Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.696
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709918

RESUMO

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Assuntos
Ansiedade , Arginina Vasopressina , Comportamento Social , Animais , Feminino , Masculino , Camundongos , Ansiedade/metabolismo , Arginina Vasopressina/metabolismo , Comportamento Animal/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia
2.
PLoS One ; 19(5): e0303507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748623

RESUMO

Loss-of-function mutations in the type 2 vasopressin receptor (V2R) are a major cause of congenital nephrogenic diabetes insipidus (cNDI). In the context of partial cNDI, the response to desmopressin (dDAVP) is partially, but not entirely, diminished. For those with the partial cNDI, restoration of V2R function would offer a prospective therapeutic approach. In this study, we revealed that OPC-51803 (OPC5) and its structurally related V2R agonists could functionally restore V2R mutants causing partial cNDI by inducing prolonged signal activation. The OPC5-related agonists exhibited functional selectivity by inducing signaling through the Gs-cAMP pathway while not recruiting ß-arrestin1/2. We found that six cNDI-related V2R partial mutants (V882.53M, Y1283.41S, L1614.47P, T2736.37M, S3298.47R and S3338.51del) displayed varying degrees of plasma membrane expression levels and exhibited moderately impaired signaling function. Several OPC5-related agonists induced higher cAMP responses than AVP at V2R mutants after prolonged agonist stimulation, suggesting their potential effectiveness in compensating impaired V2R-mediated function. Furthermore, docking analysis revealed that the differential interaction of agonists with L3127.40 caused altered coordination of TM7, potentially contributing to the functional selectivity of signaling. These findings suggest that nonpeptide V2R agonists could hold promise as potential drug candidates for addressing partial cNDI.


Assuntos
Diabetes Insípido Nefrogênico , Receptores de Vasopressinas , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/metabolismo , Humanos , Células HEK293 , Diabetes Insípido Nefrogênico/tratamento farmacológico , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Mutação , Transdução de Sinais/efeitos dos fármacos , AMP Cíclico/metabolismo , Desamino Arginina Vasopressina/farmacologia , beta-Arrestinas/metabolismo , Animais
3.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782603

RESUMO

It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α1-adrenoceptors (α1-ARs) through which CRs are regulated. Here, we show that arginine vasopressin receptor 1A (AVPR1A) heteromerizes with all human CRs, except chemokine (C-X-C motif) receptor (CXCR)1, in recombinant systems and that such heteromers are detectable in THP-1 cells and human monocytes. We demonstrate that ligand-free AVPR1A differentially regulates the efficacy of CR partners to mediate chemotaxis and that AVPR1A ligands disrupt AVPR1A:CR heteromers, which enhances chemokine (C-C motif) receptor (CCR)1-mediated chemotaxis and inhibits CCR2-, CCR8-, and CXCR4-mediated chemotaxis. Using bioluminescence resonance energy transfer to monitor G protein activation and CRISPR/Cas9 gene-edited THP-1 cells lacking AVPR1A or α1B-AR, we show that CRs that share the propensity to heteromerize with α1B/D-ARs and AVPR1A exist and function within interdependent hetero-oligomeric complexes through which the efficacy of CRs to mediate chemotaxis is controlled. Our findings suggest that hetero-oligomers composed of CRs, α1B/D-ARs, and AVPR1A may enable stress hormones to regulate immune cell trafficking.


Assuntos
Quimiotaxia , Monócitos , Receptores de Quimiocinas , Receptores de Vasopressinas , Humanos , Monócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Células THP-1 , Multimerização Proteica , Células HEK293 , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Sistemas CRISPR-Cas , Transdução de Sinais , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/genética , Ligantes
4.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695074

RESUMO

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Assuntos
Desamino Arginina Vasopressina , Túbulos Renais Coletores , Camundongos Knockout , Animais , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Desamino Arginina Vasopressina/farmacologia , Capacidade de Concentração Renal/efeitos dos fármacos , Arginina Vasopressina/metabolismo , Masculino , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Camundongos , Aquaporina 2/metabolismo , Aquaporina 2/genética , Antidiuréticos/farmacologia , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Camundongos Endogâmicos C57BL , Privação de Água , Concentração Osmolar , Sódio/urina , Sódio/metabolismo , Vasopressinas/metabolismo , Benzazepinas
5.
Front Endocrinol (Lausanne) ; 15: 1390203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803478

RESUMO

Vasopressin and oxytocin are well known and evolutionarily ancient modulators of social behavior. The distribution and relative densities of vasopressin and oxytocin receptors are known to modulate the sensitivity to these signaling molecules. Comparative work is needed to determine which neural networks have been conserved and modified over evolutionary time, and which social behaviors are commonly modulated by nonapeptide signaling. To this end, we used receptor autoradiography to determine the distribution of vasopressin 1a and oxytocin receptors in the Southern giant pouched rat (Cricetomys ansorgei) brain, and to assess the relative densities of these receptors in specific brain regions. We then compared the relative receptor pattern to 23 other species of rodents using a multivariate ANOVA. Pouched rat receptor patterns were strikingly similar to hamsters and voles overall, despite the variation in social organization among species. Uniquely, the pouched rat had dense vasopressin 1a receptor binding in the caudate-putamen (i.e., striatum), an area that might impact affiliative behavior in this species. In contrast, the pouched rat had relatively little oxytocin receptor binding in much of the anterior forebrain. Notably, however, oxytocin receptor binding demonstrated extremely dense binding in the bed nucleus of the stria terminalis, which is associated with the modulation of several social behaviors and a central hub of the social decision-making network. Examination of the nonapeptide system has the potential to reveal insights into species-specific behaviors and general themes in the modulation of social behavior.


Assuntos
Encéfalo , Receptores de Ocitocina , Receptores de Vasopressinas , Animais , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Masculino , Encéfalo/metabolismo , Roedores/metabolismo , Ratos , Especificidade da Espécie , Autorradiografia , Arvicolinae/metabolismo , Ocitocina/metabolismo , Cricetinae , Comportamento Social , Feminino
6.
Sci Rep ; 14(1): 9453, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658606

RESUMO

Arginine-vasopressin (AVP), a cyclic peptide hormone composed of nine amino acids, regulates water reabsorption by increasing intracellular cyclic adenosine monophosphate (cAMP) concentrations via the vasopressin V2 receptor (V2R). Plasma AVP is a valuable biomarker for the diagnosis of central diabetes insipidus (CDI) and is commonly measured using radioimmunoassay (RIA). However, RIA has several drawbacks, including a long hands-on time, complex procedures, and handling of radioisotopes with special equipment and facilities. In this study, we developed a bioassay to measure plasma AVP levels using HEK293 cells expressing an engineered V2R and a cAMP biosensor. To achieve high sensitivity, we screened V2R orthologs from 11 various mammalian species and found that the platypus V2R (pV2R) responded to AVP with approximately six-fold higher sensitivity than that observed by the human V2R. Furthermore, to reduce cross-reactivity with desmopressin (DDAVP), a V2R agonist used for CDI treatment, we introduced a previously described point mutation into pV2R, yielding an approximately 20-fold reduction of responsiveness to DDAVP while maintaining responsiveness to AVP. Finally, a comparison of plasma samples from 12 healthy individuals demonstrated a strong correlation (Pearson's correlation value: 0.90) between our bioassay and RIA. Overall, our assay offers a more rapid and convenient method for quantifying plasma AVP concentrations than existing techniques.


Assuntos
Arginina Vasopressina , Técnicas Biossensoriais , AMP Cíclico , Receptores de Vasopressinas , Humanos , Arginina Vasopressina/sangue , Células HEK293 , AMP Cíclico/sangue , AMP Cíclico/metabolismo , Receptores de Vasopressinas/genética , Técnicas Biossensoriais/métodos , Desamino Arginina Vasopressina/farmacologia , Animais , Bioensaio/métodos
7.
Peptides ; 177: 171226, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649033

RESUMO

Close contact between lactating rodent mothers and their infants is essential for effective nursing. Whether the mother's effort to retrieve the infants to their nest requires the vasopressin-signaling via V1b receptor has not been fully defined. To address this question, V1b receptor knockout (V1bKO) and control mice were analyzed in pup retrieval test. Because an exploring mother in a new test cage randomly accessed to multiple infants in changing backgrounds over time, a computer vision-based deep learning analysis was applied to continuously calculate the distances between the mother and the infants as a parameter of their relationship. In an open-field, a virgin female V1bKO mice entered fewer times into the center area and moved shorter distances than wild-type (WT). While this behavioral pattern persisted in V1bKO mother, the pup retrieval test demonstrated that total distances between a V1bKO mother and infants came closer in a shorter time than with a WT mother. Moreover, in the medial preoptic area, parts of the V1b receptor transcripts were detected in galanin- and c-fos-positive neurons following maternal stimulation by infants. This research highlights the effectiveness of deep learning analysis in evaluating the mother-infant relationship and the critical role of V1b receptor in pup retrieval during the early lactation phase.


Assuntos
Comportamento Materno , Camundongos Knockout , Receptores de Vasopressinas , Animais , Feminino , Camundongos , Comportamento Materno/fisiologia , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Lactação/genética , Aprendizado Profundo , Animais Recém-Nascidos , Área Pré-Óptica/metabolismo
8.
Peptides ; 177: 171229, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663583

RESUMO

Circadian rhythms optimally regulate numerous physiological processes in an organism and synchronize them with the external environment. The suprachiasmatic nucleus (SCN), the center of the circadian clock in mammals, is composed of multiple cell types that form a network that provides the basis for the remarkable stability of the circadian clock. Among the neuropeptides expressed in the SCN, arginine vasopressin (AVP) has attracted much attention because of its deep involvement in the function of circadian rhythms, as elucidated in particular by studies using genetically engineered mice. This review briefly summarizes the current knowledge on the peptidergic distribution and topographic neuronal organization in the SCN, the molecular mechanisms of the clock genes, and the relationship between the SCN and peripheral clocks. With respect to the physiological roles of AVP and AVP-expressing neurons, in addition to a sex-dependent action of AVP in the SCN, studies using AVP receptor knockout mice and mice genetically manipulated to alter the clock properties of AVP neurons are summarized here, highlighting its importance in maintaining circadian homeostasis and its potential as a target for therapeutic interventions.


Assuntos
Arginina Vasopressina , Ritmo Circadiano , Homeostase , Núcleo Supraquiasmático , Animais , Arginina Vasopressina/metabolismo , Arginina Vasopressina/genética , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Homeostase/genética , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Humanos , Camundongos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Neurônios/metabolismo , Camundongos Knockout , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo
9.
J Med Chem ; 67(7): 5935-5944, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38509003

RESUMO

The dysregulated intracellular cAMP in the kidneys drives cystogenesis and progression in autosomal dominant polycystic kidney disease (ADPKD). Mounting evidence supports that vasopressin V2 receptor (V2R) antagonism effectively reduces cAMP levels, validating this receptor as a therapeutic target. Tolvaptan, an FDA-approved V2R antagonist, shows limitations in its clinical efficacy for ADPKD treatment. Therefore, the pursuit of better-in-class V2R antagonists with an improved efficacy remains pressing. Herein, we synthesized a set of peptide V2R antagonists. Peptide 33 exhibited a high binding affinity for the V2R (Ki = 6.1 ± 1.5 nM) and an extended residence time of 20 ± 1 min, 2-fold that of tolvaptan. This prolonged interaction translated into sustained suppression of cAMP production in washout experiments. Furthermore, peptide 33 exhibited improved efficacies over tolvaptan in both ex vivo and in vivo models of ADPKD, underscoring its potential as a promising lead compound for the treatment of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Tolvaptan/uso terapêutico , Tolvaptan/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Rim/metabolismo , Vasopressinas/metabolismo , Receptores de Vasopressinas/metabolismo
10.
Horm Behav ; 161: 105521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452613

