Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
J Phys Chem B ; 127(37): 7872-7886, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37694950

RESUMO

Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.


Assuntos
Bacteriorodopsinas , Rodopsinas Sensoriais , Rodopsinas Sensoriais/genética , Bases de Schiff , Rodopsinas Microbianas/genética
2.
FEBS Lett ; 597(18): 2334-2344, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532685

RESUMO

The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.


Assuntos
Proteínas Arqueais , Halobacteriaceae , Rodopsinas Sensoriais , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/química , Rodopsinas Sensoriais/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Transdução de Sinais , Proteínas Arqueais/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/química , Halorrodopsinas/metabolismo
3.
J Phys Chem B ; 127(33): 7244-7250, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556781

RESUMO

Raman optical activity (ROA) spectroscopy was used to study the conformation of the retinal chromophore in sensory rhodopsin II (SRII), which is a blue-green light sensor of microbes. The ROA spectrum consisted of the negative vibrational bands of the chromophore, whose relative intensities are similar to those of the parent Raman spectrum. This spectral feature was explained by the left-handed helical twist of the retinal chromophore on the basis of quantum chemical calculations. On the other hand, we found that the chromophore conformation based on the crystal structures of SRII has a right-handed helical twist, which does not agree with the observation. This specific result suggests that the consistency with chiro-optical properties can be a key criterion for the accurate prediction and/or evaluation of chromophore conformation in retinal-binding proteins.


Assuntos
Rodopsinas Sensoriais , Rodopsinas Sensoriais/química , Rotação Ocular , Retina , Análise Espectral Raman , Rodopsina/química
4.
Biochem Mol Biol Educ ; 50(5): 473-475, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054635

RESUMO

Protein structure-function relationship serves as the primary learning outcome in any undergraduate biochemistry course. We expanded the protein structure-function exploration, PSFE initiative during COVID-19 to provide more effective and engaging experience to our undergraduates in biochemistry and independent research courses. Multiple alignments of protein sequences provided crucial insight into sequence conservation across many species and thus allow identification of those sections of the sequence most critical to protein function. We used Anabaena Sensory Rhodopsin, ASR its transducer, ASRT and downstream novel kinase gene products of Anabaena PCC 7120 to seek their alignment with homologs in available database. Pymol served an opportunity to achieve this goal (interactive learning during lab session and stimulation of course content discussion) in interesting ways. The PSFE initiative expansion continued during pandemic using online/hybrid modality. Initially model examples all helical ASR and beta-sheet ASRT were introduced to connect and integrate our ongoing research interest into classroom activities. Subsequently, undergraduates in biochemistry course were assigned a homolog of model proteins any particular protein of students choice to study and characterize using Pymol in semester. During first phase, each undergraduate worked independently using established guidelines. Student's exploration progress was periodically reviewed in pilot phase with majority of students who perceived it as challenging task successfully completed the assignment. Using the PyMol application to reinforce visual understanding of protein structure was highly satisfying experience that greatly enriched undergraduates understanding and appreciation. This article reports a session from the virtual international 2021 IUBMB/ASBMB workshop, "Teaching Science on BigData."


Assuntos
COVID-19 , Rodopsinas Sensoriais , Bioquímica/educação , Currículo , Humanos , Proteínas , Estudantes
5.
J Phys Chem Lett ; 13(34): 8134-8140, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36000820

RESUMO

The decades-long ultrafast examination of nearly a dozen microbial retinal proteins, ion pumps, and sensory photoreceptors has not identified structure-function indicators which predict photoisomerization dynamics, whether it will be sub-picosecond and ballistic or drawn out with complex curve-crossing kinetics. Herein, we report the emergence of such an indicator. Using pH control over retinal isomer ratios, photoinduced transient absorption is recorded in an inward proton pumping Antarctic microbial rhodopsin (AntR) for 13-cis and all-trans retinal resting states. The all-trans fluorescent state decays with 1 ps exponential kinetics. In contrast, in 13-cis it decays within ∼300 fs accompanied by continuous spectral evolution, indicating ballistic internal conversion. The coherent wave packet nature of 13-cis isomerization in AntR matches published results for bacteriorhodopsin (BR) and Anabaena sensory rhodopsin (ASR), which also accommodate both all-trans and 13-cis retinal resting states, marking the emergence of a first structure-photodynamics indicator which holds for all three tested pigments.


Assuntos
Anabaena , Bacteriorodopsinas , Rodopsinas Sensoriais , Regiões Antárticas , Isomerismo , Rodopsinas Microbianas/metabolismo
6.
J Chem Theory Comput ; 18(8): 4806-4813, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35895631

RESUMO

We introduce the concept of fragment localized molecular orbitals (FLMOs), which are Hartree-Fock molecular orbitals localized in specific fragments constituting a molecular system. In physical terms, we minimize the local electronic energies of the different fragments, at the cost of maximizing the repulsion between them. To showcase the approach, we rationalize the main interactions occurring in large biological systems in terms of interactions between the fragments of the system. In particular, we study an anticancer drug intercalated within DNA and retinal in anabaena sensory rhodopsin as prototypes of molecular systems embedded in biological matrixes. Finally, the FLMOs are exploited to rationalize the formation of two oligomers, prototypes of amyloid diseases, such as Parkinson and Alzheimer.


Assuntos
Anabaena , Rodopsinas Sensoriais , Teoria Quântica
7.
Biophys J ; 121(14): 2781-2793, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35690905

RESUMO

Microbial rhodopsins (MRho) are vital proteins in Haloarchaea for solar light sensing in extreme living environments. Among them, Haloquadratum walsbyi (Hw) is a species known to survive high MgCl2 concentrations, with a total of three MRhos identified, including a high-acid-tolerance light-driven proton outward pump, HwBR, a chloride-insensitive chloride pump, HwHR, and a functionally unknown HwMR. Here, we showed that HwMR is the sole magnesium-sensitive MRho among all tested MRho proteins from Haloarchaea. We identified at least D84 as one of the key residues mediating such magnesium ion association in HwMR. Sequence analysis and molecular modeling suggested HwMR to have an extra H8 helix in the cytosolic region like those in signal-transduction-type MRho of deltarhodopsin-3 (dR-3) and Anabaena sensory rhodopsin (ASR). Further, HwMR showed a distinctly prolonged M-state formation under a high concentration of Mg2+. On the other hand, an H8 helix truncated mutant preserved photocycle kinetics like the wild type, but it led to missing M-state structure. Our findings clearly suggested not only that HwMR is a novel Mg2+-associated protein but that the association with both Mg2+ and the H8 domain stabilizes M-state formation in HwMR. We conclude that Mg2+ association and H8 are crucial in stabilizing HwMR M state, which is a well-known photoreceptor signaling state.


Assuntos
Anabaena , Rodopsinas Sensoriais , Anabaena/química , Cloretos/metabolismo , Magnésio/metabolismo , Bombas de Próton/metabolismo , Rodopsinas Microbianas/metabolismo , Rodopsinas Sensoriais/metabolismo
8.
Sci Rep ; 11(1): 23721, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887464

RESUMO

DNA cyclization assay together with single-molecule FRET was employed to monitor protein-mediated bending of a short dsDNA (~ 100 bp). This method provides a simple and easy way to monitor the structural change of DNA in real-time without necessitating prior knowledge of the molecular structures for the optimal dye-labeling. This assay was applied to study how Anabaena sensory rhodopsin transducer (ASRT) facilitates loop formation of DNA as a possible mechanism for gene regulation. The ASRT-induced DNA looping was maximized at 50 mM of Na+, while Mg2+ also played an essential role in the loop formation.


Assuntos
Anabaena/fisiologia , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Rodopsinas Sensoriais/metabolismo , Ciclização , DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Conformação de Ácido Nucleico/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Análise Espectral
9.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1386-1400, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726167

RESUMO

Membrane proteins (MPs) play vital roles in the function of cells and are also major drug targets. Structural information on proteins is vital for understanding their mechanism of function and is critical for the development of drugs. However, obtaining high-resolution structures of membrane proteins, in particular, under native conditions is still a great challenge. In such cases, the low-resolution methods small-angle X-ray and neutron scattering (SAXS and SANS) might provide valuable structural information. However, in some cases small-angle scattering (SAS) provides ambiguous ab initio structural information if complementary measurements are not performed and/or a priori information on the protein is not taken into account. Understanding the nature of the limitations may help to overcome these problems. One of the main problems of SAS data analysis of solubilized membrane proteins is the contribution of the detergent belt surrounding the MP. Here, a comprehensive analysis of how the detergent belt contributes to the SAS data of a membrane-protein complex of sensory rhodopsin II with its cognate transducer from Natronomonas pharaonis (NpSRII-NpHtrII) was performed. The influence of the polydispersity of NpSRII-NpHtrII oligomerization is the second problem that is addressed here. It is shown that inhomogeneity in the scattering length density of the detergent belt surrounding a membrane part of the complex and oligomerization polydispersity significantly impacts on SAXS and SANS profiles, and therefore on 3D ab initio structures. It is described how both problems can be taken into account to improve the quality of SAS data treatment. Since SAS data for MPs are usually obtained from solubilized proteins, and their detergent belt and, to a certain extent, oligomerization polydispersity are sufficiently common phenomena, the approaches proposed in this work might be used in SAS studies of different MPs.


Assuntos
Proteínas Arqueais/química , Carotenoides/química , Halobacteriaceae/química , Rodopsinas Sensoriais/química , Modelos Moleculares , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
Hum Genet ; 140(8): 1143-1156, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33974130

RESUMO

Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration. The evaluated individuals all presented with MVID. Eight individuals also displayed early-onset severe retinal dystrophy, i.e., syndromic-intestinal and retinal-disease. These individuals harbored STX3 variants that affected both the retinal and intestinal STX3 transcripts, whereas STX3 variants affected only the intestinal transcript in individuals with solitary MVID. That STX3 is essential for retinal photoreceptor survival was confirmed by the creation of a rod photoreceptor-specific STX3 knockout mouse model which revealed a time-dependent reduction in the number of rod photoreceptors, thinning of the outer nuclear layer, and the eventual loss of both rod and cone photoreceptors. Together, our results provide a link between STX3 loss-of-function variants and a human retinal dystrophy. Depending on the genomic site of a human loss-of-function STX3 variant, it can cause MVID, the novel intestinal-retinal syndrome reported here or, hypothetically, an isolated retinal dystrophy.


Assuntos
Oftalmopatias Hereditárias/genética , Mucosa Intestinal/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Polimorfismo de Nucleotídeo Único , Proteínas Qa-SNARE/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Distrofias Retinianas/genética , Idoso , Idoso de 80 Anos ou mais , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Autopsia , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Feminino , Regulação da Expressão Gênica , Homozigoto , Humanos , Mucosa Intestinal/patologia , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Camundongos , Camundongos Knockout , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/metabolismo , Mucolipidoses/patologia , Fenótipo , Proteínas Qa-SNARE/deficiência , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Distrofias Retinianas/metabolismo , Distrofias Retinianas/patologia , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/metabolismo , Sequenciamento do Exoma
11.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806280

RESUMO

Amphiphilic diisobutylene/maleic acid (DIBMA) copolymers extract lipid-encased membrane proteins from lipid bilayers in a detergent-free manner, yielding nanosized, discoidal DIBMA lipid particles (DIBMALPs). Depending on the DIBMA/lipid ratio, the size of DIBMALPs can be broadly varied which makes them suitable for the incorporation of proteins of different sizes. Here, we examine the influence of the DIBMALP sizes and the presence of protein on the dynamics of encased lipids. As shown by a set of biophysical methods, the stability of DIBMALPs remains unaffected at different DIBMA/lipid ratios. Coarse-grained molecular dynamics simulations confirm the formation of viable DIBMALPs with an overall size of up to 35 nm. Electron paramagnetic resonance spectroscopy of nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels reveals that the dynamics of enclosed lipids are not altered by the DIBMALP size. The presence of the membrane protein sensory rhodopsin II from Natronomonas pharaonis (NpSRII) results in a slight increase in the lipid dynamics compared to empty DIBMALPs. The light-induced photocycle shows full functionality of DIBMALPs-embedded NpSRII and a significant effect of the protein-to-lipid ratio during preparation on the NpSRII dynamics. This study indicates a possible expansion of the applicability of the DIBMALP technology on studies of membrane protein-protein interaction and oligomerization in a constraining environment.


Assuntos
Halorrodopsinas/química , Bicamadas Lipídicas/química , Rodopsinas Sensoriais/química , Alcenos/química , Fenômenos Biofísicos , Dimiristoilfosfatidilcolina/química , Espectroscopia de Ressonância de Spin Eletrônica , Halobacteriaceae/química , Halobacteriaceae/efeitos da radiação , Halorrodopsinas/efeitos da radiação , Maleatos/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Processos Fotoquímicos , Rodopsinas Sensoriais/efeitos da radiação , Marcadores de Spin
12.
J Comp Neurol ; 529(5): 1066-1080, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783205

RESUMO

BMAL1 is a core component of the mammalian circadian clockwork. Removal of BMAL1 from the retina significantly affects visual information processing in both rod and cone pathways. To identify potential pathways and/or molecules through which BMAL1 alters signal transmission at the cone pedicle, we performed an RNA-seq differential expression analysis between cone-specific Bmal1 knockout cones (cone-Bmal1-/- ) and wild-type (WT) cones. We found 88 genes differentially expressed. Among these, Complexin3 (Cplx3), a SNARE regulator at ribbon synapses, was downregulated fivefold in the mutant cones. The purpose of this work was to determine whether BMAL1 and/or the cone clock controls CPLX3 protein expression at cone pedicles. We found that CPLX3 expression level was decreased twofold in cone-Bmal1-/- cones. Furthermore, CPLX3 expression was downregulated at night compared to the day in WT cones but remained constitutively low in mutant cones both day and night. The transcript and protein expression levels of Cplx4-the other complexin expressed in cones-were similar in WT and mutant cones; in WT cones, CPLX4 protein level did not change with the time of day. In silico analysis revealed four potential BMAL1:CLOCK binding sites upstream from exon one of Cplx3 and none upstream of exon one of Cplx4. Our results suggest that CPLX3 expression is regulated at the transcriptional level by the cone clock. The modulation of CPLX3 may be a mechanism by which the clock controls the cone synaptic transfer function to second-order cells and thereby impacts retinal signal processing during the day/night cycle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Relógios Circadianos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Proteínas SNARE/fisiologia , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/biossíntese , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Regulação para Baixo , Feminino , Masculino , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA-Seq , Pigmentos da Retina/genética , Rodopsinas Sensoriais/genética , Transdução de Sinais/fisiologia
13.
J Phys Chem B ; 124(52): 11819-11826, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33236904

RESUMO

Using a quantum mechanical/molecular mechanical approach, the absorption wavelength of the retinal Schiff base was calculated based on 13 microbial rhodopsin crystal structures. The results showed that the protein electrostatic environment decreases the absorption wavelength significantly in the cation-conducting rhodopsin but only slightly in the sensory rhodopsin. Among the microbial rhodopsins with different functions, the differences in the absorption wavelengths are caused by differences in the arrangement of the charged residues at the retinal Schiff base binding moiety, namely, one or two counterions at the three common positions. Among the microbial rhodopsins with similar functions, the differences in the polar residues at the retinal Schiff base binding site are responsible for the differences in the absorption wavelengths. Counterions contribute to an absorption wavelength shift of 50-120 nm, whereas polar groups contribute to a shift of up to ∼10 nm. It seems likely that protein function is directly associated with the absorption wavelength in microbial rhodopsins.


Assuntos
Rodopsinas Microbianas , Rodopsinas Sensoriais , Sítios de Ligação , Rodopsina , Bases de Schiff
14.
Biochim Biophys Acta Biomembr ; 1862(10): 183345, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407777

RESUMO

Anabaena Sensory Rhodopsin (ASR) is a microbial photosensor from the cyanobacterium Anabaena sp. PCC 7120. It was found in previous studies that ASR co-purifies with several small molecules, although their identities and structural or functional roles remained unclear. Here, we use solid-state nuclear magnetic resonance (SSNMR) spectroscopy and mass spectrometry to characterize these molecules. Numerous correlations atypical for protein amino acids were found and assigned in the SSNMR spectra. The chemical shift patterns correspond to N-acetyl-d-glucosamine, N-acetyl-d-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-d-galactose which are part of the Enterobacterial Common Antigen (ECA). These sugars undergo rapid anisotropic motions and are likely linked flexibly to a rigid anchor that tightly binds ASR. Phosphorus NMR reveals several signals that are characteristic of monophosphates, further suggesting phosphatidylglyceride as the ECA lipid carrier which is anchored to ASR. In addition, NMR signals corresponding to common phospholipid phosphatidylethanolamine (PE) have been detected. The presence of PE tightly interacting with ASR was confirmed using liquid chromatography-mass spectrometry. This article commemorates Professor Michèle Auger and her contributions to membrane biophysics and Nuclear Magnetic Resonance.


Assuntos
Proteínas de Membrana/metabolismo , Fosfatidiletanolaminas/metabolismo , Rodopsinas Sensoriais/metabolismo , Anabaena/metabolismo , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Rodopsinas Sensoriais/química
15.
Science ; 366(6463): 326-334, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31624206

RESUMO

Collective cell contractions that generate global tissue deformations are a signature feature of animal movement and morphogenesis. However, the origin of collective contractility in animals remains unclear. While surveying the Caribbean island of Curaçao for choanoflagellates, the closest living relatives of animals, we isolated a previously undescribed species (here named Choanoeca flexa sp. nov.) that forms multicellular cup-shaped colonies. The colonies rapidly invert their curvature in response to changing light levels, which they detect through a rhodopsin-cyclic guanosine monophosphate pathway. Inversion requires actomyosin-mediated apical contractility and allows alternation between feeding and swimming behavior. C. flexa thus rapidly converts sensory inputs directly into multicellular contractions. These findings may inform reconstructions of hypothesized animal ancestors that existed before the evolution of specialized sensory and contractile cells.


Assuntos
Coanoflagelados/fisiologia , Luz , Actomiosina/metabolismo , Animais , Evolução Biológica , Coanoflagelados/citologia , GMP Cíclico/metabolismo , Microvilosidades/fisiologia , Movimento , Diester Fosfórico Hidrolases/metabolismo , Proteínas de Protozoários/metabolismo , Rodopsinas Sensoriais/metabolismo
16.
Acta Crystallogr D Struct Biol ; 75(Pt 10): 937-946, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588925

RESUMO

Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Halorrodopsinas/química , Lipídeos/química , Proteínas de Membrana/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rodopsinas Sensoriais/química , Proteínas de Bactérias/química , Cristalização/métodos , Cristalografia por Raios X/métodos , Halobacteriaceae/enzimologia , Hyphomicrobiaceae/enzimologia , Thermus thermophilus/enzimologia
17.
Nature ; 574(7776): 108-111, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534223

RESUMO

Light discrimination according to colour can confer survival advantages by guiding animals towards food and shelter and away from potentially harmful situations1,2. Such colour-dependent behaviour can be learned or innate. Data on innate colour preference in mammals remain controversial3 and there are limited data for simpler organisms4-7. Here we show that, when given a choice among blue, green and dim light, fruit flies exhibit an unexpectedly complex pattern of colour preference that changes according to the time of day. Flies show a strong preference for green in the early morning and late afternoon, a reduced green preference at midday and a robust avoidance of blue throughout the day. Genetic manipulations reveal that the peaks in green preference require rhodopsin-based visual photoreceptors and are controlled by the circadian clock. The midday reduction in green preference in favour of dim light depends on the transient receptor potential (TRP) channels dTRPA1 and Pyrexia, and is also timed by the clock. By contrast, avoidance of blue light is primarily mediated by multidendritic neurons, requires rhodopsin 7 and the TRP channel Painless, and is independent of the clock. Our findings show that several TRP channels are involved in colour-driven behaviour in Drosophila, and reveal distinct pathways of innate colour preference that coordinate the behavioural dynamics of flies in ambient light.


Assuntos
Relógios Circadianos/fisiologia , Relógios Circadianos/efeitos da radiação , Cor , Drosophila melanogaster/fisiologia , Drosophila melanogaster/efeitos da radiação , Luz , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Antenas de Artrópodes/fisiologia , Antenas de Artrópodes/efeitos da radiação , Dendritos/fisiologia , Dendritos/efeitos da radiação , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Larva/fisiologia , Larva/efeitos da radiação , Luz/efeitos adversos , Masculino , Neurônios/fisiologia , Neurônios/efeitos da radiação , Rodopsinas Sensoriais/metabolismo , Fatores de Tempo , Visão Ocular/efeitos da radiação
18.
Nat Commun ; 10(1): 3867, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455771

RESUMO

Membrane protein folding, structure, and function strongly depend on a cell membrane environment, yet detailed characterization of folding within a lipid bilayer is challenging. Studies of reversible unfolding yield valuable information on the energetics of folding and on the hierarchy of interactions contributing to protein stability. Here, we devise a methodology that combines hydrogen-deuterium (H/D) exchange and solid-state NMR (SSNMR) to follow membrane protein unfolding in lipid membranes at atomic resolution through detecting changes in the protein water-accessible surface, and concurrently monitoring the reversibility of unfolding. We obtain atomistic description of the reversible part of a thermally induced unfolding pathway of a seven-helical photoreceptor. The pathway is visualized through SSNMR-detected snapshots of H/D exchange patterns as a function of temperature, revealing the unfolding intermediate and its stabilizing factors. Our approach is transferable to other membrane proteins, and opens additional ways to characterize their unfolding and stabilizing interactions with atomic resolution.


Assuntos
Proteínas de Membrana/metabolismo , Membranas/metabolismo , Desdobramento de Proteína , Rodopsinas Sensoriais/metabolismo , Anabaena/metabolismo , Medição da Troca de Deutério , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em alfa-Hélice , Rodopsinas Sensoriais/ultraestrutura , Temperatura
19.
J Cell Sci ; 132(15)2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31296556

RESUMO

Rab11 is essential for polarized post-Golgi vesicle trafficking to photosensitive membrane rhabdomeres in Drosophila photoreceptors. Here, we found that Parcas (Pcs), recently shown to have guanine nucleotide exchange (GEF) activity toward Rab11, co-localizes with Rab11 on the trans-side of Golgi units and post-Golgi vesicles at the base of the rhabdomeres in pupal photoreceptors. Pcs fused with the electron micrography tag APEX2 localizes on 150-300 nm vesicles at the trans-side of Golgi units, which are presumably fly recycling endosomes. Loss of Pcs impairs Rab11 localization on the trans-side of Golgi units and induces the cytoplasmic accumulation of post-Golgi vesicles bearing rhabdomere proteins, as observed in Rab11 deficiency. In contrast, loss of Rab11-specific subunits of the TRAPPII complex, another known Rab11-GEF, does not cause any defects in eye development nor the transport of rhabdomere proteins; however, simultaneous loss of TRAPPII and Pcs results in severe defects in eye development. These results indicate that both TRAPPII and Pcs are required for eye development, but Pcs functions as the predominant Rab11-GEF for post-Golgi transport to photosensitive membrane rhabdomeres.


Assuntos
Proteínas de Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsinas Sensoriais/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Transporte Proteico , Rodopsinas Sensoriais/genética , Proteínas rab de Ligação ao GTP/genética
20.
J Chem Theory Comput ; 15(8): 4535-4546, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31264415

RESUMO

Anabaena Sensory Rhodopsin (ASR), a microbial photoactive protein featuring the retinal chromophore in two different conformations, exhibits a pH-dependent electronic absorption spectrum. Using the recently developed CpHMD-then-QM/MM multiscale protocol applied to ASR embedded in a membrane model, the pH-induced changes in its maximum absorption wavelength have been reproduced and analyzed. While the acidic tiny red-shift is essentially correlated with the deprotonation of an aspartic acid located on the ASR extracellular side, the larger blue-shift experimentally reported at pH values larger than 5 involves a cluster of titrating residues sitting on the cytoplasmic side. The ASR pH-dependent spectrum is the consequence of the competitive stabilization of retinal ground and excited states by the protein electrostatic potential.


Assuntos
Aminoácidos/química , Anabaena/química , Proteínas de Bactérias/química , Nostoc/química , Rodopsinas Sensoriais/química , Aminoácidos/análise , Ácido Aspártico/análise , Ácido Aspártico/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Prótons , Espectrofotometria , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...