently recognized GBC cell lines expressing CEA and PD-L1, but not a CEA-negative cell line. Furthermore, CAR-T cells exhibited in vitro cytotoxicity and reduced in vivo tumor growth of GB-d1 cells. In summary, we demonstrate that CEA represents a relevant antigen for GBC that can be targeted by CAR-T cells at the preclinical level. This study warrants further development of the adoptive transfer of CEA-specific CAR-T cells as a potential immunotherapy for GBC.


Assuntos
Neoplasias da Vesícula Biliar , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Antígeno Carcinoembrionário/genética , Imunoterapia Adotiva/métodos , Antígeno B7-H1 , Neoplasias da Vesícula Biliar/terapia , Imunoterapia , Linfócitos T
17.
Cancer Cell ; 41(7): 1204-1206, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37244258

RESUMO

Cholesterol is essential for the ability of cytotoxic T cells to eliminate cancer cells. In this issue of Cancer Cell, Yan et al. reveal how intra-tumoral cholesterol deficiency contributes to T cell exhaustion by inhibiting mTORC1 signaling. Moreover, they demonstrate that increasing cholesterol levels in chimeric antigen receptor (CAR)-T cells by blocking liver X receptor (LXR) leads to improved anti-tumor function.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Microambiente Tumoral , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T Citotóxicos
18.
Blood Adv ; 7(16): 4418-4430, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37171449

RESUMO

Many hematologic malignancies are not curable with chemotherapy and require novel therapeutic approaches. Chimeric antigen receptor (CAR) T-cell therapy is 1 such approach that involves the transfer of T cells engineered to express CARs for a specific cell-surface antigen. CD38 is a validated tumor antigen in multiple myeloma (MM) and T-cell acute lymphoblastic leukemia (T-ALL) and is also overexpressed in acute myeloid leukemia (AML). Here, we developed human CD38-redirected T cells (CART-38) as a unified approach to treat 3 different hematologic malignancies that occur across the pediatric-to-adult age spectrum. Importantly, CD38 expression on activated T cells did not impair CART-38 cells expansion or in vitro function. In xenografted mice, CART-38 mediated the rejection of AML, T-ALL, and MM cell lines and primary samples and prolonged survival. In a xenograft model of normal human hematopoiesis, CART-38 resulted in the expected reduction of hematopoietic progenitors, which warrants caution and careful monitoring of this potential toxicity when translating this new immunotherapy into the clinic. Deploying CART-38 against multiple CD38-expressing malignancies is significant because it expands the potential for this novel therapy to affect diverse patient populations.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos , Adulto , Animais , Criança , Humanos , Camundongos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T
19.
Clin Transl Oncol ; 25(10): 2972-2982, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37079211

RESUMO

OBJECTIVE: Great success has been achieved in CAR-T cell immunotherapy in the treatment of hematological tumors. However, it is particularly difficult in solid tumors, because CAR-T is difficult to enter interior and exert long-term stable immune effects. Dendritic cells (DCs) can not only present tumor antigens but also promote the infiltration of T cells. Therefore, CAR-T cells with the help of DC vaccines are a reliable approach to treat solid tumors. METHODS: To test whether DC vaccine could promote CAR-T cell therapy in solid tumors, DC vaccine was co-cultured with MSLN CAR-T cells. The in vitro effects of DC vaccine on CAR-T were assessed by measuring cell proliferation, cell differentiation, and cytokine secretion. Effects of DC vaccine on CAR-T were evaluated using mice with subcutaneous tumors in vivo. The infiltration of CAR-T was analyzed using immunofluorescence. The persistence of CAR-T in mouse blood was analyzed using real-time quantitative PCR. RESULTS: The results showed that DC vaccine significantly enhanced the proliferation potential of MSLN CAR-T cells in vitro. DC vaccines not only promoted the infiltration of CAR-T cells, but also significantly improved the persistence of CAR-T in solid tumors in vivo. CONCLUSION: In conclusion, this study has demonstrated that DC vaccine can promote CAR-T therapy in solid tumors, which provides the possibility of widespread clinical application of CAR-T cells in the future.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Vacinas , Camundongos , Animais , Linfócitos T , Exaustão das Células T , Neoplasias/terapia , Imunoterapia Adotiva/métodos
20.
Clin Transl Oncol ; 25(8): 2279-2296, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36853399

RESUMO

Chimeric antigen receptor T cells therapy (CAR-T therapy) is a class of ACT therapy. Chimeric antigen receptor (CAR) is an engineered synthetic receptor of CAR-T, which give T cells the ability to recognize tumor antigens in a human leukocyte antigen-independent (HLA-independent) manner and enables them to recognize more extensive target antigens than natural T cell surface receptor (TCR), resulting in tumor destruction. CAR-T is composed of an extracellular single-chain variable fragment (scFv) of antibody, which serves as the targeting moiety, hinge region, transmembrane spacer, and intracellular signaling domain(s). CAR-T has been developing in many generations, which differ according to costimulatory domains. CAR-T therapy has several limitations that reduce its wide availability in immunotherapy which we can summarize in antigen escape that shows either partial or complete loss of target antigen expression, so multiplexing CAR-T cells are promoted to enhance targeting of tumor profiles. In addition, the large diversity in the tumor microenvironment also plays a major role in limiting this kind of treatment. Therefore, engineered CAR-T cells can evoke immunostimulatory signals that rebalance the tumor microenvironment. Using CAR-T therapy in treating the solid tumor is mainly restricted by the difficulty of CAR-T cells infiltrating the tumor site, so local administration was developed to improve the quality of treatment. The most severe toxicity after CAR-T therapy is on-target/on-tumor toxicity, such as cytokine release syndrome (CRS). Another type of toxicity is on-target/off-tumor toxicity which originates from the binding of CAR-T cells to target antigen that has shared expression on normal cells leading to damage in healthy cells and organs. Toxicity management should become a focus of implementation to permit management beyond specialized centers.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA