Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.402
Filtrar
1.
Sci Rep ; 14(1): 21810, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294162

RESUMO

A main feature of neurodegenerative diseases is the loss of neurons. One of the most prevalent neurodegenerative illnesses is Parkinson disease (PD). Although several medications are already approved to treat neurodegenerative disorders, most of them only address associated symptoms. The main aim of the current study was to examine the neuroprotective efficacy and underlying mechanism of Lobophytum sp. crude extract in a rotenone-induced rat model of neurodegeneration mimicking PD in humans. The influence of the treatment on antioxidant, inflammatory, and apoptotic markers was assessed in addition to the investigation of TH (tyrosine hydroxylase) immunochemistry, histopathological changes, and α-synuclein. Metabolomic profiling of Lobophytum sp. crude extract was done by using High-Resolution Liquid Chromatography coupled with Mass Spectrometry (HR-LC-ESI-MS), which revealed the presence of 20 compounds (1-20) belonging to several classes of secondary metabolites including diterpenoids, sesquiterpenoids, steroids, and steroid glycosides. From our experimental results, we report that Lobophytum sp. extract conferred neuroprotection against rotenone-induced PD by inhibiting ROS formation, apoptosis, and inflammatory mediators including IL-6, IL-1ß, and TNF-α, NF-кB, and subsequent neurodegeneration as evidenced by decreased α-synuclein deposition and enhanced tyrosine hydroxylase immunoreactivity. Moreover, a computational network pharmacology study was performed for the dereplicated compounds from Lobophytum sp. using PubChem, SwissTarget Prediction, STRING, DisGeNET, and ShinyGO databases. Among the studied genes, CYP19A1 was the top gene related to Parkinson's disease. Dendrinolide compounds annotated a high number of parkinsonism genes. The vascular endothelial growth factor (VEGF) pathway was the top signaling pathway related to the studied genes. Therefore, we speculate that Lobophytum sp. extract, owing to its pleiotropic mechanisms, could be further developed as a possible therapeutic drug for treating Parkinson's disease.


Assuntos
Metabolômica , Farmacologia em Rede , Fármacos Neuroprotetores , Doença de Parkinson , Rotenona , Animais , Fármacos Neuroprotetores/farmacologia , Ratos , Metabolômica/métodos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Masculino , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
J Mol Neurosci ; 74(4): 88, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297981

RESUMO

Parkinson's disease (PD) is a common motor neurodegenerative disease that still lacks effective therapeutic options. Previous studies have reported that lactoferrin exhibited neuroprotective effects in cellular and animal models of PD, typically induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP+) synthetic toxin. However, the neuroprotective capacity of lactoferrin in the rotenone-induced cellular model of PD remains relatively less established. Unlike MPTP/MPP+, rotenone is a naturally occurring environmental toxin known to induce chronic toxicity and increase the risk of PD in humans. In this study, we constructed a cellular model of PD by differentiating SH-SY5Y neuroblastoma cells with retinoic acid into mature dopaminergic neurons with increased ß-tubulin III and tyrosine hydroxylase expression, followed by 24 h of rotenone exposure. Using this cellular model of PD, we showed that lactoferrin (1-10 µg/ml) pre-treatment for 48 h decreased loss of cell viability, mitochondrial membrane potential impairment, reactive oxygen species generation and pro-apoptotic activities (pan-caspase activation and nuclear condensation) in cells exposed to rotenone (1 and 5 µM) using biochemical assays, Hoechst 33342 staining and immunocytochemical techniques. We further demonstrated that 48 h of lactoferrin (10 µg/ml) pre-treatment decreased Bax:Bcl2 ratio and p42/44 mitogen-activated protein kinase expression but increased pAkt expression in 5 µM rotenone-exposed cells. Our study demonstrates that lactoferrin neuroprotective capacity is present in the rotenone-induced cellular model of PD, further supporting lactoferrin as a potential PD therapeutic that warrants further studies.


Assuntos
Apoptose , Neurônios Dopaminérgicos , Lactoferrina , Fármacos Neuroprotetores , Rotenona , Humanos , Rotenona/toxicidade , Lactoferrina/farmacologia , Linhagem Celular Tumoral , Fármacos Neuroprotetores/farmacologia , Apoptose/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Sci Rep ; 14(1): 21165, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256449

RESUMO

Diabetes mellitus (DM) is a well-documented risk factor of intervertebral disc degeneration (IVDD). The current study was aimed to clarify the effects and mechanisms of NADH: ubiquinone oxidoreductase subunit A3 (NDUFA3) in human nucleus pulposus cells (HNPCs) exposed to high glucose. NDUFA3 was overexpressed in HNPCs via lenti-virus transduction, which were co-treated with high glucose and rotenone (a mitochondrial complex I inhibitor) for 48 h. Cell activities were assessed for cell viability, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) ratio, oxygen consumption rate (OCR) and mitochondrial complexes I activities. High glucose decreased cell viability, increased apoptotic cells, increased ROS production, decreased MMP levels and OCR values in HNPCs in a dose-dependent manner. Rotenone co-treatment augmented the high glucose-induced injuries on cell viability, apoptosis, ROS production and mitochondrial function. NDUFA3 overexpression counteracted the high glucose-induced injuries in HNPCs. HDAC/H3K27ac mechanism was involved in regulating NDUFA3 transcription. NDUFA3 knockdown decreased cell viability and increased apoptotic cells, which were reversed by ROS scavenger N-acetylcysteine. HDAC/H3K27ac-mediated transcription of NDUFA3 protects HNPCs against high glucose-induced injuries through suppressing cell apoptosis, eliminating ROS, improving mitochondrial function and oxidative phosphorylation. This study sheds light on candidate therapeutic targets and deepens the understanding of molecular mechanisms behind DM-induced IVDD.


Assuntos
Apoptose , Complexo I de Transporte de Elétrons , Glucose , Histonas , Mitocôndrias , Núcleo Pulposo , Humanos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Glucose/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Histonas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Transcrição Gênica/efeitos dos fármacos
4.
Molecules ; 29(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275038

RESUMO

A nutritional approach could be a promising strategy to prevent or decrease the progression of neurodegenerative disorders such as Parkinson's disease (PD). The neuroprotective role of walnut oil (WO) was investigated in Drosophila melanogaster treated with rotenone (Rot), as a PD model, WO, or their combination, and compared to controls. WO reduced mortality and improved locomotor activity impairment after 3 and 7 days, induced by Rot. LC-MS analyses of fatty acid levels in Drosophila heads showed a significant increase in linolenic (ALA) and linoleic acid (LA) both in flies fed with the WO-enriched diet and in those treated with the association of WO with Rot. Flies supplemented with the WO diet showed an increase in brain dopamine (DA) level, while Rot treatment significantly depleted dopamine content; conversely, the association of Rot with WO did not modify DA content compared to controls. The greater intake of ALA and LA in the enriched diet enhanced their levels in Drosophila brain, suggesting a neuroprotective role of polyunsaturated fatty acids against Rot-induced neurotoxicity. The involvement of the dopaminergic system in the improvement of behavioral and biochemical parameters in Drosophila fed with WO is also suggested.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster , Juglans , Doença de Parkinson , Óleos de Plantas , Animais , Drosophila melanogaster/efeitos dos fármacos , Juglans/química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Dopamina/metabolismo , Rotenona , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia
5.
Biomed Khim ; 70(4): 231-239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39239897

RESUMO

Parkinsonism in rats induced by the pesticide rotenone is one of the most adequate models of Parkinson's disease (PD). Isatin (indole-2,3-dione) is an endogenous regulator found in mammals and humans and exhibiting a wide range of biological activities mediated by numerous isatin-binding proteins, including those associated with neurodegenerative pathology. A course of rotenone administration to rats caused behavioral impairments and changes in the profile and relative content of isatin-binding proteins in the brain. In this study, we have investigated the delayed neuroprotective effect of isatin (5 days after completion of the course of rotenone administration) on behavioral reactions and the relative content of isatin-binding proteins in the brain of rats with rotenone-induced experimental parkinsonism. Although during this period the rats retained locomotor dysfunction, the proteomic analysis data (profile of isatin-binding proteins in the brain and changes in their relative content) differed from the results obtained immediately after completion of the course of rotenone administration. Moreover, all isatin-binding proteins with altered relative content changed during this period are associated to varying degrees with neurodegeneration (many with Parkinson's and Alzheimer's diseases).


Assuntos
Encéfalo , Isatina , Fármacos Neuroprotetores , Rotenona , Animais , Isatina/farmacologia , Rotenona/toxicidade , Fármacos Neuroprotetores/farmacologia , Ratos , Masculino , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Ratos Wistar , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/patologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico
6.
Eur J Pharmacol ; 980: 176878, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39127301

RESUMO

Parkinson's disease (PD) is an idiopathic disease caused by the loss or degeneration of the dopaminergic (dopamine-producing) neurons in the brain and characterized by various inflammatory and apoptotic responses in the neuronal cells. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) axis is responsible for neuronal survival by providing a number of anti-inflammatory and anti-apoptotic milieu that prevent the progression of PD. Alpha-lipoic acid (ALA) is a natural cofactor that has antioxidant capacity and contributes to various metabolic processes. ALA can penetrate the blood-brain barrier and contribute to numerous neuroprotective effects. It can activate PI3K/AKT pathway with consequent reduction of different inflammatory and oxidative biomarkers. Our work aims to unfold the neuroprotective effects of ALA via targeting PI3k/AKT pathway. Forty male mice were divided into four groups: control, ALA (100 mg/kg/day; i.p.), rotenone (ROT) (1.5 mg/kg/2 days, i.p.) and rotenone + ALA for 21 days. ALA showed obvious neuroprotective effects via significant activation of PI3K/AKT pathway with subsequent decreasing level of Caspase-3. ALA resulted in prominent anti-inflammatory actions by decreasing interlukin-1ß (IL-1ß), tumor necrosis factor (TNF)-α and nuclear factor kabba (NFk)-B. ALA remarkably induced antioxidant activities via increasing reduced glutathione (GSH) and superoxide dismutase (SOD) levels as well as decreasing malondialdehyde (MDA) level. The substantial behavioral improvement reflected in these results was noticed in the ALA-treated mice as a reflection of the neuroprotective activities of ALA. In conclusion, ALA showed promising neuroprotective effects in rotenone-induced PD via activating the PI3K/AKT pathway and consequent inhibition of apoptotic and inflammatory biomarkers.


Assuntos
Fármacos Neuroprotetores , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Rotenona , Transdução de Sinais , Ácido Tióctico , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Rotenona/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia
7.
J Ethnopharmacol ; 335: 118691, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39134229

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 'Karkataka Taila (KT), an ancient Ayurvedic Rasayana comprising the edible freshwater crab Scylla serrata Forskal flesh, is still used by local traditional practitioners in Kerala state to treat tremors and palsy. In the scientific community, it becomes less exposed due to the lack of adequate scientific validations and brief reports. There has been no published research on the effectiveness of KT in treating Parkinson's disease (PD). PURPOSE: The purpose of the current research work was to investigate the anti-Parkison's potential of KT against rotenone-induced neurotoxicity in SH-SY5Y cell lines and rat model of PD and investigate underlying molecular mechanisms. MATERIALS AND METHODS: The components of KT have been identified by gas chromatography-mass spectroscopy (GC-MS). The neuroprotective activity of KT was assessed using SH-SY5Y cell lines and rats against rotenone-induced PD. The parameters used for asses the neuroprotection are antioxidant markers (ROS and SOD), anti-inflammatory markers (IL-6, IL-1ß, TNF-α, and nitrite), and dopamine levels. Behavioral evaluation and rat brain histopathology were carried out to further support the neuroprotection. RESULT: Analysis using GC-MS revealed 36 constituents in KT. In vitro, the KT displayed considerable neuroprotective effects in terms of decreasing oxidative stress (ROS and SOD), neuroinflammation (IL-6, IL-1ß, TNF-α, and nitrite), and elevating dopamine concentration. In vivo data showing improvements in histopathological and biochemical parameters confirmed the in vitro study findings, and in terms of behavioral assays, KT displayed significant activity. CONCLUSION: GC-MS profiling was used to identify the bioactive compounds of KT with antioxidant, anti-inflammatory, and neuroprotective properties. As a result, they may be responsible for the therapeutic effects of KT on PD.


Assuntos
Fármacos Neuroprotetores , Rotenona , Animais , Rotenona/toxicidade , Humanos , Linhagem Celular Tumoral , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Ratos , Masculino , Braquiúros , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ratos Wistar , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Etnofarmacologia
8.
Front Immunol ; 15: 1416275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139560

RESUMO

The intermediate filament vimentin is present in immune cells and is implicated in proinflammatory immune responses. Whether and how it supports antimicrobial activities of neutrophils are not well established. Here, we developed an immortalized neutrophil model to examine the requirement of vimentin. We demonstrate that vimentin restricts the production of proinflammatory cytokines and reactive oxygen species (ROS), but enhances phagocytosis and swarming. We observe that vimentin is dispensable for neutrophil extracellular trap (NET) formation, degranulation, and inflammasome activation. Moreover, gene expression analysis demonstrated that the presence of vimentin was associated with changes in expression of multiple genes required for mitochondrial function and ROS overproduction. Treatment of wild-type cells with rotenone, an inhibitor for complex I of the electron transport chain, increases the ROS levels. Likewise, treatment with mitoTEMPO, a SOD mimetic, rescues the ROS production in cells lacking vimentin. Together, these data show vimentin regulates neutrophil antimicrobial functions and alters ROS levels through regulation of mitochondrial activity.


Assuntos
Mitocôndrias , Neutrófilos , Espécies Reativas de Oxigênio , Vimentina , Espécies Reativas de Oxigênio/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Vimentina/metabolismo , Mitocôndrias/metabolismo , Animais , Camundongos , Inflamação/imunologia , Inflamação/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Fagocitose , Inflamassomos/metabolismo , Inflamassomos/imunologia , Citocinas/metabolismo , Humanos , Rotenona/farmacologia
9.
Cells ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39120291

RESUMO

A substantial challenge in human brain aging is to find a suitable model to mimic neuronal aging in vitro as accurately as possible. Using directly converted neurons (iNs) from human fibroblasts is considered a promising tool in human aging since it retains the aging-associated mitochondrial donor signature. Still, using iNs from aged donors can pose certain restrictions due to their lower reprogramming and conversion efficacy than those from younger individuals. To overcome these limitations, our study aimed to establish an in vitro neuronal aging model mirroring features of in vivo aging by acute exposure on young iNs to either human stress hormone cortisol or the mitochondrial stressor rotenone, considering stress as a trigger of in vivo aging. The impact of rotenone was evident in mitochondrial bioenergetic properties by showing aging-associated deficits in mitochondrial respiration, cellular ATP, and MMP and a rise in glycolysis, mitochondrial superoxide, and mitochondrial ROS; meanwhile, cortisol only partially induced an aging-associated mitochondrial dysfunction. To replicate the in vivo aging-associated mitochondrial dysfunctions, using rotenone, a mitochondrial complex I inhibitor, proved to be superior to the cortisol model. This work is the first to use stress on young iNs to recreate aging-related mitochondrial impairments.


Assuntos
Mitocôndrias , Neurônios , Rotenona , Humanos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Rotenona/farmacologia , Envelhecimento , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Hidrocortisona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doadores de Tecidos , Glicólise/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo
10.
Neuromolecular Med ; 26(1): 32, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090268

RESUMO

Parkinson's disease is a progressive neurodegenerative disorder marked by the death of dopaminergic neurons in the substantia nigra region of the brain. Aggregation of alpha-synuclein (α-synuclein) is a contributing factor to Parkinson's disease pathogenesis. The objective of this study is to investigate the neuroprotective effects of gut microbes on α-synuclein aggregation using both in silico and in vivo approaches. We focussed on the interaction between α-synuclein and metabolites released by gut bacteria that protect from PD. We employed three probiotic microbe strains against α-synuclein protein: Lactobacillus casei, Escherichia coli, and Bacillus subtilis, with their chosen PDB IDs being Dihydrofolate reductase (3DFR), methionine synthetase (6BM5), and tryptophanyl-tRNA synthetase (3PRH), respectively. Using HEX Dock 6.0 software, we examined the interactions between these proteins. Among the various metabolites, methionine synthetase produced by E. coli showed potential interactions with α-synuclein. To further evaluate the neuroprotective benefits of E. coli, an in vivo investigation was performed using a rotenone-induced Parkinsonian mouse model. The motor function of the animals was assessed through behavioural tests, and oxidative stress and neurotransmitter levels were also examined. The results demonstrated that, compared to the rotenone-induced PD mouse model, the rate of neurodegeneration was considerably reduced in mice treated with E. coli. Additionally, histopathological studies provided evidence of the neuroprotective effects of E. coli. In conclusion, this study lays the groundwork for future research, suggesting that gut bacteria may serve as potential therapeutic agents in the development of medications to treat Parkinson's disease. fig. 1.


Assuntos
Bacillus subtilis , Escherichia coli , Microbioma Gastrointestinal , Simulação de Acoplamento Molecular , Estresse Oxidativo , Probióticos , Rotenona , alfa-Sinucleína , Animais , Camundongos , Microbioma Gastrointestinal/fisiologia , Probióticos/uso terapêutico , Probióticos/farmacologia , alfa-Sinucleína/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Rotenona/toxicidade , Lacticaseibacillus casei/fisiologia , Metionina tRNA Ligase , Triptofano-tRNA Ligase/fisiologia , Masculino , Tetra-Hidrofolato Desidrogenase/metabolismo , Simulação por Computador , Transtornos Parkinsonianos/microbiologia , Humanos , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Doença de Parkinson Secundária/induzido quimicamente , Neurônios Dopaminérgicos/efeitos dos fármacos , Doença de Parkinson/microbiologia
11.
Neuropharmacology ; 259: 110109, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128581

