Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.101
Filtrar
1.
J Tradit Chin Med ; 44(3): 417-426, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767625

RESUMO

OBJECTIVE: To investigate the efficacy of substances containing 3 types of active ingredients-saponins, flavones, and alkaloids on experimental animals with autoimmune diseases (AIDs). METHODS: The protocol for this systematic review and Meta-analysis was prospectively registered with PROSPERO (CRD42023395741). Searches were conducted in the China National Knowledge Infrastructure, Wanfang, Chinese Science and Technology Journals, China Biomedical, PubMed, Cochrane Library, and Embase databases to screen for animal studies investigating the therapeutic effects of saponins, flavones, or alkaloids on autoimmune diseases; consequently, corresponding data extraction tables were prepared. Systematic Review Centre for Laboratory Animal Experimentation was used to assess the risk of methodological bias in the included literature. RevMan 5.4 was used for the Meta-analysis on the 8 serum cytokines. RESULTS: A total of 31 studies were included, all of which were randomized controlled studies. Meta-analysis indicated that substances rich in saponins, flavones, and alkaloids reduced serum levels of interleukin (IL)-1ß [standardized mean difference (SMD) = -1.94, 95% confidence interval (CI) (-2.99, -0.90), P = 0.0003], IL-6 [SMD = -1.65, 95% CI (-2.33, -0.97,) P < 0.000 01], IL-17 [SMD = -2.41, 95% CI (-3.61, -1.20), P < 0.0001], tumor necrosis factor (TNF)-α [SMD = -1.84, 95% CI (-2.61, -1.06), P < 0.0001], and interferon (IFN)-γ [SMD = -1.54, 95% CI (-2.43, -0.65), P = 0.0007], but increased serum levels of IL-4 [SMD = 1.30, 95% CI (0.15, 2.44), P = 0.03) and IL-10 [SMD = 2.05, 95% CI (1.39, 2.70), P < 0.000 01) in animal models. However, no significant regulatory effect of these three active components was observed on serum levels of IL-2 [SMD = -0.63, 95% CI (-1.82, 0.57), P = 0.30]. CONCLUTIONS: Substances containing saponins, flavones, and alkaloids regulated the changes of immune-related cytokines, it may be a novel dietary substance to relieve and control autoimmune diseases in the future.


Assuntos
Alcaloides , Doenças Autoimunes , Citocinas , Medicamentos de Ervas Chinesas , Flavonas , Saponinas , Animais , Flavonas/administração & dosagem , Citocinas/sangue , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Saponinas/farmacologia , Humanos , Medicamentos de Ervas Chinesas/administração & dosagem
2.
J Mass Spectrom ; 59(6): e5035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38726730

RESUMO

Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.


Assuntos
Bupleurum , Metabolômica , Ácido Oleanólico , Raízes de Plantas , Saponinas , Sorghum , Zea mays , Sorghum/metabolismo , Sorghum/química , Bupleurum/química , Bupleurum/metabolismo , Zea mays/metabolismo , Zea mays/química , Saponinas/análise , Saponinas/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/análise , Ácido Oleanólico/metabolismo , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Espectrometria de Massas/métodos , Agricultura/métodos , Espectrometria de Massa com Cromatografia Líquida
3.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731501

RESUMO

Bacterial infection is a thorny problem, and it is of great significance to developing green and efficient biological antibacterial agents that can replace antibiotics. This study aimed to rapidly prepare a new type of green antibacterial nanoemulsion containing silver nanoparticles in one step by using Blumea balsamifera oil (BBO) as an oil phase and tea saponin (TS) as a natural emulsifier and reducing agent. The optimum preparation conditions of the AgNPs@BBO-TS NE were determined, as well as its physicochemical properties and antibacterial activity in vitro being investigated. The results showed that the average particle size of the AgNPs@BBO-TS NE was 249.47 ± 6.23 nm, the PDI was 0.239 ± 0.003, and the zeta potential was -35.82 ± 4.26 mV. The produced AgNPs@BBO-TS NE showed good stability after centrifugation and 30-day storage. Moreover, the AgNPs@BBO-TS NE had an excellent antimicrobial effect on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results demonstrated that the AgNPs@BBO-TS NE produced in this study can be used as an efficient and green antibacterial agent in the biomedical field.


Assuntos
Antibacterianos , Emulsões , Química Verde , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Staphylococcus aureus/efeitos dos fármacos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Saponinas/química , Saponinas/farmacologia
4.
Nat Prod Res ; 38(11): 1956-1960, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739565

RESUMO

Magonia pubescens is a natural species from the Brazilian cerrado biome. Its fruits and seeds are used in the treatment of seborrheic dermatitis, a common inflammatory skin disease. In this work, the known compounds lapachol, stigmasterol, maniladiol and scopoletin were isolated from hexane and dichloromethane extracts of M. pubescens branches. The aqueous extract of this material was fractioned through a liquid-liquid partition and the obtained fractions were analyzed by UHPLC-MS/MS. The results obtained were compared with data from three databases, leading to the putative identification of 51 compounds from different classes, including flavonoids, saponins and triterpenes. The cytotoxicity of aqueous fractions was assayed against breast cancer (MDA-MB-231) and leukemia (THP-1 and K562) cells. The best activity was observed for fraction AE3 against MDA-MB-231 cells (IC50 30.72 µg.mL-1).


Assuntos
Antineoplásicos Fitogênicos , Neoplasias da Mama , Compostos Fitoquímicos , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Feminino , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Triterpenos/farmacologia , Triterpenos/química , Brasil , Leucemia/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/química , Células K562 , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Saponinas/farmacologia , Saponinas/química , Células THP-1 , Estrutura Molecular
5.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725854

RESUMO

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Assuntos
Diosgenina/análogos & derivados , Glicólise , Neovascularização Patológica , Neoplasias Ovarianas , Saponinas , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Linhagem Celular Tumoral , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Camundongos Nus , Camundongos , Angiogênese
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731847

RESUMO

Yamogenin is a steroidal saponin occurring in plant species such as Asparagus officinalis, Dioscorea collettii, Trigonella foenum-graecum, and Agave sp. In this study, we evaluated in vitro cytotoxic, antioxidant, and antimicrobial properties of yamogenin. The cytotoxic activity was estimated on human colon cancer HCT116, gastric cancer AGS, squamous carcinoma UM-SCC-6 cells, and human normal fibroblasts with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The amount of apoptotic and dead AGS cells after treatment with yamogenin was estimated with flow cytometry. Also, in yamogenin-treated AGS cells we investigated the reactive oxygen species (ROS) production, mitochondrial membrane depolarization, activity level of caspase-8 and -9, and gene expression at mRNA level with flow cytometry, luminometry, and RT-PCR, respectively. The antioxidant properties of yamogenin were assessed with DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays. The antimicrobial potential of the compound was estimated on Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Helicobacter pylori, Campylobacter coli, Campylobacter jejuni, Listeria monocytogenes, Lactobacillus paracasei, and Lactobacillus acidophilus bacteria strains. Yamogenin showed the strongest cytotoxic effect on AGS cells (IC50 18.50 ± 1.24 µg/mL) among the tested cell lines. This effect was significantly stronger in combinations of yamogenin with oxaliplatin or capecitabine than for the single compounds. Furthermore, yamogenin induced ROS production, depolarized mitochondrial membrane, and increased the activity level of caspase-8 and -9 in AGS cells. RT-PCR analysis revealed that this sapogenin strongly up-regulated TNFRSF25 expression at the mRNA level. These results indicate that yamogenin induced cell death via the extrinsic and intrinsic way of apoptosis. Antioxidant study showed that yamogenin had moderate in vitro potential (IC50 704.7 ± 5.9 µg/mL in DPPH and 631.09 ± 3.51 µg/mL in ABTS assay) as well as the inhibition of protein denaturation properties (with IC50 1421.92 ± 6.06 µg/mL). Antimicrobial test revealed a weak effect of yamogenin on bacteria strains, the strongest one being against S. aureus (with MIC value of 350 µg/mL). In conclusion, yamogenin may be a potential candidate for the treatment and prevention of gastric cancers.


Assuntos
Antioxidantes , Apoptose , Espécies Reativas de Oxigênio , Saponinas , Neoplasias Gástricas , Humanos , Antioxidantes/farmacologia , Saponinas/farmacologia , Saponinas/química , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química
7.
J Oleo Sci ; 73(5): 695-708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692892

RESUMO

This study was to investigate the effects of Smilax China L. saponins (SCS) on non-alcoholic fatty liver disease (NAFLD). Rats were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, followed by SCS treatment for 8 weeks. The effect of SCS on liver injury was observed by H&E staining and the regulative mechanism of SCS on lipid formation was exposed by detecting Oil red O, insulin resistance (IR), and fatty acids synthesis (FAS). Furthermore, transcriptomics and metabolomics were performed to analyze the potential targets. The experimental results indicated that SCS exerted a positive curative effect in alleviating HFD-induced overweight, hepatic injury, steatosis, and lipid formation and accumulation in rats, and the preliminary mechanism studies showed that SCS could alleviate IR, inhibit FAS expression, and reduce Acetyl-CoA levels. Besides, the integrative analysis of transcriptomics and metabolomics exposed the targets of SCS to regulate lipid production likely being the sphingolipid metabolism and glycerophospholipid metabolism pathways. This study demonstrates that SCS significantly ameliorates lipid metabolic disturbance in rats with NAFLD by relieving insulin resistance, inhibiting the FAS enzymes, and regulating the sphingolipid and glycerophospholipid metabolism pathways.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Metabolismo dos Lipídeos , Metabolômica , Hepatopatia Gordurosa não Alcoólica , Saponinas , Smilax , Transcriptoma , Animais , Smilax/química , Saponinas/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Masculino , Metabolômica/métodos , Dieta Hiperlipídica/efeitos adversos , Transcriptoma/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Esfingolipídeos/metabolismo , Glicerofosfolipídeos/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Modelos Animais de Doenças
8.
Bioorg Med Chem ; 106: 117737, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718553

RESUMO

Ursolic acid and uvaol are naturally occurring triterpenoids that exhibit a broad spectrum of pharmacological activities, including cytotoxicity. However, a primary challenge in the development of ursane-type pentacyclic triterpenoids for pharmacological use is their poor aqueous solubility, which can impede their effectiveness as therapeutics agents. In this study, we present the facile synthesis of ursolic acid monodesmosides and uvaol bidesmosides, incorporating naturally occurring and water-soluble pentoses and deoxyhexose sugar moieties of opposite d- and l-configurations at the C3 or C3/C28 positions of the ursane core. The twenty synthetic saponins were evaluated in vitro for their cytotoxicity against lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines. Notably, all the bidesmosidic uvaol saponins were shown to be cytotoxic as compared to their non-cytotoxic parent triterpenoid. For each series of ursane-type saponins, the most active compounds were 3-O-α-l-arabinopyranosyl ursolic acid (3h) and 3,28-di-O-α-l-rhamnopyranosyl uvaol (4f), showing IC50 values in the low micromolar range against A549 and DLD-1 cancer lines.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Saponinas , Triterpenos , Humanos , Saponinas/farmacologia , Saponinas/síntese química , Saponinas/química , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/síntese química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Triterpenos Pentacíclicos
9.
Eur J Pharm Biopharm ; 199: 114309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704102

RESUMO

Oral colon targeted drug delivery system (OCTDDS) is desirable for the treatment of ulcerative colitis (UC). In this study, we designed a partially oxidized sodium alginate-chitosan crosslinked microsphere for UC treatment. Dissipative particle dynamics (DPD) was used to study the formation and enzyme response of gel beads from a molecular perspective. The formed gel beads have a narrow particle size distribution, a compact structure, low cytotoxicity and great colon targeting in vitro and in vivo. Animal experiments demonstrated that gel beads promoted colonic epithelial barrier integrity, decreased the level of pro-inflammatory factors, accelerated the recovery of intestinal microbial homeostasis in UC rats and restored the intestinal metabolic disorders. In conclusion, our gel bead is a promising approach for the treatment of UC and significant for the researches on the pathogenesis and treatment mechanism of UC.


Assuntos
Alginatos , Quitosana , Colite Ulcerativa , Sistemas de Liberação de Medicamentos , Géis , Microesferas , Saponinas , Colite Ulcerativa/tratamento farmacológico , Animais , Ratos , Alginatos/química , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Saponinas/farmacologia , Saponinas/administração & dosagem , Saponinas/química , Tamanho da Partícula , Humanos , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Ratos Sprague-Dawley , Polímeros/química , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Administração Oral
10.
Molecules ; 29(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611929

RESUMO

The process of extracting polyphyllin II and polyphyllin VII by water-assisted extraction was established and optimized in this study. Response surface methodology was used to establish a prediction model to optimize the extraction conditions. Based on the one-way test, the Box-Behnken design with three factors and three levels was used for the experimental program, and the composition analysis was carried out by high-performance liquid chromatography (HPLC). The optimal extraction conditions for polyphyllin II and polyphyllin VII were as follows: extraction time of 57 and 21 min, extraction temperature of 36 and 32 °C, solid-to-liquid ratio of 1:10 and 1:5 g/mL, respectively, and the yields of polyphyllin II and polyphyllin VII were 1.895 and 5.010%, which was similar to the predicted value of 1.835 and 4.979%. The results of the ANOVA showed that the model fit was good, and the Box-Behnken response surface method could optimize the water-assisted extraction of saponins from the leaves of Paris polyphylla var. yunnanensis. This study provides a theoretical basis for the application of polyphyllin II and polyphyllin VII in pharmaceutical production.


Assuntos
Liliaceae , Saponinas , Cromatografia Líquida de Alta Pressão , Folhas de Planta , Água
11.
Mediators Inflamm ; 2024: 9078794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590775

RESUMO

Background: Acute pancreatitis (AP) is a clinically frequent acute abdominal condition, which refers to an inflammatory response syndrome of edema, bleeding, and even necrosis caused by abnormal activation of the pancreas's own digestive enzymes. Intestinal damage can occur early in the course of AP and is manifested by impaired intestinal mucosal barrier function, and inflammatory reactions of the intestinal mucosa, among other factors. It can cause translocation of intestinal bacteria and endotoxins, further aggravating the condition of AP. Therefore, actively protecting the intestinal mucosal barrier, controlling the progression of intestinal inflammation, and improving intestinal dynamics in the early stages of AP play an important role in enhancing the prognosis of AP. Methods: The viability and apoptosis of RAW264.7 cells treated with Esculentoside A (EsA) and/or lipopolysaccharide were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry, respectively. The expression of apoptosis-related proteins and NF-κB signaling pathway-related proteins were detected by western blot (WB). An enzyme-linked immunosorbent assay was used to measure TNF-α and IL-6 secretion. Results: In vitro experiments demonstrated that EsA not only promoted the apoptosis of inflammatory cells but also reduced the secretion of TNF-α and IL-6 in a dose-dependent manner. Additionally, it inhibited the activation of the NF-κB signaling pathway by decreasing the expression of phosphorylated-p65(p-p65) and elevating the expression of IκBα. Similarly, in vivo experiments using a rat AP model showed that EsA inhibited the expression of p-p65 elevating the expression of IκBα in the intestinal tissues of the rat AP model and promoting the apoptosis of inflammatory cells in the intestinal mucosa in vivo experiments, while improving the pathological outcome of the pancreatic and intestinal tissues. Conclusion: Our results suggest that EsA can reduce intestinal inflammation in the rat AP model and that EsA may be a candidate for treating intestinal inflammation in AP and further arresting AP progression.


Assuntos
NF-kappa B , Ácido Oleanólico/análogos & derivados , Pancreatite , Saponinas , Ratos , Animais , NF-kappa B/metabolismo , Pancreatite/metabolismo , Inibidor de NF-kappaB alfa , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Doença Aguda , Inflamação/tratamento farmacológico
12.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612877

RESUMO

Hedera helix is a traditional medicinal plant. Its primary active ingredients are oleanane-type saponins, which have extensive pharmacological effects such as gastric mucosal protection, autophagy regulation actions, and antiviral properties. However, the glycosylation-modifying enzymes responsible for catalyzing oleanane-type saponin biosynthesis remain unidentified. Through transcriptome, cluster analysis, and PSPG structural domain, this study preliminarily screened four candidate UDP-glycosyltransferases (UGTs), including Unigene26859, Unigene31717, CL11391.Contig2, and CL144.Contig9. In in vitro enzymatic reactions, it has been observed that Unigene26859 (HhUGT74AG11) has the ability to facilitate the conversion of oleanolic acid, resulting in the production of oleanolic acid 28-O-glucopyranosyl ester. Moreover, HhUGT74AG11 exhibits extensive substrate hybridity and specific stereoselectivity and can transfer glycosyl donors to the C-28 site of various oleanane-type triterpenoids (hederagenin and calenduloside E) and the C-7 site of flavonoids (tectorigenin). Cluster analysis found that HhUGT74AG11 is clustered together with functionally identified genes AeUGT74AG6, CaUGT74AG2, and PgUGT74AE2, further verifying the possible reason for HhUGT74AG11 catalyzing substrate generalization. In this study, a novel glycosyltransferase, HhUGT74AG11, was characterized that plays a role in oleanane-type saponins biosynthesis in H. helix, providing a theoretical basis for the production of rare and valuable triterpenoid saponins.


Assuntos
Hedera , Ácido Oleanólico/análogos & derivados , Saponinas , Glicosiltransferases/genética
13.
BMC Complement Med Ther ; 24(1): 144, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575939

RESUMO

BACKGROUND: Mitochondrial dysfunction is one of the distinctive features of neurons in patients with Alzheimer's disease (AD). Intraneuronal autophagosomes selectively phagocytose and degrade the damaged mitochondria, mitigating neuronal damage in AD. Panax notoginseng saponins (PNS) can effectively reduce oxidative stress and mitochondrial damage in the brain of animals with AD, but their exact mechanism of action is unknown. METHODS: Senescence-accelerated mouse prone 8 (SAMP8) mice with age-related AD were treated with PNS for 8 weeks. The effects of PNS on learning and memory abilities, cerebral oxidative stress status, and hippocampus ultrastructure of mice were observed. Moreover, changes of the PTEN-induced putative kinase 1 (PINK1)-Parkin, which regulates ubiquitin-dependent mitophagy, and the recruit of downstream autophagy receptors were investigated. RESULTS: PNS attenuated cognitive dysfunction in SAMP8 mice in the Morris water maze test. PNS also enhanced glutathione peroxidase and superoxide dismutase activities, and increased glutathione levels by 25.92% and 45.55% while inhibiting 8-hydroxydeoxyguanosine by 27.74% and the malondialdehyde production by 34.02% in the brains of SAMP8 mice. Our observation revealed the promotion of mitophagy, which was accompanied by an increase in microtubule-associated protein 1 light chain 3 (LC3) mRNA and 70.00% increase of LC3-II/I protein ratio in the brain tissues of PNS-treated mice. PNS treatment increased Parkin mRNA and protein expression by 62.80% and 43.80%, while increasing the mRNA transcription and protein expression of mitophagic receptors such as optineurin, and nuclear dot protein 52. CONCLUSION: PNS enhanced the PINK1/Parkin pathway and facilitated mitophagy in the hippocampus, thereby preventing cerebral oxidative stress in SAMP8 mice. This may be a mechanism contributing to the cognition-improvement effect of PNS.


Assuntos
Doença de Alzheimer , Panax notoginseng , Saponinas , Humanos , Camundongos , Animais , Lactente , Panax notoginseng/química , Saponinas/farmacologia , Mitofagia , Estresse Oxidativo , Encéfalo/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , RNA Mensageiro/metabolismo
14.
BMC Genomics ; 25(1): 330, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565995

RESUMO

Plant growth and development can be significantly impacted by drought stress. Plants will adjust the synthesis and accumulation of secondary metabolites to improve survival in times of water constraint. Simultaneously, drought stress can lead to modifications in the DNA methylation status of plants, and these modifications can directly impact gene expression and product synthesis by changing the DNA methylation status of functional genes involved in secondary metabolite synthesis. However, further research is needed to fully understand the extent to which DNA methylation modifies the content of secondary metabolites to mediate plants' responses to drought stress, as well as the underlying mechanisms involved. Our study found that in Eleutherococcus senticosus (E. senticosus), moderate water deprivation significantly decreased DNA methylation levels throughout the genome and at the promoters of EsFPS, EsSS, and EsSE. Transcription factors like EsMYB-r1, previously inhibited by DNA methylation, can re-bind to the EsFPS promotor region following DNA demethylation. This process promotes gene expression and, ultimately, saponin synthesis and accumulation. The increased saponin levels in E. senticosus acted as antioxidants, enhancing the plant's adaptability to drought stress.


Assuntos
Eleutherococcus , Saponinas , Metilação de DNA , Eleutherococcus/genética , Eleutherococcus/metabolismo , Metabolismo Secundário , Secas
15.
Chem Pharm Bull (Tokyo) ; 72(4): 365-373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569867

RESUMO

Obesity is known to be associated with increased inflammation and dysregulated autophagy, both of which contribute to insulin resistance. Saikosaponin-A (SSA) has been reported to exhibit anti-inflammatory and lipid-lowering properties. In this research, we employed a combination of computational modeling and animal experiments to explore the effects of SSA. Male C57BL/6 mice were categorized into four groups: normal diet, high-fat diet (HFD), HFD + atorvastatin 10 mg/kg, and HFD + SSA 10 mg/kg. We conducted oral glucose and fat tolerance tests to assess metabolic parameters and histological changes. Furthermore, we evaluated the population of Kupffer cells (KCs) and examined gene expressions related to inflammation and autophagy. Computational analysis revealed that SSA displayed high binding affinity to tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, fibroblast growth factor 21 (FGF21), and autophagy-related 7 (ATG7). Animal study demonstrated that SSA administration improved fasting and postprandial glucose levels, homeostatic model assessment of insulin resistance (HOMA-IR) index, as well as triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol (LDL-C)-cholesterol, and high-density lipoprotein cholesterol (HDL-C)-cholesterol levels in HFD-fed mice. Moreover, SSA significantly reduced liver weight and fat accumulation, while inhibiting the infiltration and M1 activation of KCs. At the mRNA level, SSA downregulated TNF-α and NF-κB expression, while upregulating FGF21 and ATG7 expression. In conclusion, our study suggests that SSA may serve as a therapeutic agent for addressing the metabolic complications associated with obesity. This potential therapeutic effect is attributed to the suppression of inflammatory cytokines and the upregulation of FGF21 and ATG7.


Assuntos
Experimentação Animal , Resistência à Insulina , Ácido Oleanólico/análogos & derivados , Saponinas , Camundongos , Masculino , Animais , Resistência à Insulina/fisiologia , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Fígado , Inflamação/metabolismo , Glucose/metabolismo , Colesterol , Dieta Hiperlipídica/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Insulina/metabolismo
16.
Appl Microbiol Biotechnol ; 108(1): 282, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573330

RESUMO

Oleanane-type ginsenosides are a class of compounds with remarkable pharmacological activities. However, the lack of effective preparation methods for specific rare ginsenosides has hindered the exploration of their pharmacological properties. In this study, a novel glycoside hydrolase PlGH3 was cloned from Paenibacillus lactis 154 and heterologous expressed in Escherichia coli. Sequence analysis revealed that PlGH3 consists of 749 amino acids with a molecular weight of 89.5 kDa, exhibiting the characteristic features of the glycoside hydrolase 3 family. The enzymatic characterization results of PlGH3 showed that the optimal reaction pH and temperature was 8 and 50 °C by using p-nitrophenyl-ß-D-glucopyranoside as a substrate, respectively. The Km and kcat values towards ginsenoside Ro were 79.59 ± 3.42 µM and 18.52 s-1, respectively. PlGH3 exhibits a highly specific activity on hydrolyzing the 28-O-ß-D-glucopyranosyl ester bond of oleanane-type saponins. The mechanism of hydrolysis specificity was then presumably elucidated through molecular docking. Eventually, four kinds of rare oleanane-type ginsenosides (calenduloside E, pseudoginsenoside RP1, zingibroside R1, and tarasaponin VI) were successfully prepared by biotransforming total saponins extracted from Panax japonicus. This study contributes to understanding the mechanism of enzymatic hydrolysis of the GH3 family and provides a practical route for the preparation of rare oleanane-type ginsenosides through biotransformation. KEY POINTS: • The glucose at C-28 in oleanane-type saponins can be directionally hydrolyzed. • Mechanisms to interpret PlGH3 substrate specificity by molecular docking. • Case of preparation of low-sugar alternative saponins by directed hydrolysis.


Assuntos
Ginsenosídeos , Ácido Oleanólico/análogos & derivados , Paenibacillus , Saponinas , Glicosídeo Hidrolases/genética , Simulação de Acoplamento Molecular , Escherichia coli/genética , Ésteres
17.
Arch Virol ; 169(5): 89, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565720

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality in neonatal suckling piglets, leading to significant economic losses to the swine industry. Panax notoginseng saponins (PNS) are bioactive extracts derived from the P. notoginseng plant. In this study, we investigated the anti-PEDV effect of PNS by employing various methodologies to assess their impact on PEDV in Vero cells. Using a CCK-8 (Cell Counting Kit-8) assay, we found that PNS had no significant cytotoxicity below the concentration of 128 µg/mL in Vero cells. Using immunofluorescence assays (IFAs), an enzyme-linked immunosorbent assay (ELISA), and plaque formation assays, we observed a dose-dependent inhibition of PEDV infection by PNS within 24-48 hours postinfection. PNS exerts its anti-PEDV activity specifically at the genome replication stage, and mRNA-seq analysis demonstrated that treatment with PNS resulted in increased expression of various genes, including IFIT1 (interferon-induced protein with tetratricopeptide repeats 1), IFIT3 (interferon-induced protein with tetratricopeptide repeats 3), CFH (complement factor H), IGSF10 (immunoglobulin superfamily member 10), ID2 (inhibitor of DNA binding 2), SPP1 (secreted phosphoprotein 1), PLCB4 (phospholipase C beta 4), and FABP4 (fatty acid binding protein 4), but it resulted in decreased expression of IL1A (interleukin 1 alpha), TNFRSF19 (TNF receptor superfamily member 19), CDH8 (cadherin 8), DDIT3 (DNA damage inducible transcript 3), GADD45A (growth arrest and DNA damage inducible alpha), PTPRG (protein tyrosine phosphatase receptor type G), PCK2 (phosphoenolpyruvate carboxykinase 2), and ADGRA2 (adhesion G protein-coupled receptor A2). This study provides insights into the potential mechanisms underlying the antiviral effects of PNS. Taken together, the results suggest that the PNS might effectively regulate the defense response to the virus and have potential to be used in antiviral therapies.


Assuntos
Infecções por Coronavirus , Panax notoginseng , Vírus da Diarreia Epidêmica Suína , Saponinas , Doenças dos Suínos , Chlorocebus aethiops , Animais , Suínos , Saponinas/farmacologia , Células Vero , Vírus da Diarreia Epidêmica Suína/genética , Interferons , Antivirais/farmacologia , Doenças dos Suínos/tratamento farmacológico
18.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612411

RESUMO

Biofilm formation plays a crucial role in the pathogenesis of Candida albicans and is significantly associated with resistance to antifungal agents. Tea seed saponins, a class of non-ionic triterpenes, have been proven to have fungicidal effects on planktonic C. albicans. However, their anti-biofilm activity and mechanism of action against C. albicans remain unclear. In this study, the effects of three Camellia sinensis seed saponin monomers, namely, theasaponin E1 (TE1), theasaponin E2 (TE2), and assamsaponin A (ASA), on the metabolism, biofilm development, and expression of the virulence genes of C. albicans were evaluated. The results of the XTT reduction assay and crystal violet (CV) staining assay demonstrated that tea seed saponin monomers concentration-dependently suppressed the adhesion and biofilm formation of C. albicans and were able to eradicate mature biofilms. The compounds were in the following order in terms of their inhibitory effects: ASA > TE1 > TE2. The mechanisms were associated with reductions in multiple crucial virulence factors, including cell surface hydrophobicity (CSH), adhesion ability, hyphal morphology conversion, and phospholipase activity. It was further demonstrated through qRT-PCR analysis that the anti-biofilm activity of ASA and TE1 against C. albicans was attributed to the inhibition of RAS1 activation, which consequently suppressed the cAMP-PKA and MAPK signaling pathways. Conversely, TE2 appeared to regulate the morphological turnover and hyphal growth of C. albicans via a pathway that was independent of RAS1. These findings suggest that tea seed saponin monomers are promising innovative agents against C. albicans.


Assuntos
Candida albicans , Ácido Oleanólico/análogos & derivados , Saponinas , Saponinas/farmacologia , Biofilmes , Chá
19.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612831

RESUMO

Many people around the world suffer from neurodegenerative diseases associated with cognitive impairment. As life expectancy increases, this number is steadily rising. Therefore, it is extremely important to search for new treatment strategies and to discover new substances with potential neuroprotective and/or cognition-enhancing effects. This study focuses on investigating the potential of astragaloside IV (AIV), a triterpenoid saponin with proven acetylcholinesterase (AChE)-inhibiting activity naturally occurring in the root of Astragalus mongholicus, to attenuate memory impairment. Scopolamine (SCOP), an antagonist of muscarinic cholinergic receptors, and lipopolysaccharide (LPS), a trigger of neuroinflammation, were used to impair memory processes in the passive avoidance (PA) test in mice. This memory impairment in SCOP-treated mice was attenuated by prior intraperitoneal (ip) administration of AIV at a dose of 25 mg/kg. The attenuation of memory impairment by LPS was not observed. It can therefore be assumed that AIV does not reverse memory impairment by anti-inflammatory mechanisms, although this needs to be further verified. All doses of AIV tested did not affect baseline locomotor activity in mice. In the post mortem analysis by mass spectrometry of the body tissue of the mice, the highest content of AIV was found in the kidneys, then in the spleen and liver, and the lowest in the brain.


Assuntos
Saponinas , Triterpenos , Humanos , Animais , Camundongos , Acetilcolinesterase , Saponinas/farmacologia , Triterpenos/farmacologia , Transtornos da Memória/tratamento farmacológico , Lipopolissacarídeos/toxicidade
20.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612928

RESUMO

In this study, we explored the formation of CuO nanoparticles, NiO nanoflakes, and CuO-NiO nanocomposites using saponin extract and a microwave-assisted hydrothermal method. Five green synthetic samples were prepared using aqueous saponin extract and a microwave-assisted hydrothermal procedure at 200 °C for 30 min. The samples were pristine copper oxide (100C), 75% copper oxide-25% nickel oxide (75C25N), 50% copper oxide-50% nickel oxide (50C50N), 25% copper oxide-75% nickel oxide (25C75N), and pristine nickel oxide (100N). The samples were characterized using FT-IR, XRD, XPS, SEM, and TEM. The XRD results showed that copper oxide and nickel oxide formed monoclinic and cubic phases, respectively. The morphology of the samples was useful and consisted of copper oxide nanoparticles and nickel oxide nanoflakes. XPS confirmed the +2 oxidation state of both the copper and nickel ions. Moreover, the optical bandgaps of copper oxide and nickel oxide were determined to be in the range of 1.29-1.6 eV and 3.36-3.63 eV, respectively, and the magnetic property studies showed that the synthesized samples exhibited ferromagnetic and superparamagnetic properties. In addition, the catalytic activity was tested against para-nitrophenol, demonstrating that the catalyst efficiency gradually improved in the presence of CuO. The highest rate constants were obtained for the 100C and 75C25N samples, with catalytic efficiencies of 98.7% and 78.2%, respectively, after 45 min.


Assuntos
Nanocompostos , Níquel , Saponinas , Cobre , Micro-Ondas , Espectroscopia de Infravermelho com Transformada de Fourier , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...