RESUMO

The neuropeptides arginine vasopressin (AVP) and oxytocin (OXT) are key regulators of social behaviour across vertebrates. However, much of our understanding of how these neuropeptide systems interact with social behaviour is centred around laboratory studies which fail to capture the social and physiological challenges of living in the wild. To evaluate relationships between these neuropeptide systems and social behaviour in the wild, we studied social groups of the cichlid fish Neolamprologus pulcher in Lake Tanganyika, Africa. We first used SCUBA to observe the behaviour of focal group members and then measured transcript abundance of key components of the AVP and OXT systems across different brain regions. While AVP is often associated with male-typical behaviours, we found that dominant females had higher expression of avp and its receptor (avpr1a2) in the preoptic area of the brain compared to either dominant males or subordinates of either sex. Dominant females also generally had the highest levels of leucyl-cystinyl aminopeptidase (lnpep)-which inactivates AVP and OXT-throughout the brain, potentially indicating greater overall activity (i.e., production, release, and turnover) of the AVP system in dominant females. Expression of OXT and its receptors did not differ across social ranks. However, dominant males that visited the brood chamber more often had lower preoptic expression of OXT receptor a (oxtra) suggesting a negative relationship between OXT signalling and parental care in males of this species. Overall, these results advance our understanding of the relationships between complex social behaviours and neuroendocrine systems under natural settings.


Assuntos
Arginina Vasopressina , Ciclídeos , Ocitocina , Comportamento Social , Animais , Ocitocina/metabolismo , Ocitocina/análogos & derivados , Arginina Vasopressina/metabolismo , Masculino , Feminino , Ciclídeos/metabolismo , Ciclídeos/fisiologia , Ciclídeos/genética , Encéfalo/metabolismo , Cistinil Aminopeptidase/metabolismo , Cistinil Aminopeptidase/genética , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Comportamento Animal/fisiologia , Predomínio Social
11.
Trends Biochem Sci ; 49(4): 361-377, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418338

RESUMO

Neurohypophysial peptides are ancient and evolutionarily highly conserved neuropeptides that regulate many crucial physiological functions in vertebrates and invertebrates. The human neurohypophysial oxytocin/vasopressin (OT/VP) signaling system with its four receptors has become an attractive drug target for a variety of diseases, including cancer, pain, cardiovascular indications, and neurological disorders. Despite its promise, drug development faces hurdles, including signaling complexity, selectivity and off-target concerns, translational interspecies differences, and inefficient drug delivery. In this review we dive into the complexity of the OT/VP signaling system in health and disease, provide an overview of relevant pharmacological probes, and discuss the latest trends in therapeutic lead discovery and drug development.


Assuntos
Ocitocina , Vasopressinas , Animais , Humanos , Receptores de Vasopressinas
12.
Psychopharmacology (Berl) ; 241(6): 1177-1190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358527

RESUMO

RATIONALE: Arginine vasopressin (AVP) has dose- and sex-specific effects on social behavior, and variation in social responses is related to variation in the V1a receptor gene in animals. Whether such complexity also characterizes AVP effects on anxiety in humans, or whether V1a genotype is related to anxiety and/or AVP's ability to affect it, remains to be determined. OBJECTIVE: To test if AVP has dose-dependent effects on anxiety in men and/or women and if a particular allele within the RS3 promoter region of the V1a receptor gene is associated with anxiety and/or AVP effects on anxiety. METHOD: Men and women self-administered 20 IU or 40 IU intranasal arginine vasopressin (AVP) and placebo in a double-blind, within-subjects design, and State (SA) and Trait (TA) anxiety were measured 60 min later. PCR was used to identify allelic variation within the RS3 region of the V1a receptor gene. RESULTS: AVP decreased SA in men across both doses, whereas only the lower dose had the same effect, across sexes, in individuals who carry at least one copy of a previously identified "risk" allele in the RS3 promoter of the V1a receptor gene. Additionally, after placebo, women who carried a copy of the allele displayed lower TA than women who did not, and AVP acutely increased TA scores in those women. CONCLUSIONS: Exogenous AVP has modest sex- and dose-dependent effects on anxiety/affect in humans. Further, allelic variation in the V1a promoter appears associated with responsiveness to AVP's effects and, at least in women, to stable levels of anxiety/affect.


Assuntos
Ansiedade , Arginina Vasopressina , Relação Dose-Resposta a Droga , Genótipo , Receptores de Vasopressinas , Humanos , Masculino , Receptores de Vasopressinas/genética , Feminino , Arginina Vasopressina/genética , Arginina Vasopressina/farmacologia , Arginina Vasopressina/administração & dosagem , Método Duplo-Cego , Ansiedade/genética , Ansiedade/tratamento farmacológico , Adulto , Adulto Jovem , Fatores Sexuais , Regiões Promotoras Genéticas , Administração Intranasal , Alelos
13.
Cell Mol Life Sci ; 81(1): 77, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315242

RESUMO

BACKGROUND: Obesity-associated dysfunctional intestinal permeability contributes to systemic chronic inflammation leading to the development of metabolic diseases. The inflammasomes constitute essential components in the regulation of intestinal homeostasis. We aimed to determine the impact of the inflammasomes in the regulation of gut barrier dysfunction and metabolic inflammation in the context of obesity and type 2 diabetes (T2D). METHODS: Blood samples obtained from 80 volunteers (n = 20 normal weight, n = 21 OB without T2D, n = 39 OB with T2D) and a subgroup of jejunum samples were used in a case-control study. Circulating levels of intestinal damage markers and expression levels of inflammasomes as well as their main effectors (IL-1ß and IL-18) and key inflammation-related genes were analyzed. The impact of inflammation-related factors, different metabolites and Akkermansia muciniphila in the regulation of inflammasomes and intestinal integrity genes was evaluated. The effect of blocking NLRP6 by using siRNA in inflammation was also studied. RESULTS: Increased circulating levels (P < 0.01) of the intestinal damage markers endotoxin, LBP, and zonulin in patients with obesity decreased (P < 0.05) after weight loss. Patients with obesity and T2D exhibited decreased (P < 0.05) jejunum gene expression levels of NLRP6 and its main effector IL18 together with increased (P < 0.05) mRNA levels of inflammatory markers. We further showed that while NLRP6 was primarily localized in goblet cells, NLRP3 was localized in the intestinal epithelial cells. Additionally, decreased (P < 0.05) mRNA levels of Nlrp1, Nlrp3 and Nlrp6 in the small intestinal tract obtained from rats with diet-induced obesity were found. NLRP6 expression was regulated by taurine, parthenolide and A. muciniphila in the human enterocyte cell line CCL-241. Finally, a significant decrease (P < 0.01) in the expression and release of MUC2 after the knockdown of NLRP6 was observed. CONCLUSIONS: The increased levels of intestinal damage markers together with the downregulation of NLRP6 and IL18 in the jejunum in obesity-associated T2D suggest a defective inflammasome sensing, driving to an impaired epithelial intestinal barrier that may regulate the progression of multiple obesity-associated comorbidities.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Humanos , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Função da Barreira Intestinal , Estudos de Casos e Controles , Inflamação , Obesidade/complicações , RNA Mensageiro/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Vasopressinas/metabolismo
14.
Peptides ; 174: 171166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309582

RESUMO

Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.


Assuntos
Doenças do Sistema Nervoso , Vasopressinas , Humanos , Vasopressinas/uso terapêutico , Vasopressinas/metabolismo , Hipotálamo/metabolismo , Hipófise/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Receptores de Vasopressinas/metabolismo , Arginina Vasopressina/metabolismo
15.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 474-481, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38247327

RESUMO

Arginine vasopressin (AVP) is a key contributor to heart failure (HF), but the underlying mechanisms remain unclear. In the present study, a mouse model of HF and human cardiomyocyte (HCM) cells treated with dDAVP are generated in vivo and in vitro, respectively. Hematoxylin and eosin (HE) staining is used to evaluate the morphological changes in the myocardial tissues. A colorimetric method is used to measure the iron concentration, Fe 2+ concentration and malondialdehyde (MDA) level. Western blot analysis is used to examine the protein levels of the V1a receptor (V1aR), calcineurin (CaN), nuclear factor of activated T cells isoform C3 (NFATC3), glutathione peroxidase 4 (GPX4) and acyl-CoA synthase long chain family member 4 (ACSL4). Immunoprecipitation (IP) and luciferase reporter assays are performed to determine the interaction between NFATC3 and ACSL4. Both in vivo and in vitro experiments reveal that the V1aR-CaN-NFATC3 signaling pathway and ferroptosis are upregulated in HFs, which are verified by the elevated protein levels of V1aR, CaN, NFATC3 and ACSL4; reduced GPX4 protein level; and enhanced Fe 2+ and MDA levels. We further find that inhibiting NFATC3 by suppressing the V1aR/CaN/NFATC3 pathway via V1aR/CaN inhibitors or sh-NFATC3 not only alleviates HF but also inhibits AVP-induced ferroptosis. Mechanistically, sh-NFATC3 significantly reverses the increase in AVP-induced ACSL4 protein level, Fe 2+ concentration, and MDA level by directly interacting with ACSL4. Our results demonstrate that AVP enhances ACSL4 expression by activating the V1aR/CaN/NFATC3 pathway to induce ferroptosis, thus contributing to HF. This study may lead to the proposal of a novel therapeutic strategy for HF.


Assuntos
Ferroptose , Insuficiência Cardíaca , Camundongos , Animais , Humanos , Arginina Vasopressina/metabolismo , Receptores de Vasopressinas/metabolismo , Isoformas de Proteínas , Fatores de Transcrição NFATC
16.
Neuropsychobiology ; 83(1): 28-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38185116

RESUMO

INTRODUCTION: Vasopressin (AVP) and oxytocin (OT) exert sex-specific effects on social pair bonding and stress reactions while also influencing craving in substance use disorders. In this regard, intranasal oxytocin (OT) and AVP antagonists present potential treatments for tobacco use disorder (TUD). Since transcription of both hormones is also regulated by gene methylation, we hypothesized sex-specific changes in methylation levels of the AVP, OT, and OT receptor (OXTR) gene during nicotine withdrawal. METHODS: The study population consisted of 49 smokers (29 males, 20 females) and 51 healthy non-smokers (25 males, 26 females). Blood was drawn at day 1, day 7, and day 14 of smoking cessation. Craving was assessed with the questionnaire on smoking urges (QSU). RESULTS: Throughout cessation, mean methylation of the OT promoter gene increased in males and decreased in females. OXTR receptor methylation decreased in females, while in males it was significantly lower at day 7. Regarding the AVP promoter, mean methylation increased in males while there were no changes in females. Using mixed linear modeling, CpG position, time point, sex, and the interaction of time point and sex as well as time point, sex, and QSU had a significant fixed effect on OT and AVP gene methylation. The interaction effect suggests that sex, time point, and QSU are interrelated, meaning that, depending on the sex, methylation could be different at different time points and vice versa. There was no significant effect of QSU on mean OXTR methylation. DISCUSSION: We identified differences at specific CpGs between controls and smokers in OT and AVP and in overall methylation of the AVP gene. Furthermore, we found sex-specific changes in mean methylation levels of the mentioned genes throughout smoking cessation, underlining the relevance of sex in the OT and vasopressin system. This is the first study on epigenetic regulation of the OT promoter in TUD. Our results have implications for research on the utility of the AVP and OT system for treating substance craving. Future studies on both targets need to analyze their effect in the context of sex, social factors, and gene regulation.


Assuntos
Ocitocina , Tabagismo , Masculino , Feminino , Humanos , Ocitocina/genética , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Tabagismo/genética , Epigênese Genética , Vasopressinas/genética , Vasopressinas/metabolismo , Metilação , Arginina Vasopressina/genética , Receptores de Vasopressinas/genética
17.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279313

RESUMO

The present review draws attention to the specific role of angiotensin peptides [angiotensin II (Ang II), angiotensin-(1-7) (Ang-(1-7)], vasopressin (AVP), and insulin in the regulation of the coronary blood flow and cardiac contractions. The interactions of angiotensin peptides, AVP, and insulin in the heart and in the brain are also discussed. The intracardiac production and the supply of angiotensin peptides and AVP from the systemic circulation enable their easy access to the coronary vessels and the cardiomyocytes. Coronary vessels and cardiomyocytes are furnished with AT1 receptors, AT2 receptors, Ang (1-7) receptors, vasopressin V1 receptors, and insulin receptor substrates. The presence of some of these molecules in the same cells creates good conditions for their interaction at the signaling level. The broad spectrum of actions allows for the engagement of angiotensin peptides, AVP, and insulin in the regulation of the most vital cardiac processes, including (1) cardiac tissue oxygenation, energy production, and metabolism; (2) the generation of the other cardiovascular compounds, such as nitric oxide, bradykinin (Bk), and endothelin; and (3) the regulation of cardiac work by the autonomic nervous system and the cardiovascular neurons of the brain. Multiple experimental studies and clinical observations show that the interactions of Ang II, Ang(1-7), AVP, and insulin in the heart and in the brain are markedly altered during heart failure, hypertension, obesity, and diabetes mellitus, especially when these diseases coexist. A survey of the literature presented in the review provides evidence for the belief that very individualized treatment, including interactions of angiotensins and vasopressin with insulin, should be applied in patients suffering from both the cardiovascular and metabolic diseases.


Assuntos
Angiotensina II , Diabetes Mellitus , Insulina , Obesidade , Vasopressinas , Humanos , Angiotensina II/metabolismo , Arginina Vasopressina/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Vasopressinas , Vasopressinas/metabolismo
18.
J Med Chem ; 67(1): 643-673, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38165765

RESUMO

The V1a receptor is a major contributor in mediating the social and emotional effects of arginine-vasopressin (AVP); therefore it represents a promising target in the treatment of several neuropsychiatric conditions. The aim of this research was to design and synthesize novel and selective V1a antagonists with improved in vitro and in vivo profiles. Through optimization and detailed SAR studies, we developed low nanomolar antagonists, and further characterizations led to the discovery of the clinical candidate compound 43 (RGH-122). The CNS activity of the compound was determined in a 3-chamber social preference test of autism in which RGH-122 successfully enhanced social preference with the lowest effective dose of 1.5 mg/kg.


Assuntos
Arginina Vasopressina , Receptores de Vasopressinas , Arginina Vasopressina/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico
19.
Biomed Pharmacother ; 171: 116068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176129

RESUMO

Cirrhosis is a liver disease that leads to increased intrahepatic resistance, portal hypertension (PH), and splanchnic hyperemia resulting in ascites, variceal bleeding, and hepatorenal syndrome. Terlipressin, a prodrug that converts to a short half-life vasopressin receptor 1 A (V1a) full agonist [8-Lys]-Vasopressin (LVP), is an intravenous treatment for PH complications, but hyponatremia and ischemic side effects require close monitoring. We developed PHIN-214 which converts into PHIN-156, a more biologically stable V1a partial agonist. PHIN-214 enables once-daily subcutaneous administration without causing ischemia or tissue necrosis and has a 10-fold higher therapeutic index than terlipressin in healthy rats. As V1a partial agonists, PHIN-214 and PHIN-156 exhibited maximum activities of 28 % and 42 % of Arginine vasopressin (AVP), respectively. The potency of PHIN-156 and LVP relative to AVP is comparable for V1a (5.20 and 1.65 nM, respectively) and V1b (102 and 115 nM, respectively) receptors. However, the EC50 of PHIN-156 to the V2 receptor was 26-fold higher than that of LVP, indicating reduced potential for dilutional hyponatremia via V2 agonism compared to terlipressin/LVP. No significant off-target binding to 87 toxicologically relevant receptors were observed when evaluated in vitro at 10 µM concentration. In bile duct ligated rats with PH, subcutaneous PHIN-214 reduced portal pressure by 13.4 % ± 3.4 in 4 h. These collective findings suggest that PHIN-214 could be a novel pharmacological treatment for patients with PH, potentially administered outside of hospital settings, providing a safe and convenient alternative for managing PH and its complications.


Assuntos
Varizes Esofágicas e Gástricas , Hiponatremia , Humanos , Ratos , Animais , Receptores de Vasopressinas/metabolismo , Terlipressina , Hemorragia Gastrointestinal , Vasopressinas , Arginina Vasopressina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...