RESUMO

Glioblastoma multiforme (GBM) is the most common primary intracranial tumor with characteristics of high aggressiveness and poor prognosis. Deguelin, a component from the bark of Leguminosae Mundulea sericea (African plant), displays antiproliferative effects in some tumors, however, the inhibitory effect and mechanism of deguelin on GBM were still poorly understood. At first, we found that deguelin reduced the viability of GBM cells by causing cell cycle arrest in G2/M phase and inducing their apoptosis. Secondly, deguelin inhibited the migration of GBM cells. Next, RNA-seq analysis identified that CCL2 (encoding chemokine CCL2) was downregulated significantly in deguelin-treated GBM cells. As reported, CCL2 promoted the cell growth, and CCL2 was associated with regulating NFκB signaling pathway, as well as involved in modulating tumor microenvironment (TME). Furthermore, we found that deguelin inactivated CCL2/NFκB signaling pathway, and exougous CCL2 could rescue the anti-inhibitory effect of deguelin on GBM cells via upregulating NFκB. Finally, we established a syngeneic intracranial orthotopic GBM model and found that deguelin regressed the tumor growth, contributed to an anti-tumorigenic TME and inhibited angiogenesis of GBM by suppressing CCL2/NFκB in vivo. Taken together, these results suggest the anti-GBM effect of deguelin via inhibiting CCL2/NFκB pathway, which may provide a new strategy for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Quimiocina CCL2 , Glioblastoma , NF-kappa B , Rotenona , Transdução de Sinais , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Animais , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Rotenona/análogos & derivados , Rotenona/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Progressão da Doença , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Masculino
12.
Biomed Pharmacother ; 178: 117270, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39126773

RESUMO

The blood supply in the retina ensures photoreceptor function and maintains regular vision. Leber's hereditary optic neuropathy (LHON), caused by the mitochondrial DNA mutations that deteriorate complex I activity, is characterized by progressive vision loss. Although some reports indicated retinal vasculature abnormalities as one of the comorbidities in LHON, the paracrine influence of LHON-affected retinal ganglion cells (RGCs) on vascular endothelial cell physiology remains unclear. To address this, we established an in vitro model of mitochondrial complex I deficiency using induced pluripotent stem cell-derived RGCs (iPSC-RGCs) treated with a mitochondrial complex I inhibitor rotenone (Rot) to recapitulate LHON pathologies. The secretomes from Rot-treated iPSC-RGCs (Rot-iPSC-RGCs) were collected, and their treatment effect on human umbilical vein endothelial cells (HUVECs) was studied. Rot induced LHON-like characteristics in iPSC-RGCs, including decreased mitochondrial complex I activity and membrane potential, and increased mitochondrial reactive oxygen species (ROS) and apoptosis, leading to mitochondrial dysfunction. When HUVECs were exposed to conditioned media (CM) from Rot-iPSC-RGCs, the angiogenesis of HUVECs was suppressed compared to those treated with CM from control iPSC-RGCs (Ctrl-iPSC-RGCs). Angiogenesis-related proteins were altered in the secretomes from Rot-iPSC-RGC-derived CM, particularly angiopoietin, MMP-9, uPA, collagen XVIII, and VEGF were reduced. Notably, GeneMANIA analysis indicated that VEGFA emerged as the pivotal angiogenesis-related protein among the identified proteins secreted by health iPSC-RGCs but reduced in the secretomes from Rot-iPSC-RGCs. Quantitative real-time PCR and western blots confirmed the reduction of VEGFA at both transcription and translation levels, respectively. Our study reveals that Rot-iPSC-RGCs establish a microenvironment to diminish the angiogenic potential of vascular cells nearby, shedding light on the paracrine regulation of LHON-affected RGCs on retinal vasculature.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Células-Tronco Pluripotentes Induzidas , Atrofia Óptica Hereditária de Leber , Células Ganglionares da Retina , Humanos , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/patologia , Atrofia Óptica Hereditária de Leber/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Meios de Cultivo Condicionados/farmacologia , Apoptose/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neovascularização Patológica/metabolismo , Angiogênese
13.
Artigo em Inglês | MEDLINE | ID: mdl-39103133

RESUMO

In this study, the antiparkinson effect of khellin (KL) on rotenone-induced Parkinson's disease (PD) was examined in zebrafish. Initially, In silico evaluations, such as drug likeness and ADME/T analysis, confirmed the pharmacological viability of KL. Molecular docking and molecular dynamics (MD) analysis revealed stable binding interactions between KL and monamine oxidase B (MAO-B). Molecular docking results for KL and pioglitazone (CCl) revealed binding energies of -6.5 and -10.4 kcal/mol, respectively. Later, molecular dynamics (MD) studies were performed to assess the stability of these complexes, which yielded binding energies of -36.04 ± 55.21 and -56.2 ± 80.63 kJ/mol for KL and CCl, respectively. These results suggest that KL exhibits considerable binding affinity for MAO-B. In In vitro studies, according to the DPPH free radical scavenging assay, KL exhibited significant antioxidant effects, indicating that it can promote redox balance with an IC50 value of 22.68 ± 0.5 µg/ml. In vivo studies and evaluation of locomotor activity, social interaction, histopathology and biochemical parameters were conducted in KL-treated zebrafish to measure SOD and GSH antioxidant activity, the oxidative stress marker malondialdehyde (MDA), the inflammatory marker myeloperoxidase (MPO) and MAO-B. However, while the locomotor and social interaction abilities of the rotenone-treated zebrafish were significantly reduced, KL treatment significantly improved locomotor activity (p < 0.001) and social interaction (p < 0.001). KL alleviated PD symptoms, as indicated by significant increases in SOD (p < 0.01), GSH (p < 0.001), MDA (p < 0.001), MAO-B (p < 0.001) and MPO (p < 0.001) in rotenone-induced PD fish (p<0.001) significantly reduced activities. Histopathological studies revealed that rotenone-induced brain hyperintensity and abnormal cellularity of the periventricular gray matter in the optic tectum were significantly reduced by KL treatment. This study provides a strong basis for developing KL as a new candidate for the treatment of Parkinson's disease, with the prospect of improved safety profiles and efficacy.


Assuntos
Antiparkinsonianos , Monoaminoxidase , Estresse Oxidativo , Rotenona , Peixe-Zebra , Animais , Masculino , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Rotenona/toxicidade
14.
Drug Discov Ther ; 18(4): 229-239, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39019600

RESUMO

Parkinson's disease (PD) is a complex multisystem neurodegenerative disease, and cognitive impairment is a common symptom in the trajectory of PD. Duzhong Fang (DZF) consists of Eucommia ulmoides, Dendrobium, Rehmanniae Radix, and Dried Ginger. Our previous study showed that DZF improves motor deficits in mice. However, whether DZF can ameliorate cognitive impairment in PD has not been reported. In this study, we established mice models of PD induced by rotenone and examined the effect of DZF on cognitive impairment in Parkinson's disease (PD-CI). The results confirmed that DZF treatment not only significantly improved the motor deficits in PD mice and decreased the loss of dopaminergic neurons, but also had significant effects in improving cognitive impairment. We further integrate serum metabolome and network pharmacology to explore the mechanisms by which DZF improves PD-CI. The results revealed that DZF can treat PD-CI by regulating sphingolipid metabolism to inhibit neuronal apoptotic pathway. In conclusion, preliminary studies confirmed that DZF contributes to the improvement of cognitive ability in PD, and our results provide a potential drug for the clinical treatment of PD and a theoretical foundation for DZF in clinical application.


Assuntos
Apoptose , Disfunção Cognitiva , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Apoptose/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Masculino , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Rotenona/farmacologia , Camundongos Endogâmicos C57BL , Farmacologia em Rede
15.
Nanotheranostics ; 8(4): 497-505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961888

RESUMO

Goals of the investigation: This work aimed to evaluate the neuroprotective effects of zinc oxide (ZnO) nanoparticles in an experimental mouse model of rotenone-induced PD and investigate the therapeutic effects of ZnO, cobalt ferrite nanoparticles, and their combination. Methods: The levels of dopamine, norepinephrine, epinephrine, and serotonin were assessed using ELISA in the control and experimental model of PD mice. The dopa-decarboxylase expression level was assayed by real-time PCR. The expression level of tyrosine hydroxylase (TH) was assessed by western blot analysis. Results: Our data showed that levels of dopamine decreased in PD mice compared to normal. ZnO NP increased dopamine levels in normal and PD mice (37.5% and 29.5%; respectively, compared to untreated mice). However, ZnO NP did not cause any change in norepinephrine and epinephrine levels either in normal or in PD mice. Levels of serotonin decreased by 64.0%, and 51.1% in PD mice treated with cobalt ferrite and dual ZnO- cobalt ferrite NPs; respectively, when compared to PD untreated mice. The mRNA levels of dopa-decarboxylase increased in both normal and PD mice treated with ZnO NP. Its level decreased when using cobalt ferrite NP and the dual ZnO-cobalt ferrite NP when compared to untreated PD mice. A significant decrease in TH expression by 0.25, 0.68, and 0.62 folds was observed in normal mice treated with ZnO, cobalt ferrite, and the dual ZnO-cobalt ferrite NP as compared to normal untreated mice. In PD mice, ZnO administration caused a non-significant 0.15-fold decrease in TH levels while both cobalt ferrite and the dual ZnO-cobalt ferrite NP administration caused a significant 0.3 and 0.4-fold decrease respectively when compared to untreated PD mice. Principal conclusion: This study reveals that ZnO NPs may be utilized as a potential intervention to elevate dopamine levels to aid in PD treatment.


Assuntos
Modelos Animais de Doenças , Fármacos Neuroprotetores , Rotenona , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Camundongos , Fármacos Neuroprotetores/farmacologia , Masculino , Nanopartículas/química , Compostos Férricos/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Cobalto/farmacologia
16.
ACS Biomater Sci Eng ; 10(8): 5039-5056, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38978474

RESUMO

Parkinson's is a progressive neurodegenerative disease of the nervous system. It has no cure, but its symptoms can be managed by supplying dopamine artificially to the brain.This work aims to engineer tricompartmental polymeric microcarriers by electrohydrodynamic cojetting technique to encapsulate three PD (Parkinson's disease) drugs incorporated with high encapsulation efficiency (∼100%) in a single carrier at a fixed drug ratio of 4:1:8 (Levodopa (LD): Carbidopa(CD): Entacapone (ENT)). Upon oral administration, the drug ratio needs to be maintained during subsequent release from microparticles to enhance the bioavailability of primary drug LD. This presents a notable challenge, as the three drugs vary in their aqueous solubility (LD > CD > ENT). The equilibrium of therapeutic release was achieved using a combination of FDA-approved polymers (PLA, PLGA, PCL, and PEG) and the disc shape of particles. In vitro studies demonstrated the simultaneous release of all the three therapeutics in a sustained and controlled manner. Additionally, pharmacodynamics and pharmacokinetics studies in Parkinson's disease rats induced by rotenone showed a remarkable improvement in PD conditions for the microparticles-fed rats, thereby showing a great promise toward efficient management of PD.


Assuntos
Carbidopa , Catecóis , Preparações de Ação Retardada , Portadores de Fármacos , Levodopa , Doença de Parkinson , Carbidopa/farmacocinética , Carbidopa/administração & dosagem , Carbidopa/uso terapêutico , Carbidopa/farmacologia , Animais , Levodopa/farmacocinética , Levodopa/administração & dosagem , Levodopa/uso terapêutico , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Preparações de Ação Retardada/química , Catecóis/química , Catecóis/uso terapêutico , Catecóis/farmacologia , Catecóis/farmacocinética , Portadores de Fármacos/química , Ratos , Masculino , Nitrilas/farmacocinética , Nitrilas/uso terapêutico , Nitrilas/farmacologia , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia , Liberação Controlada de Fármacos , Ratos Sprague-Dawley , Rotenona/farmacologia
17.
Exp Gerontol ; 194: 112509, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964429

RESUMO

Sake may potentially halt the progression of Parkinson's disease due to its properties, yet no studies have explored its effects. This preliminary study aimed to assess the impact of sake supplementation on Parkinson's disease using a zebrafish model. Sixty fish were divided into six groups: control, rotenone (ROT), and groups administered rotenone along with sake at concentrations of 25, 50, 75, and 100 mg/L (25S, 50S, 75S, and 100S). After 28 days of treatment, behavioral responses and the activities of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione-S-transferase (GST), as well as the expressions of TNF-α, IL-1ß, and COX-2, were evaluated. The results indicated that rotenone administration significantly reduced crossing number (P = 0.001), entries in the top area (P = 0.001), and time spent in the top area (P = 0.001). It also markedly increased levels of TBARS and SH compared to the control group (P = 0.001). Rotenone significantly decreased CAT, SOD, and GSH activities while increasing GST levels. Furthermore, it upregulated the expressions of TNF-α (P = 0.001), IL-1ß (P = 0.001), and COX-2 (P = 0.001). Supplementation with sake, particularly at higher doses, reversed the adverse effects of rotenone on behavioral, oxidative, and inflammatory responses. In conclusion, sake shows promise for preventing Parkinson's disease pending further clinical studies.


Assuntos
Antioxidantes , Suplementos Nutricionais , Modelos Animais de Doenças , Estresse Oxidativo , Rotenona , Peixe-Zebra , Animais , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Vinho , Masculino , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
J Neurosci Methods ; 409: 110217, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964477

RESUMO

BACKGROUND: Parkinson's patients have significant autonomic dysfunction, early detect the disorder is a major challenge. To assess the autonomic function in the rat model of rotenone induced Parkinson's disease (PD), Blood pressure and ECG signal acquisition are very important. NEW METHOD: We used telemetry to record the electrocardiogram and blood pressure signals from awake rats, with linear and nonlinear analysis techniques calculate the heart rate variability (HRV) and blood pressure variability (BPV). we applied nonlinear analysis methods like sample entropy and detrended fluctuation analysis to analyze blood pressure signals. Particularly, this is the first attempt to apply nonlinear analysis to the blood pressure evaluate in rotenone induced PD model rat. RESULTS: HRV in the time and frequency domains indicated sympathetic-parasympathetic imbalance in PD model rats. Linear BPV analysis didn't reflect changes in vascular function and blood pressure regulation in PD model rats. Nonlinear analysis revealed differences in BPV, with lower sample entropy results and increased detrended fluctuation analysis results in the PD group rats. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: our experiments demonstrate the ability to evaluate autonomic dysfunction in models of Parkinson's disease by combining the analysis of BPV with HRV, consistent with autonomic impairment in PD patients. Nonlinear analysis by blood pressure signal may help in early detection of the PD. It indicates that the fluctuation of blood pressure in the rats in the rotenone model group tends to be regular and predictable, contributes to understand the PD pathophysiological mechanisms and to find strategies for early diagnosis.


Assuntos
Sistema Nervoso Autônomo , Pressão Sanguínea , Modelos Animais de Doenças , Eletrocardiografia , Frequência Cardíaca , Rotenona , Animais , Rotenona/toxicidade , Frequência Cardíaca/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Masculino , Sistema Nervoso Autônomo/fisiopatologia , Sistema Nervoso Autônomo/efeitos dos fármacos , Telemetria/métodos , Dinâmica não Linear , Ratos , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/induzido quimicamente , Ratos Sprague-Dawley , Doença de Parkinson/fisiopatologia
19.
Int Immunopharmacol ; 138: 112640, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38981225

RESUMO

As a severe neurological disorder, Parkinson's disease (PD) is distinguished by dopaminergic neuronal degeneration in the substantia nigra (SN), culminating in motor impairments. Several studies have shown that activation of the AMPK/SIRT1/PGC1α pathway contributes to an increase in mitochondrial biogenesis and is a promising candidate for the management of PD. Furthermore, turning on the AMPK/SIRT1/PGC1α pathway causes autophagy activation, which is fundamental for maintaining neuronal homeostasis. Interestingly, ezetimibe is an antihyperlipidemic agent that was recently reported to possess pleiotropic properties in neurology by triggering the phosphorylation and activation of AMPK. Thus, our study aimed to investigate the neuroprotective potential of ezetimibe in rats with rotenone-induced PD by activating AMPK. Adult male Wistar rats received rotenone (1.5 mg/kg, s.c.) every other day for 21 days to induce experimental PD. Rats were treated with ezetimibe (5 mg/kg/day, i.p.) 1 h before rotenone. Ezetimibe ameliorated the motor impairments in open field, rotarod and grip strength tests, restored striatal dopamine and tyrosine hydroxylase in the SN, up-regulated p-AMPK, SIRT1, and PGC1α striatal expression, upsurged the expression of ULK1, beclin1, and LC3II/I, reduced Bax/Bcl2 ratio, and alleviated rotenone-induced histopathological changes in striatum and SN. Our findings also verified the contribution of AMPK activation to the neuroprotective effect of ezetimibe by using the AMPK inhibitor dorsomorphin. Together, this work revealed that ezetimibe exerts a neuroprotective impact in rotenone-induced PD by activating AMPK/SIRT-1/PGC-1α signaling, enhancing autophagy, and attenuating apoptosis. Thus, ezetimibe's activation of AMPK could hold significant therapeutic promise for PD management.


Assuntos
Reposicionamento de Medicamentos , Ezetimiba , Fármacos Neuroprotetores , Doença de Parkinson , Transdução de Sinais , Animais , Masculino , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças , Ezetimiba/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Wistar , Rotenona , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
20.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000265

RESUMO

Rotenone, as a common pesticide and insecticide frequently found in environmental samples, may be present in aquatic habitats worldwide. Exposure to low concentrations of this compound may cause alterations in the nervous system, thus contributing to Parkinsonian motor symptoms in both vertebrates and invertebrates. However, the effects of chronic exposure to low doses of rotenone on the activity of neurotransmitters that govern motor functions and on the specific molecular mechanisms leading to movement morbidity remain largely unknown for many aquatic invertebrates. In this study, we analyzed the effects that rotenone poisoning exerts on the activity of dopamine (DA) and acetylcholine (ACh) synthesis enzymes in the central nervous system (CNS) of Asian shore crab, Hemigrapsus sanguineus (de Haan, 1835), and elucidated the association of its locomotor behavior with Parkinson's-like symptoms. An immunocytochemistry analysis showed a reduction in tyrosine hydroxylase (TH) in the median brain and the ventral nerve cord (VNC), which correlated with the subsequent decrease in the locomotor activity of shore crabs. We also observed a variation in cholinergic neurons' activity, mostly in the ventral regions of the VNC. Moreover, the rotenone-treated crabs showed signs of damage to ChAT-lir neurons in the VNC. These data suggest that chronic treatment with low doses of rotenone decreases the DA level in the VNC and the ACh level in the brain and leads to progressive and irreversible reductions in the crab's locomotor activity, life span, and changes in behavior.


Assuntos
Braquiúros , Sistema Nervoso Central , Neurônios Colinérgicos , Neurônios Dopaminérgicos , Rotenona , Animais , Rotenona/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Braquiúros/efeitos dos fármacos , Braquiúros/metabolismo , Dopamina/metabolismo , Acetilcolina/metabolismo , Inseticidas/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo , Locomoção/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA