Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.632
Filtrar
2.
Oper Dent ; 49(4): 376-387, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38987932

RESUMO

AIM: This systematic review and meta-analysis evaluated theobromine's (Theobroma cacao) potential in remineralizing white spot lesions in dental enamel. Methods: This study is reported according to the PRISMA checklist and was registered in PROSPERO (CRD42023414371). In vitro tests that evaluated the remineralizing potential of theobromine compared to fluoride ion after demineralization for the formation of white spot lesions on enamel were selected, with no limitation on the year of publication. Electronic searches were performed in PubMed/MEDLINE, Scopus, and Web of Science by two independent researchers. Thirty articles were received of which six were selected according to the inclusion criteria. RESULTS: The selected studies evaluated the Enamel Surface Microhardness (SMH), Vickers or Knoop, before and after treatment with theobromine and fluoride solutions. For the SMH Vickers, there were no differences between groups at baseline (p=1.00; mean difference: -0.00; CI: -11.36 to 11.36) and after treatment (p=0.51; mean difference: 4.12; CI: -8.16 to 16.41). The results of SMH Knoop showed differences between groups at baseline, favoring the experimental group (p=0.002; mean difference: 9.84; CI: 3.65 to 16.02) and after treatment favoring the control group (p=0.00001; mean difference: -5.45; CI: -7.62 to -3.27). CONCLUSION: The use of theobromine increases the microhardness of dental enamel subjected to a demineralization process, thus being effective in the remineralization of this tissue with success equivalent to that obtained with the use of fluoride.


Assuntos
Esmalte Dentário , Teobromina , Remineralização Dentária , Remineralização Dentária/métodos , Humanos , Teobromina/uso terapêutico , Teobromina/farmacologia , Esmalte Dentário/efeitos dos fármacos , Cárie Dentária , Fluoretos/uso terapêutico , Cariostáticos/uso terapêutico
3.
BMC Oral Health ; 24(1): 805, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014355

RESUMO

OBJECTIVES: This study pursued two main purposes. The first aim was to expound on the microscopic factors of radiation-related caries (RRC). Further, it aimed to compare the remineralization effect of different remineralizing agents on demineralized teeth after radiotherapy. METHODS: The enamel and dentin samples of bovine teeth were irradiated with different doses of radiation. After analysis of scanning electron microscope (SEM), X-Ray diffraction (XRD), and energy dispersive spectrometer (EDS), the samples irradiated with 50 Gy radiation were selected and divided into the demineralization group, the double distilled water (DDW) group, the Sodium fluoride (NaF) group, the Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) group, the NaF + CPP-ACP group, and the Titanium tetrafluoride (TiF4) group. After demineralization, remineralizing agents treatment, and remineralization, the samples were evaluated using SEM, atomic force microscope (AFM), EDS, and transverse microradiography (TMR). RESULTS: A radiation dose of 30 Gy was sufficient to cause damage to the dentinal tubules, but 70 Gy radiation had little effect on the microstructure of enamel. Additionally, the NaF + CPP-ACP group and the TiF4 group significantly promoted deposit formation, decreased surface roughness, and reduced mineral loss and lesion depth of demineralized enamel and dentin samples after radiation. CONCLUSIONS: Radiation causes more significant damage to dentin compared to enamel. NaF + CPP-ACP and TiF4 had a promising ability to promote remineralization of irradiated dental hard tissues. ADVANCES IN KNOWLEDGE: This in vitro study contributes to determining a safer radiation dose range for teeth and identifying the most effective remineralization approach for RRC.


Assuntos
Caseínas , Esmalte Dentário , Dentina , Microscopia Eletrônica de Varredura , Fluoreto de Sódio , Remineralização Dentária , Animais , Bovinos , Remineralização Dentária/métodos , Caseínas/uso terapêutico , Dentina/efeitos da radiação , Dentina/efeitos dos fármacos , Fluoreto de Sódio/uso terapêutico , Esmalte Dentário/efeitos da radiação , Esmalte Dentário/efeitos dos fármacos , Difração de Raios X , Titânio , Cariostáticos/uso terapêutico , Microrradiografia , Microscopia de Força Atômica , Fluoretos/uso terapêutico , Espectrometria por Raios X , Cárie Dentária/etiologia , Desmineralização do Dente/etiologia , Técnicas In Vitro
4.
Clin Oral Investig ; 28(8): 438, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037455

RESUMO

OBJECTIVES: The present trial's aim was to compare the remineralization potential of self-assembling peptide P11-4 combined with fluoride to that of fluoride varnish. MATERIALS AND METHODS: Twenty-eight participants with 58 incipient carious lesions were enrolled in the present trial. Participants were randomly divided into two groups with 14 participants and 29 incipient lesions in each group. Patients were assigned either to self-assembling peptide combined with fluoride (Curodont Repair Fluoride Plus™) or sodium fluoride varnish (NaF, Bifluorid 10) groups. Both agents were applied according to the manufacturer's instructions on non-cavitated incipient carious lesions. Lesions were assessed by two calibrated and blinded assessors at baseline, and after one-, three- and six-months using a laser fluorescence device (DIAGNOdent). RESULTS: Although laser fluorescence scores significantly improved in both groups over time (p < 0.05), no notable differences were evident between both groups at one-month (p > 0.05). Yet, at three- and six-months statistically lower laser fluorescence readings were evident in the self-assembling peptide combined with fluoride group in comparison to the fluoride alone group (p < 0.05). There was 60% less risk for caries progression for Curodont Repair Fluoride Plus™ when compared to NaF varnish after six months. Self-assembling peptide combined with fluoride was able to change 65.5% of non-cavitated carious lesions from DIAGNOdent score 3 (11-20) to score 1 (0-4). Fluoride varnish was able to change 13.8% of the lesions from score 3 to score 1 after six months. CONCLUSIONS: The self-assembling peptide combined with fluoride varnish showed higher remineralization potential than fluoride varnish alone for incipient carious lesions over a six-months follow up. CLINICAL RELEVANCE: The combination of self-assembling peptide P11-4 and fluoride could offer a new tool in managing incipient carious lesions.


Assuntos
Cariostáticos , Cárie Dentária , Fluoretos Tópicos , Fluoreto de Sódio , Remineralização Dentária , Humanos , Feminino , Remineralização Dentária/métodos , Fluoretos Tópicos/uso terapêutico , Masculino , Fluoreto de Sódio/uso terapêutico , Cariostáticos/uso terapêutico , Adulto , Resultado do Tratamento , Pessoa de Meia-Idade , Oligopeptídeos
5.
Dent Med Probl ; 61(3): 345-352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860839

RESUMO

BACKGROUND: Salvadora persica (miswak) is known to exert antibacterial, antifungal, antioxidant, and anticariogenic effects by elevating the pH of plaque after the consumption of sucrose. OBJECTIVES: The study aimed to compare the effectiveness of S. persica and probiotic yogurt in the remineralization of tooth enamel on artificially produced enamel lesions. MATERIAL AND METHODS: A total of 40 intact human premolars were collected and each tooth was sectioned longitudinally into 2 identical halves in a buccolingual direction. The buccal halves were selected for inclusion in this study, and standardized windows (5 mm × 3 mm) were isolated on the buccal surface of the enamel. The samples were incubated in a demineralizing solution at 37°C for 96 h. Subsequently, they were randomly selected for treatment with one of the experimental remineralizing solutions (S. persica or probiotic yogurt). After treatment, the samples were examined using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and polarized light microscopy at baseline, after demineralization and after remineralization. RESULTS: The remineralizing effect of S. persica was found to be greater than that of probiotic yogurt. With regard to mineral content, S. persica exhibited the highest calcium and phosphorus levels among all groups. No significant differences were observed between the samples treated with S. persica and normal enamel. CONCLUSIONS: Salvadora persica extract has been demonstrated to effectively reduce the demineralization of enamel in experimental conditions. Furthermore, it has the potential to restore the mineral content to its original level.


Assuntos
Esmalte Dentário , Probióticos , Salvadoraceae , Remineralização Dentária , Iogurte , Probióticos/uso terapêutico , Humanos , Iogurte/microbiologia , Esmalte Dentário/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Desmineralização do Dente , Microscopia de Polarização
6.
J Appl Oral Sci ; 32: e20230458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922241

RESUMO

OBJECTIVE: This study compared three protocols for developing artificial white spot lesions (WSL) using biofilm models. METHODOLOGY: In total, 45 human enamel specimens were sterilized and allocated into three groups based on the biofilm model: Streptococcus sobrinus and Lactobacillus casei (Ss+Lc), Streptococcus sobrinus (Ss), or Streptococcus mutans (Sm). Specimens were incubated in filter-sterilized human saliva to form the acquired pellicle and then subjected to the biofilm challenge consisting of three days of incubation with bacteria (for demineralization) and one day of remineralization, which was performed once for Ss+Lc (four days total), four times for Ss (16 days total), and three times for Sm (12 days total). After WSL creation, the lesion fluorescence, depth, and chemical composition were assessed using Quantitative Light-induced Fluorescence (QLF), Polarized Light Microscopy (PLM), and Raman Spectroscopy, respectively. Statistical analysis consisted of two-way ANOVA followed by Tukey's post hoc test (α=0.05). WSL created using the Ss+Lc protocol presented statistically significant higher fluorescence loss (ΔF) and integrated fluorescence (ΔQ) in comparison to the other two protocols (p<0.001). RESULTS: In addition, Ss+Lc resulted in significantly deeper WSL (137.5 µm), followed by Ss (84.1 µm) and Sm (54.9 µm) (p<0.001). While high mineral content was observed in sound enamel surrounding the WSL, lesions created with the Ss+Lc protocol showed the highest demineralization level and changes in the mineral content among the three protocols. CONCLUSION: The biofilm model using S. sobrinus and L. casei for four days was the most appropriate and simplified protocol for developing artificial active WSL with lower fluorescence, higher demineralization, and greater depth.


Assuntos
Biofilmes , Cárie Dentária , Esmalte Dentário , Lacticaseibacillus casei , Streptococcus mutans , Humanos , Streptococcus mutans/fisiologia , Cárie Dentária/microbiologia , Cárie Dentária/terapia , Esmalte Dentário/microbiologia , Esmalte Dentário/química , Lacticaseibacillus casei/fisiologia , Fatores de Tempo , Reprodutibilidade dos Testes , Streptococcus sobrinus/fisiologia , Análise Espectral Raman , Análise de Variância , Microscopia de Polarização , Estatísticas não Paramétricas , Remineralização Dentária/métodos , Valores de Referência , Saliva/microbiologia , Saliva/química , Desmineralização do Dente/microbiologia , Fluorescência
7.
BMC Oral Health ; 24(1): 732, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926776

RESUMO

OBJECTIVE: This study aimed to compare the remineralization effects of a calcium silicate-based cement (Biodentine) and of a glass ionomer cement (GIC: Fuji IX) on artificially demineralized dentin. METHODS: Four standard cavities were prepared in dentin discs prepared from 34 extracted sound human third molars. In each disc, one cavity was covered with an acid-resistant varnish before demineralization (Group 1). The specimens were soaked in a chemical demineralization solution for 96 h to induce artificial carious lesions. Thereafter, one cavity each was filled with Biodentine (Group 2) and GIC (Group 3), respectively, and one carious lesion was left unrestored as a negative control (Group 4). Next, specimens were immersed in simulated body fluid (SBF) for 21 days. After cross-sectioning the specimens, the Ca/P ratio was calculated in each specimen by using scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). Finally, data were analyzed using repeated-measures ANOVA with post-hoc Bonferroni correction. RESULTS: Both cement types induced dentin remineralization as compared to Group 4. The Ca/P ratio was significantly higher in Group 2 than in Group 3 (p < 0.05). CONCLUSION: The dentin lesion remineralization capability of Biodentine is higher than that of GIC, suggesting the usefulness of the former as a bioactive dentin replacement material. CLINICAL RELEVANCE: Biodentine has a higher remineralization ability than that of GIC for carious dentin, and its interfacial properties make it a promising bioactive dentin restorative material.


Assuntos
Compostos de Cálcio , Dentina , Cimentos de Ionômeros de Vidro , Microscopia Eletrônica de Varredura , Silicatos , Remineralização Dentária , Compostos de Cálcio/uso terapêutico , Compostos de Cálcio/farmacologia , Cimentos de Ionômeros de Vidro/uso terapêutico , Cimentos de Ionômeros de Vidro/farmacologia , Humanos , Silicatos/uso terapêutico , Silicatos/farmacologia , Dentina/efeitos dos fármacos , Remineralização Dentária/métodos , Técnicas In Vitro , Espectrometria por Raios X , Cálcio , Teste de Materiais , Cárie Dentária , Fósforo
8.
Int J Nanomedicine ; 19: 5365-5380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859951

RESUMO

Background: Remineralization of dental enamel is an important intervention strategy for the treatment of demineralized lesions. Existing approaches have limitations such as failure to adequately reproduce both the ideal structural and mechanical properties of the native tooth. The ability of ultrasound to control and accelerate the crystallization processes has been widely reported. Therefore, a new approach was explored for in-vitro enamel remineralization involving the synergistic effect of high-intensity focused ultrasound (HIFU) coupled with calcium phosphate ion clusters (CPICs). Methods: The demineralized enamel was treated with CPICs, with or without subsequent HIFU exposure for different periods (2.5, 5, and 10 min). The specimens were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. The surface hardness and crystallographic properties of the treated specimens were evaluated using Vickers microhardness testing and X-ray diffraction (XRD), respectively. Results: SEM revealed distinct, organized, and well-defined prismatic structures, showing clear evidence of remineralization in the combined CPIC/HIFU treatment groups. AFM further revealed a decrease in the surface roughness values with increasing HIFU exposure time up to 5 min, reflecting the obliteration of interprismatic spaces created during demineralization. The characteristic Raman band at 960 cm-1 associated with the inorganic phase of enamel dominated well in the HIFU-treated specimens. Importantly, microhardness testing further demonstrated that new mineral growth also recovered the mechanical properties of the enamel in the HIFU-exposed groups. Critical to our aspirations for developing this into a clinical process, these results were achieved in only 5 min. Conclusion: HIFU exposure can synergise and significantly accelerate in-vitro enamel remineralization process via calcium phosphate ion clusters. Therefore, this synergistic approach has the potential for use in future clinical interventions.


Assuntos
Fosfatos de Cálcio , Esmalte Dentário , Microscopia de Força Atômica , Remineralização Dentária , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/química , Remineralização Dentária/métodos , Análise Espectral Raman , Microscopia Eletrônica de Varredura , Dureza , Propriedades de Superfície , Humanos , Desmineralização do Dente/terapia , Difração de Raios X , Animais , Bovinos
9.
Dent Mater ; 40(8): 1282-1295, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871525

RESUMO

OBJECTIVE: This review elucidates the mechanisms underpinning intrafibrillar mineralization, examines various amorphous calcium phosphate (ACP) stabilizers employed in dentin's intrafibrillar mineralization, and addresses the challenges encountered in clinical applications of ACP-based bioactive materials. METHODS: The literature search for this review was conducted using three electronic databases: PubMed, Web of Science, and Google Scholar, with specific keywords. Articles were selected based on inclusion and exclusion criteria, allowing for a detailed examination and summary of current research on dentin remineralization facilitated by ACP under the influence of various types of stabilizers. RESULTS: This review underscores the latest advancements in the role of ACP in promoting dentin remineralization, particularly intrafibrillar mineralization, under the regulation of various stabilizers. These stabilizers predominantly comprise non-collagenous proteins, their analogs, and polymers. Despite the diversity of stabilizers, the mechanisms they employ to enhance intrafibrillar remineralization are found to be interrelated, indicating multiple driving forces behind this process. However, challenges remain in effectively designing clinically viable products using stabilized ACP and maximizing intrafibrillar mineralization with limited materials in practical applications. SIGNIFICANCE: The role of ACP in remineralization has gained significant attention in dental research, with substantial progress made in the study of dentin biomimetic mineralization. Given ACP's instability without additives, the presence of ACP stabilizers is crucial for achieving in vitro intrafibrillar mineralization. However, there is a lack of comprehensive and exhaustive reviews on ACP bioactive materials under the regulation of stabilizers. A detailed summary of these stabilizers is also instrumental in better understanding the complex process of intrafibrillar mineralization. Compared to traditional remineralization methods, bioactive materials capable of regulating ACP stability and controlling release demonstrate immense potential in enhancing clinical treatment standards.


Assuntos
Fosfatos de Cálcio , Dentina , Remineralização Dentária , Remineralização Dentária/métodos , Humanos , Fosfatos de Cálcio/química , Dentina/efeitos dos fármacos , Biomimética , Materiais Biomiméticos/química
10.
J Dent ; 147: 105139, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897540

RESUMO

OBJECTIVES: to investigate whether baseline mineral distribution modulates the ability of silver diammine fluoride (SDF) to remineralize and stain enamel caries lesions. METHODS: This laboratory study followed a 3 [treatment: SDF/fluoride varnish (FV)/deionized water (DIW)] ×3 [lesion protocol: methylcellulose (MeC)/hydroxyethylcellulose (HEC)/Carbopol 907 (C907)] factorial design. Lesions were created in bovine enamel specimens (n = 20). Treatments were applied and lesions remineralized in artificial saliva. Digital transverse microradiography (TMR-D) was used to analyze lesions. Lesion color was monitored spectrophotometrically. The effects of lesion protocol and treatment on changes in lesion depth (ΔLD), mineral loss (ΔΔZ), maximum mineral density at the surface zone (ΔSZmax), and color changes related to remineralization (ΔL*remin) were analyzed using two-way ANOVA. RESULTS: The treatment×lesion protocol interaction was significant for ΔΔZ (p < 0.01) and ΔL*remin (p < 0.01), however not for ΔLD (p = 0.23) or ΔSZmax (p = 0.91). There were no differences in ΔΔZ between treatments in HEC and C907 lesions. However, DIW resulted in more remineralization than both SDF (p < 0.01) and FV (p = 0.01) in MeC lesions. Considering changes from lesion baseline after remineralization in MeC lesions, SDF treatment resulted in the highest mineral gain in the surface zone. However, DIW revealed the highest mineral gain after remineralization in the lesion body. SDF stained lesions with the intensity increasing after remineralization in C907 lesions, whereas staining decreased in MeC and HEC lesions. CONCLUSION: High fluoride treatments can interfere with continuous remineralization of caries lesions due to partial arrest. Baseline lesion mineral distribution affects SDF's ability to enhance remineralization and the staining caused by SDF. CLINICAL SIGNIFICANCE: SDF is being used to arrest active caries lesions extending into dentin and to treat dentin hypersensitivity. This study shed light on SDF's effect on an isolated process in dental caries only, remineralization. It achieved this by examining enamel caries lesions with differing mineral distributions and assessing their staining properties.


Assuntos
Cariostáticos , Cárie Dentária , Esmalte Dentário , Fluoretos Tópicos , Microrradiografia , Compostos de Amônio Quaternário , Compostos de Prata , Remineralização Dentária , Animais , Remineralização Dentária/métodos , Bovinos , Cárie Dentária/tratamento farmacológico , Fluoretos Tópicos/uso terapêutico , Compostos de Prata/uso terapêutico , Compostos de Prata/farmacologia , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/patologia , Cariostáticos/uso terapêutico , Cariostáticos/farmacologia , Compostos de Amônio Quaternário/uso terapêutico , Compostos de Amônio Quaternário/farmacologia , Metilcelulose/uso terapêutico , Resinas Acrílicas/uso terapêutico , Saliva Artificial , Minerais/análise , Minerais/uso terapêutico , Polivinil/uso terapêutico , Espectrofotometria , Água , Descoloração de Dente/tratamento farmacológico , Teste de Materiais , Celulose/análogos & derivados
11.
BMC Oral Health ; 24(1): 650, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824555

RESUMO

BACKGROUND: The formation of white spots, which represent early carious lesions, is a major issue with fixed orthodontics. The addition of remineralizing agents to orthodontic adhesives may prevent the formation of white spots. The aim of this study was to produce a composite orthodontic adhesive combined with nano-bioactive glass-silver (nBG@Ag) for bracket bonding to enamel and to investigate its cytotoxicity, antimicrobial activity, remineralization capability, and bond strength. METHODS: nBG@Ag was synthesized using the sol-gel method, and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy with an attenuated total reflectance attachment (ATR-FTIR). The cytotoxicity test (MTT) and antimicrobial activity of adhesives containing 1%, 3%, and 5% (wt/wt) nBG@Ag were evaluated, and the shear bond strength of the adhesives was measured using a universal testing machine. Remineralization was assessed through microhardness testing with a Vickers microhardness tester and scanning electron microscopy (SEM). Statistical analyses were conducted using the Shapiro-Wilk test, Levene test, one-way ANOVA, Robust-Welch test, Tukey HSD method, and two-way ANOVA. RESULTS: The biocompatibility of the adhesives was found to be high, as confirmed by the lack of significant differences in the cytotoxicity between the sample and control groups. Discs made from composites containing nBG@Ag exhibited a significant reduction in the growth of Streptococcus mutans (p < 0.05), and the antibacterial activity increased with higher percentages of nBG@Ag. The shear bond strength of the adhesives decreased significantly (p < 0.001) after the addition of nanoparticles, but it remained above the recommended value. The addition of nBG@Ag showed improvement in the microhardness of the teeth, although the differences in microhardness between the study groups were not statistically significant. The formation of hydroxyapatite deposits on the tooth surface was confirmed through SEM and energy-dispersive X-ray spectroscopy (EDX). CONCLUSION: Adding nBG@Ag to orthodontic adhesives can be an effective approach to enhance antimicrobial activity and reduce enamel demineralization around the orthodontic brackets, without compromising biocompatibility and bond strength.


Assuntos
Antibacterianos , Cimentos Dentários , Braquetes Ortodônticos , Prata , Remineralização Dentária , Antibacterianos/farmacologia , Prata/farmacologia , Remineralização Dentária/métodos , Cimentos Dentários/farmacologia , Teste de Materiais , Nanoestruturas/uso terapêutico , Streptococcus mutans/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Vidro/química , Microscopia Eletrônica de Transmissão , Cerâmica , Humanos , Resinas Compostas/farmacologia , Resinas Compostas/química , Resistência ao Cisalhamento , Dureza , Colagem Dentária/métodos , Esmalte Dentário/efeitos dos fármacos
12.
J Biomed Mater Res B Appl Biomater ; 112(7): e35446, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38932619

RESUMO

OBJECTIVES: The objective of this in vitro study was to assess the efficiency of incorporating Biosilicate particles (30 and 50 mg) into an experimental orodispersible film and its efficacy in the remineralization process of bovine dental enamel under cariogenic and erosive challenges. METHODS: Ninety-nine intact incisors, devoid of cracks or fractures, yielding 198 samples (6 × 6 × 2 mm) via vestibular sectioning using a low-speed diamond disc under water cooling. After flattening the enamel surface with 600, 1200, and 2000 grit sandpaper, the samples were divided into two groups based on the challenges they underwent: cariogenic (0.1 M lactic acid at pH 5.0) or erosive (0.05 M citric acid solution at pH 2.3). Samples from each challenge were further categorized into 11 groups (n = 9) according to the duration of cariogenic (3, 7, and 14 days) or erosive (3, 7, and 10 days) challenge, along with positive control groups (fragments untreated with challenges and treated with different Biosilicate concentrations) and negative controls (fragments treated with artificial saliva for the same periods established for cariogenic and erosive challenges). Treatments with orodispersible films containing Biosilicate (30 and 50 mg) were administered for 2 min per day for 15 days. RESULTS: The highest remineralizing potential was observed in samples treated with Biosilicate after 14 days of cariogenic challenge, irrespective of the concentration tested. For samples subjected to erosive challenge, erosion time did not affect Biosilicate's remineralizing potential. CONCLUSION: Biosilicate shows promise in terms of remineralizing potential in enamel subjected to cariogenic challenge due to its ability to form hydroxycarbonapatite in mineralized tissues.


Assuntos
Cárie Dentária , Esmalte Dentário , Remineralização Dentária , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/metabolismo , Animais , Bovinos , Cárie Dentária/metabolismo , Erosão Dentária
13.
Indian J Dent Res ; 35(1): 84-87, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38934756

RESUMO

BACKGROUND: Dental caries is a dynamic process. By using therapeutic agents, early, noncavitated lesions and caries limited to the enamel can be stopped or even remineralized. For the remineralization of the initial carious lesion, many nonfluoridated remineralizing agents were investigated. OBJECTIVES: An observational study to assess the remineralizing efficacy of tricalcium phosphate (TCP), nano-hydroxyapatite (nHAp) and ozone remineralizing agents on the artificial carious lesion. METHODOLOGY: In this observational research, the artificial carious lesion was produced on extracted 40 premolar teeth. Later, remineralizing agents (Group A: nHAp, Group B: TCP, Group C: Ozone remineralizing agents, Group D: Control group (Deionized water) were used to remineralize demineralized teeth. Utilizing the Vickers Hardness Number, the level of demineralization and remineralization was assessed. Later these readings were statistically assessed using the Tukey's HSD (honestly significant difference) and ANOVA tests in SPSS version 21.0. The P value was set at 0.05 or less. RESULTS: After demineralization, there was a decrease in enamel microhardness values, with 32% in Group A, 26% in Group B, 22% in Group C, and 21% in Group D, respectively. From the baseline to demineralization, there was a statistically significant decrease in microhardness across all groups. After remineralization, Groups A, B, and C experienced an increase in microhardness while Group D experienced no changes. This showed that Group A had the highest remineralization percentage, followed by Group B and Group C. CONCLUSION: nHAp and TCP had the greater remineralizing ability, which can be used to manage initial carious lesions.


Assuntos
Fosfatos de Cálcio , Cárie Dentária , Durapatita , Ozônio , Remineralização Dentária , Fosfatos de Cálcio/uso terapêutico , Fosfatos de Cálcio/farmacologia , Remineralização Dentária/métodos , Durapatita/uso terapêutico , Humanos , Ozônio/uso terapêutico , Ozônio/farmacologia , Técnicas In Vitro , Cariostáticos/uso terapêutico , Cariostáticos/farmacologia , Dente Pré-Molar , Esmalte Dentário/efeitos dos fármacos
14.
Braz Oral Res ; 38: e036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747823

RESUMO

This study aimed to evaluate in vitro the effect protocols and anticaries agents containing casein amorphous calcium fluoride phosphopeptide-phosphate (CPP-ACPF, MI Paste Plus), sodium trimetaphosphate (TMP) and fluoride (F), in remineralization of caries lesions. Bovine enamel blocks with initial caries lesions were divided into groups (n = 12): 1) Toothpaste without F-TMP-MI Plus (Placebo); 2) Toothpaste 1100 ppm F (1100F), 3) 1100F + MI Paste Plus (1100F-MI Paste Plus), 4) Toothpaste with 1100F + Neutral gel with 4,500 ppm F + 5%TMP (1100F + Gel TMP) and 5) Toothpaste with 1100F + Neutral gel with 9,000 ppm F (1100F + Gel F). For the 4 and 5 groups the gel was applied only once for 1 minute, initially to the study. For the 3 group, after treatment with 1100F, MI Paste Plus was applied 2x/day for 3 minute. After pH cycling, the percentage of surface hardness recovery (%SHR); integrated loss of subsurface hardness (ΔKHN); profile and depth of the subsuperficial lesion (PLM); concentrations of F, calcium (Ca) and phosphorus (P) in enamel was determined. The data were analyzed by ANOVA (1-criterion) and Student-Newman-Keuls test (p < 0.001). Treatment with 1100F alone led to ~ 28% higher remineralization when compared to treatment with 1100F associated with MI Paste Plus (p < 0.001). The 1100F and 1100F + Gel F groups showed similar values for %SHR (p = 0.150). 1100F + Gel TMP treatment also remineralized the enamel surface by ~ 30% and 20% when compared to the 1100F + Gel F and 1100F groups (p < 0.001). The lower lesion depth (ΔKHN) was observed for the 1100F + Gel TMP group (p < 0.001), where it was 54% and 44% lower in comparison to the 1100F and 1100F + Gel F groups (p < 0.001). Polarized light microscopy photomicrographs showed subsurface lesions in all groups, but these lesions were present to a lower extent in the 1100F + Gel TMP group (p < 0.001). Treatment with 1100F + Gel TMP promoted an increase in the concentration of Ca in the enamel by ~ 57% and ~ 26% when compared to the 1100F and 1100F + MI Paste Plus groups (p < 0.001), respectively. There were no significant differences between the 1100F, 1100F + MI Paste Plus and 1100F + Gel F groups (p > 0.001). Similar values of P in the enamel were observed in the 1100F, 1100F + MI Paste Plus and 1100F + Gel F groups (p > 0.001), except for the 1100F + Gel TMP group, which presented a high concentration (p < 0.001). We conclude that the 1100F+TMP gel treatment/protocol led to a significant increased remineralization when compared to the other treatments/protocols and may be a promising strategy for patients with early caries lesions.


Assuntos
Cariostáticos , Caseínas , Esmalte Dentário , Fluoretos , Remineralização Dentária , Caseínas/farmacologia , Caseínas/uso terapêutico , Remineralização Dentária/métodos , Bovinos , Animais , Esmalte Dentário/efeitos dos fármacos , Cariostáticos/farmacologia , Fluoretos/farmacologia , Fatores de Tempo , Cremes Dentais/química , Cárie Dentária/tratamento farmacológico , Análise de Variância , Reprodutibilidade dos Testes , Polifosfatos/farmacologia , Polifosfatos/química , Polifosfatos/uso terapêutico , Testes de Dureza , Concentração de Íons de Hidrogênio , Propriedades de Superfície/efeitos dos fármacos , Teste de Materiais , Resultado do Tratamento , Valores de Referência , Dureza/efeitos dos fármacos , Fosfatos
15.
Biomed Mater ; 19(4)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810617

RESUMO

Dental caries, a chronic infectious disease characterized by tooth mineral loss caused by plaque, is one of the major global public health problems. Silver diamine fluoride (SDF) has been proven to be a highly effective anti-caries drug due to its high bacterial inhibition and remineralization ability. However, the SDF solution is unstable, which immensely limits its clinical application. Therefore, new silver-load clay named AgF@Hec was designed by replacing the NH3with hectorite in this study. Fourier transform infrared spectroscopy and x-ray diffraction spectroscopy were employed to confirm the structure of AgF@Hec. Dynamic light scattering analysis was used to reveal the effect of different hectorite concentrations on the stability of AgF@Hec. Moreover, AgF@Hec exhibits significant remineralization and hardness recovery of the initial carious lesions. Bacteriostatic experiments also proved that it has a significant inhibitory effect onA. Viscosus, S. mutans, S. sanguinis, S. salivarius, Lactobacillus sp.and both gram-positive and gram-negative bacteria. We therefore believed that AgF@Hec should be a promising biomaterial that can be applied in the prevention of dental caries.


Assuntos
Argila , Cárie Dentária , Compostos de Amônio Quaternário , Compostos de Prata , Prata , Difração de Raios X , Cárie Dentária/prevenção & controle , Argila/química , Compostos de Prata/química , Compostos de Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Prata/química , Prata/farmacologia , Fluoretos/química , Antibacterianos/farmacologia , Antibacterianos/química , Remineralização Dentária/métodos , Streptococcus mutans/efeitos dos fármacos , Humanos , Dureza , Teste de Materiais , Animais , Testes de Sensibilidade Microbiana , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fluoretos Tópicos
16.
J Dent ; 146: 105038, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714242

RESUMO

OBJECTIVES: This laboratory study assessed the performance of a novel fluoride dentifrice containing micro-fibrillated cellulose (MFC) and entrapped silica. METHODS: Removal of extrinsic stains was assessed using the pellicle cleaning ratio (PCR) method, and radioactive dentin abrasivity (RDA) was measured, to calculate a cleaning efficiency index (CEI). Fluoride efficacy was evaluated using widely used remineralization and fluoride uptake methods. The test product (Protegera™) was compared to common dentifrices (Crest - Cavity Protection™ and ProHealth™, Sensodyne Pronamel™, Arm & Hammer™ Advanced Whitening, Crest ProHealth™, and Colgate Optic White™). RESULTS: The PCR for the MFC dentifrice (141) was comparable to three known marketed stain-removing dentifrices (Arm & Hammer™ Advanced Whitening, Crest ProHealth™, and Colgate Optic White™) but it had a significantly lower RDA (88 ± 6) than 5 other products. This gave it the highest CEI of the tested products (2.0). In a 10-day pH cycling study, the fluoride efficacy of the MFC product was comparable to Sensodyne Pronamel and Crest Cavity Protection. The MFC dentifrice was superior for promoting fluoride uptake into incipient enamel lesions compared to the USP reference dentifrice. CONCLUSION: The MFC dentifrice has low abrasion, but despite this, it is highly effective in removing stained pellicle. It also is an efficacious fluoride source when compared to relevant commercially available fluoride dentifrices with high dentin abrasivity. CLINICAL SIGNIFICANCE: The addition of micro-fibrillated cellulose to a fluoride dentifrice gives a low abrasive product that can effectively remove external stains, and serve as an effective fluoride source. This combination of benefits seems well suited to enamel protection and caries prevention.


Assuntos
Celulose , Dentifrícios , Dentina , Abrasão Dentária , Descoloração de Dente , Remineralização Dentária , Dentifrícios/uso terapêutico , Dentifrícios/química , Descoloração de Dente/prevenção & controle , Celulose/análogos & derivados , Humanos , Abrasão Dentária/prevenção & controle , Dentina/efeitos dos fármacos , Remineralização Dentária/métodos , Cariostáticos/uso terapêutico , Cariostáticos/química , Película Dentária/efeitos dos fármacos , Fluoretos/uso terapêutico , Dióxido de Silício/química , Teste de Materiais , Esmalte Dentário/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fosfatos/uso terapêutico , Cremes Dentais/química , Cremes Dentais/uso terapêutico
17.
J Dent ; 146: 105041, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38762076

RESUMO

OBJECTIVES: This study aimed to measure the distribution of silver ion (Ag+), mineral recovery, and nanohardness in carious lesions and comprehensively evaluate the degree of dentin restoration. METHODS: Sixty human teeth with root caries were randomly assigned to the control, silver diammine fluoride (SDF) [Safo], and SDF+Glass ionomer cement (GIC) treatment [Safo+Fuji] groups. Micro-computed tomography (micro-CT) was performed at five time points for each sample before/after treatment to evaluate mineral density within and around carious lesions. Three months following treatment, 12 samples were selected for synchrotron radiation X-ray fluorescence analysis to evaluate Ag+ distribution, while 15 samples were selected for nanoindentation. Data were analyzed using Dunnett's T3 test for micro-CT and Wilcoxon rank sum test with Bonferroni correction (p = 0.017) for nanoindentation. The correlation between hardness and mineral change was analyzed using the Spearman rank correlation coefficient. RESULTS: The Safo and Safo+Fuji groups showed significantly higher mineral recovery rates than did the control group (p < 0.001). In the Safo group, Ag+ accumulated in the deeper layers rather than the superficial layer of caries. In the Safo+Fuji group, Ag+ was found evenly distributed throughout caries, with only a few Ag+ detected in the GIC layer. Hardness in the Safo+Fuji group was significantly higher compared with the Safo group at depths in the range of 10-50 µm. CONCLUSION: In the presence of GICs, SDF exhibited high remineralization capacity when diffusing throughout carious lesions over time. Combined treatment with SDF and GIC could strengthen root dentin even in the presence of caries. CLINICAL SIGNIFICANCE: We found that combination treatment with SDF and GIC could increase mineral density in caries and improve the hardness of the tooth structure compared with fluoride-based agents alone. These findings might pave the way for future clinical trials to determine the therapeutic potential of nanotechnology-based restorative materials.


Assuntos
Cariostáticos , Dentina , Cimentos de Ionômeros de Vidro , Dureza , Compostos de Amônio Quaternário , Cárie Radicular , Compostos de Prata , Prata , Microtomografia por Raio-X , Humanos , Cárie Radicular/tratamento farmacológico , Cimentos de Ionômeros de Vidro/química , Cimentos de Ionômeros de Vidro/uso terapêutico , Compostos de Prata/uso terapêutico , Microtomografia por Raio-X/métodos , Dentina/efeitos dos fármacos , Dentina/diagnóstico por imagem , Prata/uso terapêutico , Prata/química , Compostos de Amônio Quaternário/uso terapêutico , Cariostáticos/uso terapêutico , Fluoretos Tópicos/uso terapêutico , Remineralização Dentária/métodos , Restauração Dentária Permanente/métodos , Espectrometria por Raios X
18.
ACS Appl Mater Interfaces ; 16(23): 29699-29715, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38815211

RESUMO

Resin-bonded restorations are the most important caries treatment method in clinical practice. Thus, improving the durability of dentin bonding remains a pressing issue. As a promising solution, guided tissue remineralization can induce the formation of apatite nanocrystals to repair defects in the dentin bonding interface. In this study, we present an experimental 20 wt % citric acid (CA) dental etching agent that removes the smear layer. After CA-etching, approximately 3.55 wt % residual CA formed a strong bond with collagen fibrils, reducing the interfacial energy between the remineralizing solution and dentin. CA helped achieve almost complete intrafibrillar and extrafibrillar mineralization after 24 h of mineralization. CA also significantly promoted poly(amidoamine)-induced dentin biomimetic mineralization. The elastic modulus and microhardness of remineralized dentin were restored to that of sound dentin. The remineralized interface reduced microleakage and provided a stronger, longer-lasting bond than conventional phosphate acid-etching. The newly developed CA dental etching agents promoted rapid dentin biomimetic mineralization and improved bonding efficacy through interfacial control, representing a new approach with clinical practice implications.


Assuntos
Ácido Cítrico , Dentina , Ácido Cítrico/química , Dentina/química , Dentina/efeitos dos fármacos , Humanos , Condicionamento Ácido do Dente , Colagem Dentária , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Remineralização Dentária/métodos , Biomimética/métodos
19.
Photodiagnosis Photodyn Ther ; 47: 104210, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729233

RESUMO

AIM: Different remineralizing pretreatments Casein phosphopeptide-amorphous calcium phosphate fluoride (CPP-ACPF), tricalcium phosphate fluoride (TCP-F), self-assembling peptide (SAP) P11-4 and 10 % Nanohydroxyapatite (nHA) gel activation via invisible infrared light on the dentin microhardness (MH) and micro shear bond strength (µSBS) of composite restoration. METHODS: Seventy-five human molar teeth were collected and the dentinal surface of all the samples was exposed to different demineralizing solutions. (n = 15) Group 1 (demineralized dentin), Group 2 (CPP ACP), Group 3 (TCP-F), Group 4 (SAP P11-4), Group 5 (nHA gel activation via invisible infrared light). MH assessment was performed using Vickers hardness. Each group of 10 samples was subjected to composite restoration buildup and µSBS were tested. The debonded samples were then observed under a stereo-microscope for failure analysis. ANOVA was conducted, along with Tukey's post hoc analysis, to examine the µSBS of composite and MH of the remineralized surface. RESULTS: nHA gel activation via invisible infrared light pretreated specimens showed the maximum outcomes of surface hardness (331.2 ± 77.3) and bond strength (10.38 ± 2.77). However, Group 4 (SAP P11-4) (148.3 ± 29.2) remineralized dentin displayed minimum scores of MH and µSBS (5.88 ± 1.01). CONCLUSION: Remineralizing pretreatment nHA gel activation via invisible infrared light and casein phosphopeptide-amorphous calcium phosphate fluoride seem to improve the dentin MH and µSBS of the composite restoration.


Assuntos
Caseínas , Remineralização Dentária , Caseínas/farmacologia , Caseínas/química , Humanos , Remineralização Dentária/métodos , Dentina/efeitos dos fármacos , Dureza , Raios Infravermelhos , Resistência ao Cisalhamento , Durapatita/química , Durapatita/farmacologia , Dente Molar , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Restauração Dentária Permanente/métodos
20.
BMC Oral Health ; 24(1): 581, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764034

RESUMO

BACKGROUND: This study was conducted to compare chemical, elemental and surface properties of sound and carious dentin after application of two restorative materials resin-modified glassionomer claimed to be bioactive and glass hybrid restorative material after enzymatic chemomechanical caries removal (CMCR) agent. METHODS: Forty carious and twenty non-carious human permanent molars were used. Molars were randomly distributed into three main groups: Group 1 (negative control) - sound molars, Group 2 (positive control) - molars were left without caries removal and Group 3 (Test Group) caries excavated with enzymatic based CMCR agent. After caries excavation and restoration application, all specimens were prepared Vickers microhardness test (VHN), for elemental analysis using Energy Dispersive Xray (EDX) mapping and finally chemical analysis using Micro-Raman microscopy. RESULTS: Vickers microhardness values of dentin with the claimed bioactive GIC specimens was statistically higher than with glass hybrid GIC specimens. EDX analysis at the junction estimated: Calcium and Phosphorus of the glass hybrid GIC showed insignificantly higher mean valued than that of the bioactive GIC. Silica and Aluminum mean values at the junction were significantly higher with bioactive GIC specimens than glass hybrid GIC specimen. Micro-raman spectroscopy revealed that bioactive GIC specimens showed higher frequencies of v 1 PO 4, which indicated high level of remineralization. CONCLUSIONS: It was concluded that ion-releasing bioactive resin-based restorative material had increased the microhardness and remineralization rate of carries affected and sound dentin. In addition, enzymatic caries excavation with papain-based CMCR agent has no adverse effect on dentin substrate.


Assuntos
Cárie Dentária , Preparo da Cavidade Dentária , Dentina , Cimentos de Ionômeros de Vidro , Dureza , Humanos , Cárie Dentária/terapia , Cimentos de Ionômeros de Vidro/química , Preparo da Cavidade Dentária/métodos , Fósforo/análise , Papaína/uso terapêutico , Propriedades de Superfície , Restauração Dentária Permanente/métodos , Espectrometria por Raios X , Análise Espectral Raman , Cálcio/análise , Dente Molar , Remineralização Dentária/métodos , Alumínio , Dióxido de Silício , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA