Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.380
Filtrar
1.
Sci Rep ; 14(1): 13182, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849496

RESUMO

Recombinant HIV-1 genomes identified in three or more epidemiological unrelated individuals are defined as circulating recombinant forms (CRFs). CRFs can further recombine with other pure subtypes or recombinants to produce secondary recombinants. In this study, a new HIV-1 intersubtype CRF, designated CRF159_01103, isolated from three men who have sex with men with no epidemiological linkage, was identified in Baoding city, Hebei Province, China. CRF159_01103 was derived from CRF103_01B and CRF01_AE. Bayesian molecular clock analysis was performed on the CRF01-AE and CRF103_01B regions of CRF159_01103. The time of origin of CRF159_01103 was predicted to be 2018-2019, indicating that it is a recent recombinant virus. The emergence of CRF159_01103 has increased the complexity of the HIV-1 epidemic in Hebei Province.


Assuntos
Infecções por HIV , HIV-1 , Filogenia , Recombinação Genética , HIV-1/genética , HIV-1/classificação , HIV-1/isolamento & purificação , Humanos , China/epidemiologia , Infecções por HIV/virologia , Infecções por HIV/epidemiologia , Masculino , Genoma Viral , Homossexualidade Masculina , Teorema de Bayes
2.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829800

RESUMO

It is commonly thought that the long-term advantage of meiotic recombination is to dissipate genetic linkage, allowing natural selection to act independently on different loci. It is thus theoretically expected that genes with higher recombination rates evolve under more effective selection. On the other hand, recombination is often associated with GC-biased gene conversion (gBGC), which theoretically interferes with selection by promoting the fixation of deleterious GC alleles. To test these predictions, several studies assessed whether selection was more effective in highly recombining genes (due to dissipation of genetic linkage) or less effective (due to gBGC), assuming a fixed distribution of fitness effects (DFE) for all genes. In this study, I directly derive the DFE from a gene's evolutionary history (shaped by mutation, selection, drift, and gBGC) under empirical fitness landscapes. I show that genes that have experienced high levels of gBGC are less fit and thus have more opportunities for beneficial mutations. Only a small decrease in the genome-wide intensity of gBGC leads to the fixation of these beneficial mutations, particularly in highly recombining genes. This results in increased positive selection in highly recombining genes that is not caused by more effective selection. Additionally, I show that the death of a recombination hotspot can lead to a higher dN/dS than its birth, but with substitution patterns biased towards AT, and only at selected positions. This shows that controlling for a substitution bias towards GC is therefore not sufficient to rule out the contribution of gBGC to signatures of accelerated evolution. Finally, although gBGC does not affect the fixation probability of GC-conservative mutations, I show that by altering the DFE, gBGC can also significantly affect nonsynonymous GC-conservative substitution patterns.


Assuntos
Evolução Molecular , Conversão Gênica , Modelos Genéticos , Recombinação Genética , Seleção Genética , Aptidão Genética , Mutação , Composição de Bases , Ligação Genética
3.
Virulence ; 15(1): 2366874, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38869140

RESUMO

Recombinant Muscovy duck parvovirus (rMDPV) is a product of genetic recombination between classical Muscovy duck parvovirus (MDPV) and goose parvovirus (GPV). The recombination event took place within a 1.1-kb DNA segment located in the middle of the VP3 gene, and a 187-bp sequence extending from the P9 promoter to the 5' initiation region of the Rep1 ORF. This resulted in the alteration of five amino acids within VP3. Despite these genetic changes, the precise influence of recombination and amino acid mutations on the pathogenicity of rMDPV remains ambiguous. In this study, based on the rMDPV strain ZW and the classical MDPV strain YY, three chimeric viruses (rZW-mP9, rZW-mPR187, and rYY-rVP3) and the five amino acid mutations-introduced mutants (rZW-g5aa and rYY-5aa(ZW)) were generated using reverse genetic technology. When compared to the parental virus rZW, rZW-g5aa exhibited a prolonged mean death time (MDT) and a decreased median lethal dose (ELD50) in embryonated duck eggs. In contrast, rYY-5aa(ZW) did not display significant differences in MDT and ELD50 compared to rYY. In 2-day-old Muscovy ducklings, infection with rZW-g5aa and rYY-5aa(ZW) resulted in mortality rates of only 20% and 10%, respectively, while infections with the three chimeric viruses (rZW-mP9, rZW-mPR187, rYY-rVP3) and rZW still led to 100% mortality. Notably, rYY-rVP3, containing the VP3 region from strain ZW, exhibited 50% mortality in 6-day-old Muscovy ducklings and demonstrated significant horizontal transmission. Collectively, our findings indicate that recombination and consequent amino acid changes in VP3 have a synergistic impact on the heightened virulence of rMDPV in Muscovy ducklings.


Assuntos
Proteínas do Capsídeo , Patos , Infecções por Parvoviridae , Mutação Puntual , Doenças das Aves Domésticas , Recombinação Genética , Animais , Virulência , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/veterinária , Doenças das Aves Domésticas/virologia , Proteínas do Capsídeo/genética , Parvovirinae/genética , Parvovirinae/patogenicidade
4.
Virus Res ; 345: 199390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710287

RESUMO

Cnaphalocrocis medinalis granulovirus (CnmeGV), belonging to Betabaculovirus cnamedinalis, can infect the rice pest, the rice leaf roller. In 1979, a CnmeGV isolate, CnmeGV-EP, was collected from Enping County, China. In 2014, we collected another CnmeGV isolate, CnmeGV-EPDH3, at the same location and obtained the complete virus genome sequence using Illumina and ONT sequencing technologies. By combining these two virus isolates, we updated the genome annotation of CnmeGV and conducted an in-depth analysis of its genome features. CnmeGV genome contains abundant tandem repeat sequences, and the repeating units in the homologous regions (hrs) exhibit overlapping and nested patterns. The genetic variations within EPDH3 population show the high stability of CnmeGV genome, and tandem repeats are the only region of high genetic variation in CnmeGV genome replication. Some defective viral genomes formed by recombination were found within the population. Comparison analysis of the two virus isolates collected from Enping showed that the proteins encoded by the CnmeGV-specific genes were less conserved relative to the baculovirus core genes. At the genomic level, there are a large number of SNPs and InDels between the two virus isolates, especially in and around the bro genes and hrs. Additionally, we discovered that CnmeGV acquired a segment of non-ORF sequence from its host, which does not provide any new proteins but rather serves as redundant genetic material integrated into the viral genome. Furthermore, we observed that the host's transposon piggyBac has inserted into some virus genes. Together, dsDNA viruses could acquire non-coding genetic material from their hosts to expand the size of their genomes. These findings provide new insights into the evolution of dsDNA viruses.


Assuntos
Variação Genética , Genoma Viral , Animais , Filogenia , China , Granulovirus/genética , Granulovirus/classificação , Granulovirus/isolamento & purificação , Sequenciamento Completo do Genoma , Oryza/virologia , Sequências de Repetição em Tandem/genética , Doenças das Plantas/virologia , Recombinação Genética
5.
Viruses ; 16(5)2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793678

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) has significantly impacted the global pork industry for over three decades. Its high mutation rates and frequent recombination greatly intensifies its epidemic and threat. To explore the fidelity characterization of Chinese highly pathogenic PRRSV JXwn06 and the NADC30-like strain CHsx1401, self-recombination and mutation in PAMs, MARC-145 cells, and pigs were assessed. In vitro, CHsx1401 displayed a higher frequency of recombination junctions and a greater diversity of junction types than JXwn06. In vivo, CHsx1401 exhibited fewer junction types yet maintained a higher junction frequency. Notably, JXwn06 showed more accumulation of mutations. To pinpoint the genomic regions influencing their fidelity, chimeric viruses were constructed, with the exchanged nsp9-10 regions between JXwn06 and CHsx1401. The SJn9n10 strain, which incorporates JXwn06's nsp9-10 into the CHsx1401 genome, demonstrated reduced sensitivity to nucleotide analogs compared to CHsx1401. Conversely, compared with JXwn06, the JSn9n10 strain showed increased sensitivity to these inhibitors. The swapped nsp9-10 also influences the junction frequency and accumulated mutations as their donor strains. The results indicate a propensity for different types of genetic variations between these two strains and further highlight the nsp9-10 region as a critical determinant of their fidelity.


Assuntos
Genoma Viral , Mutação , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/virologia , Linhagem Celular , Recombinação Genética , Replicação Viral
6.
Viruses ; 16(5)2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38793690

RESUMO

The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1-E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas.


Assuntos
Evolução Molecular , Variação Genética , Genoma Viral , Genótipo , Filogenia , América/epidemiologia , Humanos , Alphavirus/genética , Alphavirus/classificação , Alphavirus/isolamento & purificação , Animais , Recombinação Genética , Infecções por Alphavirus/virologia , Infecções por Alphavirus/epidemiologia
7.
J Clin Virol ; 173: 105691, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749308

RESUMO

BACKGROUND: The increasing incidence of hand, foot, and mouth disease (HFMD) associated with Coxsackievirus A6 (CVA6) has become a very significant public health problem. The aim of this study is to investigate the recombination, geographic transmission, and evolutionary characteristics of the global CVA6. METHODS: From 2019 to 2022, 73 full-length CVA6 sequences were obtained from HFMD patients in China and analyzed in combination with 1032 published whole genome sequences. Based on this dataset, the phylogenetic features, recombinant diversity, Bayesian phylodynamic characteristics, and key amino acid variations in CVA6 were analyzed. RESULTS: The four genotypes of CVA6, A, D, E, and F, are divided into 24 recombinant forms (RFs, RF-A - RF-X) based on differences in the P3 coding region. The eastern China region plays a key role in the dissemination of CVA6 in China. VP1-137 and VP1-138 are located in the DE loop on the surface of the CVA6 VP1 protein, with the former being a highly variable site and the latter having more non-synonymous substitutions. CONCLUSIONS: Based on whole genome sequences, this study contributes to the CVA6 monitoring, early warning, and the pathogenic mechanism by studying recombination diversity, geographical transmission characteristics, and the variation of important amino acid sites.


Assuntos
Evolução Molecular , Genótipo , Doença de Mão, Pé e Boca , Filogenia , Recombinação Genética , Humanos , China/epidemiologia , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/epidemiologia , Genoma Viral , Sequenciamento Completo do Genoma , Enterovirus/genética , Enterovirus/classificação , Enterovirus/isolamento & purificação , Variação Genética , Teorema de Bayes
8.
Viruses ; 16(5)2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38793540

RESUMO

Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, the merits of translating these natural benefits into vector applications are apparent. This translation, however, proves difficult, since while research has investigated the application of these viruses, there are no universally applicable rules in vector design for non-classical adenovirus types. In this paper, we describe a generalized workflow that allows vectorization, rescue, and cloning of all adenoviral species to enable the rapid development of new vector variants. We show this using human and simian adenoviruses, further modifying a selection of them to investigate their gene transfer potential and build potential vector candidates for future applications.


Assuntos
Vetores Genéticos , Recombinação Genética , Vetores Genéticos/genética , Humanos , Adenoviridae/genética , Adenovírus Humanos/genética , Animais , Técnicas de Transferência de Genes , Adenovirus dos Símios/genética , Clonagem Molecular/métodos
9.
PLoS Genet ; 20(5): e1011274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768268

RESUMO

Molecular dissection of meiotic recombination in mammals, combined with population-genetic and comparative studies, have revealed a complex evolutionary dynamic characterized by short-lived recombination hotspots. Hotspots are chromosome positions containing DNA sequences where the protein PRDM9 can bind and cause crossing-over. To explain these fast evolutionary dynamic, a so-called intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hotspot extinction (the hotspot conversion paradox), followed by positive selection favoring mutant PRDM9 alleles recognizing new sequence motifs. Although this model predicts many empirical observations, the exact causes of the positive selection acting on new PRDM9 alleles is still not well understood. In this direction, experiment on mouse hybrids have suggested that, in addition to targeting double strand breaks, PRDM9 has another role during meiosis. Specifically, PRDM9 symmetric binding (simultaneous binding at the same site on both homologues) would facilitate homology search and, as a result, the pairing of the homologues. Although discovered in hybrids, this second function of PRDM9 could also be involved in the evolutionary dynamic observed within populations. To address this point, here, we present a theoretical model of the evolutionary dynamic of meiotic recombination integrating current knowledge about the molecular function of PRDM9. Our modeling work gives important insights into the selective forces driving the turnover of recombination hotspots. Specifically, the reduced symmetrical binding of PRDM9 caused by the loss of high affinity binding sites induces a net positive selection eliciting new PRDM9 alleles recognizing new targets. The model also offers new insights about the influence of the gene dosage of PRDM9, which can paradoxically result in negative selection on new PRDM9 alleles entering the population, driving their eviction and thus reducing standing variation at this locus.


Assuntos
Evolução Molecular , Histona-Lisina N-Metiltransferase , Meiose , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Meiose/genética , Animais , Camundongos , Conversão Gênica , Quebras de DNA de Cadeia Dupla , Alelos , Modelos Genéticos , Humanos , Recombinação Genética
10.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793589

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces direct cytopathic effects, complicating the establishment of low-cytotoxicity cell culture models for studying its replication. We initially developed a DNA vector-based replicon system utilizing the CMV promoter to generate a recombinant viral genome bearing reporter genes. However, this system frequently resulted in drug resistance and cytotoxicity, impeding model establishment. Herein, we present a novel cell culture model with SARS-CoV-2 replication induced by Cre/LoxP-mediated DNA recombination. An engineered SARS-CoV-2 transcription unit was subcloned into a bacterial artificial chromosome (BAC) vector. To enhance biosafety, the viral spike protein gene was deleted, and the nucleocapsid gene was replaced with a reporter gene. An exogenous sequence was inserted within NSP1 as a modulatory cassette that is removable after Cre/LoxP-mediated DNA recombination and subsequent RNA splicing. Using the PiggyBac transposon strategy, the transcription unit was integrated into host cell chromatin, yielding a stable cell line capable of inducing recombinant SARS-CoV-2 RNA replication. The model exhibited sensitivity to the potential antivirals forsythoside A and verteporfin. An innovative inducible SARS-CoV-2 replicon cell model was introduced to further explore the replication and pathogenesis of the virus and facilitate screening and assessment of anti-SARS-CoV-2 therapeutics.


Assuntos
SARS-CoV-2 , Replicação Viral , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Humanos , COVID-19/virologia , Técnicas de Cultura de Células , Replicon/genética , Animais , Genoma Viral , Linhagem Celular , Cromossomos Artificiais Bacterianos/genética , Chlorocebus aethiops , Células Vero , RNA Viral/genética , RNA Viral/metabolismo , Genes Reporter , Recombinação Genética
12.
Mol Ecol Resour ; 24(5): e13969, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747336

RESUMO

A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.


Assuntos
Variação Genética , Polimorfismo de Nucleotídeo Único , Aves Canoras , Animais , Aves Canoras/genética , Aves Canoras/classificação , Genética Populacional/métodos , Europa (Continente) , Passeriformes/genética , Passeriformes/classificação , Haplótipos/genética , Recombinação Genética , Seleção Genética
13.
New Phytol ; 243(1): 477-494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38715078

RESUMO

Cultivated spinach (Spinacia oleracea) is a dioecious species. We report high-quality genome sequences for its two closest wild relatives, Spinacia turkestanica and Spinacia tetrandra, which are also dioecious, and are used to study the genetics of spinach domestication. Using a combination of genomic approaches, we assembled genomes of both these species and analyzed them in comparison with the previously assembled S. oleracea genome. These species diverged c. 6.3 million years ago (Ma), while cultivated spinach split from S. turkestanica 0.8 Ma. In all three species, all six chromosomes include very large gene-poor, repeat-rich regions, which, in S. oleracea, are pericentromeric regions with very low recombination rates in both male and female genetic maps. We describe population genomic evidence that the similar regions in the wild species also recombine rarely. We characterized 282 structural variants (SVs) that have been selected during domestication. These regions include genes associated with leaf margin type and flowering time. We also describe evidence that the downy mildew resistance loci of cultivated spinach are derived from introgression from both wild spinach species. Collectively, this study reveals the genome architecture of spinach assemblies and highlights the importance of SVs during the domestication of cultivated spinach.


Assuntos
Domesticação , Genoma de Planta , Spinacia oleracea , Spinacia oleracea/genética , Cromossomos de Plantas/genética , Filogenia , Recombinação Genética/genética
14.
Vet Microbiol ; 294: 110122, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772074

RESUMO

Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia, including China. Genetic manipulation of the LSDV is essential for the elucidation of the pathogenic mechanism and biological function of the LSDV-encoded protein. In this study, we established a platform for the Cre-loxP recombination system under a modified early-late H5 promoter of the VACV for quick construction of the recombinant LSDV virus. The recombinant virus, LSDV-EGFP-ΔTK, was purified and obtained using serial limited dilution and picking the single cells methods. Using the lentiviral package system, a Cre recombinase enzyme stable expression MDBK cell line was established to supply the Cre recombinase for the reporter gene excision. A genetically stable, safe TK gene-deleted LSDV (LSDV-ΔTK) was constructed using homologous recombination and the Cre-loxP system. It was purified using limited dilution in the MDBK-Cre cell line. Establishing the Cre-loxP recombination system will enable sequential deletion of the interested genes from the LSDV genome and genetic manipulation of the LSDV genome, providing technical support and a platform for developing the attenuated LSDV vaccine.


Assuntos
Integrases , Vírus da Doença Nodular Cutânea , Recombinação Genética , Integrases/genética , Animais , Vírus da Doença Nodular Cutânea/genética , Linhagem Celular , Recombinação Homóloga , Vetores Genéticos/genética
15.
Proc Natl Acad Sci U S A ; 121(23): e2401973121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38809707

RESUMO

In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.


Assuntos
Histona-Lisina N-Metiltransferase , Recombinação Genética , Animais , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Mamíferos/genética , Ilhas de CpG/genética , Eutérios/genética , Camundongos , Feminino , Conversão Gênica , Evolução Molecular
16.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777609

RESUMO

The Cre-lox system is an indispensable tool in neuroscience research for targeting gene deletions to specific cellular populations. Here we assess the utility of several transgenic Cre lines, along with a viral approach, for targeting cerebellar Purkinje cells (PCs) in mice. Using a combination of a fluorescent reporter line (Ai14) to indicate Cre-mediated recombination and a floxed Dystroglycan line (Dag1flox ), we show that reporter expression does not always align precisely with loss of protein. The commonly used Pcp2Cre line exhibits a gradual mosaic pattern of Cre recombination in PCs from Postnatal Day 7 (P7) to P14, while loss of Dag1 protein is not complete until P30. Ptf1aCre drives recombination in precursor cells that give rise to GABAergic neurons in the embryonic cerebellum, including PCs and molecular layer interneurons. However, due to its transient expression in precursors, Ptf1aCre results in stochastic loss of Dag1 protein in these neurons. NestinCre , which is often described as a "pan-neuronal" Cre line for the central nervous system, does not drive Cre-mediated recombination in PCs. We identify a Calb1Cre line that drives efficient and complete recombination in embryonic PCs, resulting in loss of Dag1 protein before the period of synaptogenesis. AAV8-mediated delivery of Cre at P0 results in gradual transduction of PCs during the second postnatal week, with loss of Dag1 protein not reaching appreciable levels until P35. These results characterize several tools for targeting conditional deletions in cerebellar PCs at different developmental stages and illustrate the importance of validating the loss of protein following recombination.


Assuntos
Integrases , Camundongos Transgênicos , Células de Purkinje , Animais , Células de Purkinje/metabolismo , Integrases/genética , Camundongos , Recombinação Genética , Alelos , Deleção de Genes , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição
17.
Mol Phylogenet Evol ; 196: 108088, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697377

RESUMO

The nonrandom distribution of chromosomal characteristics and functional elements-genomic architecture-impacts the relative strengths and impacts of population genetic processes across the genome. Due to this relationship, genomic architecture has the potential to shape variation in population genetic structure across the genome. Population genetic structure has been shown to vary across the genome in a variety of taxa, but this body of work has largely focused on pairwise population genomic comparisons between closely related taxa. Here, we used whole genome sequencing of seven phylogeographically structured populations of a North American songbird, the Brown Creeper (Certhia americana), to determine the impacts of genomic architecture on phylogeographic structure variation across the genome. Using multiple methods to infer phylogeographic structure-ordination, clustering, and phylogenetic methods-we found that recombination rate variation explained a large proportion of phylogeographic structure variation. Genomic regions with low recombination showed phylogeographic structure consistent with the genome-wide pattern. In regions with high recombination, we found strong phylogeographic structure, but with discordant patterns relative to the genome-wide pattern. In regions with high recombination rate, we found that populations with small effective population sizes evolve relatively more rapidly than larger populations, leading to discordant signatures of phylogeographic structure. These results suggest that the interplay between recombination rate variation and effective population sizes shape the relative impacts of selection and genetic drift in different parts of the genome. Overall, the combined interactions of population genetic processes, genomic architecture, and effective population sizes shape patterns of variability in phylogeographic structure across the genome of the Brown Creeper.


Assuntos
Filogeografia , Recombinação Genética , Aves Canoras , Animais , Aves Canoras/genética , Aves Canoras/classificação , Filogenia , Genética Populacional , Variação Genética , América do Norte , Genoma/genética , Sequenciamento Completo do Genoma
18.
BMC Genom Data ; 25(1): 42, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711021

RESUMO

BACKGROUND: Shallots are infected by various viruses like Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV), Shallot latent virus (SLV) and Shallot virus X (ShVX). In India, they have been found to be persistently infected by ShVX. ShVX also infects onion and garlic in combination with other carlaviruses and potyviruses. ShVX is a member of genus Allexivirus of family Alphaflexiviridae. ShVX has a monopartite genome, which is represented by positive sense single-stranded RNA. Globally, only six complete and 3 nearly complete genome sequences of ShV X are reported to date. This number is insufficient to measure a taxon's true molecular diversity. Moreover, the complete genome sequence of ShVX from Asia has not been reported as yet. Therefore, this study was undertaken to generate a complete genome sequence of ShVX from India. RESULTS: Shallot virus X (ShVX) is one of the significant threats to Allium crop production. In this study, we report the first complete genome sequence of the ShVX from India through Next-generation sequencing (NGS). The complete genome of the ShVX (Accession No. OK104171), from this study comprised 8911 nucleotides. In-silico analysis of the sequence revealed variability between this isolate and isolates from other countries. The dissimilarities are spread all over the genome specifically some non-coding intergenic regions. Statistical analysis of individual genes for site-specific selection indicates a positive selection in NABP region. The presence of a recombination event was detected in coat protein region. The sequence similarity percentage and phylogenetic analysis indicate ShVX Indian isolate is a distinctly different isolate. Recombination and site-specific selection may have a function in the evolution of this isolate. This is the first detailed study of the ShVX complete genome sequence from Southeast Asia. CONCLUSION: This study presents the first report of the entire genome sequence of an Indian isolate of ShVX along with an in-depth exploration of its evolutionary traits. The findings highlight the Indian variant as a naturally occurring recombinant, emphasizing the substantial role of recombination in the evolution of this viral species. This insight into the molecular diversity of strains within a specific geographical region holds immense significance for comprehending and forecasting potential epidemics. Consequently, the insights garnered from this research hold practical value for shaping ShVX management strategies and providing a foundation for forthcoming studies delving into its evolutionary trajectory.


Assuntos
Genoma Viral , Filogenia , Sequenciamento Completo do Genoma , Índia/epidemiologia , Genoma Viral/genética , Seleção Genética , Recombinação Genética , Flexiviridae/genética , Flexiviridae/isolamento & purificação , Doenças das Plantas/virologia
19.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696471

RESUMO

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


Assuntos
Proteína BRCA1 , Proteínas de Ciclo Celular , Camundongos Knockout , Oócitos , Oócitos/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Feminino , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Meiose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Quebras de DNA de Cadeia Dupla , Pareamento Cromossômico/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Recombinação Genética , Recombinação Homóloga , Instabilidade Genômica
20.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732219

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus etiologically associated with benign and malignant diseases. Since the pathogenic mechanisms of EBV are not fully understood, understanding EBV genetic diversity is an ongoing goal. Therefore, the present work describes the genetic diversity of the lytic gene BZLF1 in a sampling of 70 EBV-positive cases from southeastern Brazil. Additionally, together with the genetic regions previously characterized, the aim of the present study was to determine the impact of viral genetic factors that may influence EBV genetic diversity. Accordingly, the phylogenetic analysis of the BZLF1 indicated two main clades with high support, BZ-A and BZ-B (PP > 0.85). Thus, the BZ-A clade was the most diverse clade associated with the main polymorphisms investigated, including the haplotype Type 1 + V3 (p < 0.001). Furthermore, the multigene phylogenetic analysis (MLA) between BZLF1 and the oncogene LMP1 showed specific clusters, revealing haplotypic segregation that previous single-gene phylogenies from both genes failed to demonstrate. Surprisingly, the LMP1 Raji-related variant clusters were shown to be more diverse, associated with BZ-A/B and the Type 2/1 + V3 haplotypes. Finally, due to the high haplotypic diversity of the Raji-related variants, the number of DNA recombination-inducing motifs (DRIMs) was evaluated within the different clusters defined by the MLA. Similarly, the haplotype BZ-A + Raji was shown to harbor a greater number of DRIMs (p < 0.001). These results call attention to the high haplotype diversity of EBV in southeast Brazil and strengthen the hypothesis of the recombinant potential of South American Raji-related variants via the LMP1 oncogene.


Assuntos
Infecções por Vírus Epstein-Barr , Variação Genética , Herpesvirus Humano 4 , Filogenia , Recombinação Genética , Herpesvirus Humano 4/genética , Humanos , Brasil , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/genética , Transativadores/genética , Masculino , Feminino , Haplótipos/genética , Adulto , Proteínas da Matriz Viral/genética , Criança , Pessoa de Meia-Idade , Adolescente , Latência Viral/genética , Pré-Escolar , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...