Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.716
Filtrar
1.
Microb Cell Fact ; 23(1): 241, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242505

RESUMO

BACKGROUND: Metabolic engineering enables the sustainable and cost-efficient production of complex chemicals. Efficient production of terpenes in Saccharomyces cerevisiae can be achieved by recruiting an intermediate of the mevalonate pathway. The present study aimed to evaluate the engineering strategies of S. cerevisiae for the production of taxadiene, a precursor of taxol, an antineoplastic drug. RESULT: SCIGS22a, a previously engineered strain with modifications in the mevalonate pathway (MVA), was used as a background strain. This strain was engineered to enable a high flux towards farnesyl diphosphate (FPP) and the availability of NADPH. The strain MVA was generated from SCIGS22a by overexpressing all mevalonate pathway genes. Combining the background strains with 16 different episomal plasmids, which included the combination of 4 genes: tHMGR (3-hydroxy-3-methylglutaryl-CoA reductase), ERG20 (farnesyl pyrophosphate synthase), GGPPS (geranyl diphosphate synthase) and TS (taxadiene synthase) resulted in the highest taxadiene production in S. cerevisiae of 528 mg/L. CONCLUSION: Our study highlights the critical role of pathway balance in metabolic engineering, mainly when dealing with toxic molecules like taxadiene. We achieved significant improvements in taxadiene production by employing a combinatorial approach and focusing on balancing the downstream and upstream pathways. These findings emphasize the importance of minor gene expression modification levels to achieve a well-balanced pathway, ultimately leading to enhanced taxadiene accumulation.


Assuntos
Engenharia Metabólica , Ácido Mevalônico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica/métodos , Ácido Mevalônico/metabolismo , Alcenos/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Diterpenos/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , NADP/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sesquiterpenos
2.
Appl Microbiol Biotechnol ; 108(1): 462, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264460

RESUMO

Bioinformatic analysis revealed that the genomes of ubiquitous Penicillium spp. might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained uncharacterized. In this study, a detailed investigation of co-culture fermentation including the basidiomycete Armillaria mellea CPCC 400891 and the P. brasilianum CGMCC 3.4402 enabled the isolation of five new compounds including two bisabolene-type sesquiterpenes (arpenibisabolanes A and B), two carotane-type sesquiterpenes (arpenicarotanes A and B), and one polyketide (arpenichorismite A) along with seven known compounds. The assignments of their structures were deduced by the extensive analyses of detailed spectroscopic data, electronic circular dichroism spectra, together with delimitation of the biogenesis. Most new compounds were not detected in monocultures under the same fermentation conditions. Arpenibisabolane A represents the first example of a 6/5-fused bicyclic bisabolene. The bioassay of these five new compounds exhibited no cytotoxic activities in vitro against three human cancer cell lines (A549, MCF-7, and HepG2). Moreover, sequence alignments and bioinformatic analysis to other metabolic pathways, two BGCs including Pb-bis and Pb-car, responsible for generating sesquiterpenoids from co-culture were identified, respectively. Furthermore, based on the chemical structures and deduced gene functions of the two clusters, a hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed. These results demonstrated that the co-culture approach would facilitate bioprospecting for new metabolites even from the well-studied microbes. Our findings would provide opportunities for further understanding of the biosynthesis of intriguing sesquiterpenoids via metabolic engineering strategies. KEY POINTS: • Penicillium and Armillaria co-culture facilitates the production of diverse secondary metabolites • Arpenibisabolane A represents the first example of 6/5-fused bicyclic bisabolenes • A hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed.


Assuntos
Armillaria , Técnicas de Cocultura , Fermentação , Penicillium , Metabolismo Secundário , Sesquiterpenos , Armillaria/metabolismo , Armillaria/genética , Penicillium/metabolismo , Penicillium/genética , Penicillium/química , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Humanos , Família Multigênica , Linhagem Celular Tumoral , Vias Biossintéticas/genética , Policetídeos/metabolismo , Policetídeos/química , Policetídeos/isolamento & purificação , Células Hep G2
3.
J Biochem Mol Toxicol ; 38(10): e23850, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39275950

RESUMO

Hepatocellular carcinoma (HCC) is caused by various factors including toxic substances and xenobiotics. Numerous treatment strategies are used to address toxicity to the liver and HCC, yet their adverse effects are drawbacks. This study aimed to assess the effect of DEN/CCl4 on morphological changes in the liver, body weight, tumor incidence, and hematological tumor incidence, hematological parameters, hepatic markers, and histopathological analysis in mice following a preventive measure by using ß-caryophyllene (BCP). Adult Balb/c mice were administered a single dose of DEN 1-mg/kg body weight and 0.2-mL CCl4/kg body weight intraperitoneal twice a week (i.p.) for 22 weeks. BCP was treated in one group of mice at 30-mg/kg body weight, intraperitoneal, for 7 weeks. BCP alone was treated in one group of mice at 300-mg/kg body weight intraperitoneal for 22 weeks. DEN/CCl4 caused a reduction in mice's body weight, which was significantly attenuated by BCP administration. BCP supplementation attenuated the tumor incidence DEN/CCl4 (100%) to about 25%. DEN/CCl4 caused alterations in the hematological parameters, serum total protein albumin globulin, A/G ratio, liver function markers (AST, ALT, ALP, GGT, ACP, and bilirubin), and lipid profile markers that were significantly reinstated by BCP administration. Oxidative stress markers (MDA, SOD, CAT, NO, LDH, and GST) were reduced by DEN/CCl4, which were significantly increased in BCP-treated groups. The liver histopathology alterations caused by DEN/CCl4 were amended considerably by BCP treatment. Immunohistochemical studies suggest that AFP, caspase-3, and COX-2 were chronically overexpressed in DEN/CCl4-exposed mice, notably attenuated by BCP administration. BCP suppressed tumor incidence by downregulating inflammation and inducing caspase-3-mediated apoptosis. Conclusively, BCP appears to be a potent natural supplement capable of repressing liver inflammation and carcinoma through the mitigation of oxidative stress and inflammation pathways.


Assuntos
Carcinoma Hepatocelular , Inflamação , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Sesquiterpenos Policíclicos , Animais , Sesquiterpenos Policíclicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/prevenção & controle , Carcinoma Hepatocelular/induzido quimicamente , Masculino , Regulação para Baixo/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/tratamento farmacológico , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Tetracloreto de Carbono/toxicidade
4.
J Biochem Mol Toxicol ; 38(10): e23836, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39308040

RESUMO

This study examines the anti-inflammatory activity of cynaropicrin against lipopolysaccharide (LPS) in vitro and ovalbumin (OVA)-challenged asthma in mice. Cynaropicrin's antimicrobial effects were tested on Escherichia coli (E. coli) and Streptococcus pyogenes (S. pyogenes) using the disc diffusion technique. Cytotoxicity was assessed with an (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. The anti-inflammatory property was evaluated in LPS-induced RAW264.7 cells, while OVA-challenged asthmatic mice were treated with 10 mg/kg of cynaropicrin. Key inflammatory and antioxidant markers were quantified, and lung histology was examined to confirm therapeutic roles. The antimicrobial studies proved that cynaropicrin effectively inhibited the growth of E. coli and S. pyogenes. Cynaropicrin displayed no cytotoxicity on RAW264.7 cells. Furthermore, it significantly inhibited inflammatory cytokine synthesis upon LPS induction. Cynaropicrin treatment decreased the inflammatory cell counts and also suppressed specific allergic markers in OVA-challenged mice. It also decreased nitric oxide and myeloperoxidase levels and reduced pulmonary edema. Cynaropicrin increased antioxidant levels and decreased proinflammatory cytokines in the asthmatic mice. Lung histological examination confirms the ameliorative potency of cynaropicrin against OVA-induced asthmatic pulmonary inflammation in mice. Our findings suggest cynaropicrin possesses significant ameliorative potency against allergen-induced pulmonary inflammation.


Assuntos
Asma , Citocinas , Lipopolissacarídeos , Ovalbumina , Animais , Camundongos , Asma/tratamento farmacológico , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Lipopolissacarídeos/toxicidade , Células RAW 264.7 , Citocinas/metabolismo , Sesquiterpenos/farmacologia , Camundongos Endogâmicos BALB C , Escherichia coli , Streptococcus pyogenes , Anti-Inflamatórios/farmacologia , Masculino , Feminino , Lactonas
5.
Mol Biol Rep ; 51(1): 1000, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302551

RESUMO

BACKGROUND: Phalaenopsis bellina, an orchid native to Borneo, is renowned for its unique appearance. It releases distinct fragrances, which have been linked to the presence of terpenoids. However, the identification and study of sesquiterpene synthase in P. bellina remain limited. In this study, we examines the functional characterisation of terpene synthase (TPS) from P. bellina, known as PbTS, through recombinant protein expression and its manifestation in the flower. METHODS AND RESULTS: Gene annotation of PbTS revealed that the inferred peptide sequence of PbTS comprises 1,680 bp nucleotides encoding 559 amino acids with an estimated molecular mass of 65.2 kDa and a pI value of 5.4. A similarity search against GenBank showed that PbTS shares similarities with the previously published partial sequence of P. bellina (ABW98504.1) and Phalaenopsis equestris (XP_020597359.1 and ABW98503.1). Intriguingly, the phylogenetic analysis places the PbTS gene within the TPS-a group. In silico analysis of PbTS demonstrated stable interactions with farnesyl pyrophosphate (FPP), geranyl pyrophosphate (GPP), and geranylgeranyl pyrophosphate (GGPP). To verify this activity, an in vitro enzyme assay was performed on the PbTS recombinant protein, which successfully converted FPP, GPP, and GGPP into acyclic sesquiterpene ß-farnesene, yielding approximately 0.03 mg/L. Expressional analysis revealed that the PbTS transcript was highly expressed in P. bellina, but its level did not correlate with ß-farnesene levels across various flowering time points and stages. CONCLUSION: The insights gained from this study will enhance the understanding of terpenoid production in P. bellina and aid in the discovery of novel fragrance-related genes in other orchid species.


Assuntos
Alquil e Aril Transferases , Flores , Orchidaceae , Filogenia , Sesquiterpenos , Orchidaceae/genética , Orchidaceae/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sesquiterpenos/metabolismo , Flores/genética , Flores/enzimologia , Sequência de Aminoácidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Clonagem Molecular/métodos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Regulação da Expressão Gênica de Plantas
6.
Biomed Pharmacother ; 179: 117398, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39245000

RESUMO

At present, chemotherapy combined with photodynamic therapy is exerting satisfactory therapeutic effects in the treatment of tumors. Chlorin e6 (Ce6) is a photosensitizer with high efficiency and low dark toxicity. At the same time, elemene (ELE) contains high-efficiency and low-toxicity anti-cancer active ingredients, which can effectively penetrate tumor tissue and inhibit its recovery and proliferation. Due to the poor water solubility of these two drugs, we prepared ELE/Ce6 co-loaded liposomes (Lipo-ELE/Ce6) to improve their water solubility, thereby enhancing the anti-tumor effect. The characterization of Lipo-ELE/Ce6 showed that Lipo-ELE/Ce6 had suitable encapsulation efficiency (EE), particle size, polydispersity (PDI), zeta potential, and good photo-controlled release properties. In vitro, Lipo-ELE/Ce6 effectively inhibited the growth of T24 cells and induced apoptosis, and more importantly, in vivo experiments showed that Lipo-ELE/Ce6 had significant anti-tumor effects, which was significantly better than free drugs. The above results suggest that Lipo-ELE/Ce6 can significantly enhance the induction of apoptosis of non-muscle invasive bladder cancer (NMIBC) by light-controlled release and ROS response.


Assuntos
Apoptose , Clorofilídeos , Preparações de Ação Retardada , Lipossomos , Fármacos Fotossensibilizantes , Porfirinas , Espécies Reativas de Oxigênio , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Linhagem Celular Tumoral , Porfirinas/farmacologia , Porfirinas/química , Porfirinas/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Fotoquimioterapia/métodos , Camundongos Nus , Camundongos , Liberação Controlada de Fármacos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Solubilidade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Neoplasias não Músculo Invasivas da Bexiga
7.
J Agric Food Chem ; 72(38): 21013-21029, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39264009

RESUMO

Parthenolide is a germacrane sesquiterpene lactone separated from the traditional medicinal plant feverfew. Previous studies have shown that parthenolide possesses many pharmacological activities, involving anti-inflammatory and anticancer activities. However, the antitumor mechanism of parthenolide has not been fully elucidated. Thus, we investigate the potential antitumor mechanisms of parthenolactone. We predicted through network pharmacology that parthenolide may target HIF-1α to interfere with the occurrence and development of cancer. We found that parthenolide inhibited PD-L1 protein synthesis through mTOR/p70S6K/4EBP1/eIF4E and RAS/RAF/MEK/MAPK signaling pathways and promoted PD-L1 protein degradation through the lysosomal pathway, thereby inhibiting PD-L1 expression. Immunoprecipitation and Western blotting results demonstrated that parthenolide inhibited PD-L1 expression by suppressing HIF-1α and RAS cooperatively. We further proved that parthenolide inhibited cell proliferation, migration, invasion, and tube formation via down-regulating PD-L1. Moreover, parthenolide increased the effect of T cells to kill tumor cells. In vivo xenograft assays further demonstrated that parthenolide suppressed the growth of tumor xenografts. Collectively, we report for the first time that parthenolide enhanced T cell tumor-killing activity and suppressed cell proliferation, migration, invasion, and tube formation by PD-L1. The current study provides new insight for the development of parthenolide as a novel anticancer drug targeting PD-L1.


Assuntos
Antígeno B7-H1 , Proliferação de Células , Sesquiterpenos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Humanos , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos
8.
J Am Chem Soc ; 146(38): 26243-26250, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39276077

RESUMO

In nature, basic terpene skeletons are produced and subsequently undergo enzymatic or nonenzymatic oxidative transformations, leading to diverse structural variations. To date, thousands of natural products featuring a variety of oxidation patterns have been isolated solely from the labdane family. This work describes a strategy for the comprehensive introduction of oxidation states into the labdane core by employing a combination of enzyme library screening, directed evolution, and sequential chemical oxidation processes. Furthermore, we showcase the functional viability of our chemoenzymatic approach by accomplishing a formal synthesis of nimbolide, highlighting its potential for streamlining the synthesis of complex natural products.


Assuntos
Limoninas , Oxirredução , Limoninas/química , Limoninas/síntese química , Sesquiterpenos/síntese química , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/síntese química , Estrutura Molecular
9.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39289002

RESUMO

AIMS: The immense therapeutic value of Valeriana jatamansi is attributed to the presence of bioactive secondary metabolites (valepotriates and sesquiterpenoids). Its over-exploitation in wild habitats resulted in extensive depletion, necessitating alternative approaches to produce its therapeutic metabolites. This study sought to assess the ability of endophytes of V. jatamansi to boost the biosynthesis of secondary metabolites in the leaf-cell suspension (LCS) culture of V. jatamansi. METHODS AND RESULTS: A total of 11 fungal endophytes were isolated from the rhizomes of V. jatamansi. Isolated endophytes were found to belong to phylum Ascomycota, Basidiomycota, and Mucoromycota. Supplementation of extracts of endophyte Phaeosphaeriaceae sp. VRzFB, Mucor griseocyanus VRzFD, Penicillium raistrickii VRzFK, and Penicillium sajarovii VRzFL in the LCS culture of V. jatamansi increased the fresh cell biomass by 19.6%-39.1% and dry cell biomass by 23.4%-37.8%. Most of the endophytes' extract could increase the content of valepotriates (26.5%-76.5% valtrate and 40.5%-77.9% acevaltrate) and sesquiterpenoids (19.9%-61.1% hydroxyl valerenic acid) in LCS culture. However, only two endophytes, Irpex lacteus VRzFI and Fusarium oxysporum VRzFF, could increase the sesquiterpenoids acetoxy valerenic acid (36.9%-55.3%). In contrast, some endophytes' extracts caused negative or no significant effect on the cell biomass and targeted metabolites. Increased secondary metabolites were corroborated with increased expression of iridoid biosynthesis genes in LCS culture. Production of H2O2 and lipid peroxidation was also varied with different endophytes indicating the modulation of cellular oxidative stress due to endophyte elicitors. CONCLUSIONS: The results suggest the distinct effect of different fungal endophytes-extract on LCS culture, and endophytes can serve as biotic elicitors for increasing the secondary metabolite production in plant in vitro systems.


Assuntos
Endófitos , Folhas de Planta , Sesquiterpenos , Valeriana , Endófitos/metabolismo , Sesquiterpenos/metabolismo , Valeriana/microbiologia , Valeriana/metabolismo , Folhas de Planta/microbiologia , Fungos/metabolismo , Ascomicetos/metabolismo , Rizoma/microbiologia , Penicillium/metabolismo , Metabolismo Secundário
10.
Pharmacol Res ; 208: 107392, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39233057

RESUMO

AIMS: Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM) without curative interventions currently. Huperzine A (Hup A), a natural alkaloid, has demonstrated significant hypoglycemic and anti-inflammatory effects. We aim to investigate the protective effects of Hup A on DN and explore the underlying mechanisms METHODS: We applied STZ induced diabetic rats as DN model and leveraged combination analysis of the transcriptome, metabolome, microbiome, and network pharmacology (NP). The total effect of Hup A on DN was detected (i.e. urine protein, renal tissue structure) and the differential genes were further verified at the level of diabetic patients, db/db mice and cells. Clinical data and small interfering RNA (siRNA)-Apoe were adopted. RESULTS: Hup A alleviated kidney injury in DN rats. Transcriptomics data and Western blot indicated that the improvement in DN was primarily associated with Apoe and Apoc2. Additionally, metabolomics data demonstrated that DN-induced lipid metabolism disruption was regulated by Hup A, potentially involving sphingosine. Hup A also enriched microbial diversity and ameliorated DN-induced microbiota imbalance. Spearman's correlation analysis demonstrated significant associations among the transcriptome, metabolome, and microbiome. Apoe level was positively correlated with clinical biomarkers in DN patients. Si-Apoe also played protective role in podocytes. NP analysis also suggested that Hup A may treat DN by modulating lipid metabolism, microbial homeostasis, and apoptosis, further validating our findings. CONCLUSIONS: Collectively, we provide the first evidence of the therapeutic effect of Hup A on DN, indicating that Hup A is a potential drug for the prevention and treatment of DN.


Assuntos
Alcaloides , Apolipoproteínas E , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos Sprague-Dawley , Sesquiterpenos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Animais , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Masculino , Humanos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Apolipoproteínas E/genética , Ratos , Camundongos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Transcriptoma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Farmacologia em Rede , Metabolômica , Pessoa de Meia-Idade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Feminino
11.
Pestic Biochem Physiol ; 204: 106082, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277395

RESUMO

Bemisia tabaci poses a severe threat to plants, and the control of B. tabaci mainly relies on pesticides, which causes more and more rapidly increasing resistance. ß-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications. Nanotechnology can enhance the effectiveness and dispersion of volatile organic compounds (VOCs). In this study, a nanoliposome carrier was constructed by ethanol injection and ultrasonic dispersion method, and ß-caryophyllene was wrapped inside it, thus solving the defect of poor solubility of ß-caryophyllene. The size of the ß-caryophyllene nanoliposomes (C-BT-NPs) was around 200 nm, with the absolute value of the zeta potential exceeding 30 mV and a PDI below 0.5. The stability was also maintained over a 14-d storage period. C-BT-NPs showed effective insecticidal activity against B. tabaci, with an LC50 of 1.51 g/L, outperforming thiamethoxam and offering efficient agricultural pest control. Furthermore, C-BT-NPs had minimal short-term impact on the growth of tomato plants, indicating that they are safety on plants. Therefore, the VOCs using nanoliposome preparation technology show promise in reducing reliance on conventional pesticides and present new approaches to managing agricultural pests.


Assuntos
Hemípteros , Inseticidas , Lipossomos , Sesquiterpenos Policíclicos , Animais , Hemípteros/efeitos dos fármacos , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química , Inseticidas/farmacologia , Inseticidas/química , Nanopartículas/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Solanum lycopersicum/parasitologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-39244957

RESUMO

BACKGROUND: The Atractylodes chinensis (DC.) Koidz (A. chinensis) Chinese herb possesses numerous therapeutic properties and is extensively utilized in the pharmaceutical industry. Its quality is closely associated with the harvest periods. However, the optimal quality and harvest periods of A. chinensis remain elusive. METHODS: The bioactive compounds of perennial A. chinensis were detected by ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry (UHPLC-Q-Orbitrap/MS) metabolomics, and differentially abundant compounds were selected by multivariate statistical analysis. Then, variations in the content of differential compounds in samples harvested at different periods were analyzed, while correlation analysis was carried out on the differential compounds to determine the suitable harvest period for distinct components. RESULTS: A total of 61 bioactive compounds were detected in all samples, grouped into 9 known classes. The results revealed that the chemical compositions of A. chinensis at different harvest periods were significantly different. The volatile oil content in the four-year-old and five-year-old samples was relatively high, at 31.92 mg/g and 32.42 mg/g, respectively. There were also significant differences in the content of the six active ingredients, for example, the five-year-old sample had the highest content of atractylodin (4.38 mg/g). Indeed, the harvest period was correlated with the abundance of most bioactive compounds. Specifically, quinquennial samples were significantly negatively correlated with the abundance of organic acids and aliphatics while moderately positively correlated with the abundance of other classes of bioactive compounds. CONCLUSIONS: According to the results, the ideal harvest time for atractylenolide Ⅲ was 3 years. Regarding organic acids, the optimal harvest time was around 2-3 years. Taken together, these results offer valuable insights to producers for optimizing the harvest period for A. chinensis.


Assuntos
Atractylodes , Atractylodes/química , Cromatografia Líquida de Alta Pressão/métodos , Análise Multivariada , Sesquiterpenos/análise , Lactonas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Óleos Voláteis/análise , Óleos Voláteis/química , Espectrometria de Massas/métodos , Metabolômica/métodos
13.
J Agric Food Chem ; 72(37): 20568-20581, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39241196

RESUMO

Geranylgeraniol (GGOH) is a crucial component in fragrances and essential oils, and a valuable precursor of vitamin E. It is primarily extracted from the oleoresin of Bixa orellana, but is challenged by long plant growth cycles, severe environmental pollution, and low extraction efficiency. Chemically synthesized GGOH typically comprises a mix of isomers, making the separation process both challenging and costly. Advancements in synthetic biology have enabled the construction of microbial cell factories for GGOH production. In this study, Yarrowia lipolytica was engineered to efficiently synthesize GGOH by expressing heterologous phosphatase genes, enhancing precursor supplies of farnesyl diphosphate, geranylgeranyl pyrophosphate, and acetyl-CoA, and downregulating the squalene synthesis pathway by promoter engineering. Additionally, optimizing fermentation conditions and reducing reactive oxygen species significantly increased the GGOH titer to 3346.47 mg/L in a shake flask. To the best of our knowledge, this is the highest reported GGOH titer in shaking flasks to date, setting a new benchmark for terpenoid production.


Assuntos
Diterpenos , Engenharia Metabólica , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Diterpenos/metabolismo , Diterpenos/química , Diterpenos/síntese química , Fosfatos de Poli-Isoprenil/metabolismo , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sesquiterpenos
14.
Org Lett ; 26(38): 8074-8078, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39283305

RESUMO

The first synthesis of chlorine-containing hemiketals, rumphellatins A-C (1-3), previously inaccessible by means of total synthesis, was achieved starting from commercially available (-)-ß-caryophyllene oxide (7). Structures of rumphellatins A (1) and C (3) were revised, while structures of rumphellatin B (2) and intermediate rumphellolide C (19) were confirmed. The study expands availability of exotic norsesquiterpenoids for profiling their biological activity as well as facilitates the elucidation of biosynthetic pathways of their formation.


Assuntos
Sesquiterpenos , Sesquiterpenos/química , Sesquiterpenos/síntese química , Estrutura Molecular , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/síntese química , Halogenação , Estereoisomerismo
15.
J Nat Prod ; 87(9): 2194-2203, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39292978

RESUMO

A chemical investigation of an ethyl acetate-soluble layer in the culture broth of Perenniporia medulla-panis resulted in the isolation of eight novel sesquiterpenes conjugated Gly (1), l-Val (2), l-Ala (3), l-Tyr (4), l-Thr (5), l-Ile (6), l-Leu (7), and l-Phe (8). Elucidation of their structures was performed through comprehensive spectroscopic analysis. The absolute configuration of the sesquiterpene skeleton was ascertained using modified Mosher's methods. The configurations of the amino acid units in compounds 2-8 were identified through acid hydrolysis followed by LC-MS analysis employing Marfey's method. Compounds 1-3 and 5-8 showed significant regulating effect on MAP kinase activity (p-ERK and p-JNK) in human diploid fibroblast (HDF) cells.


Assuntos
Fibroblastos , Sesquiterpenos , Humanos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Estrutura Molecular , Fibroblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
Hum Exp Toxicol ; 43: 9603271241288508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39326406

RESUMO

BACKGROUND: Atractylenolide III (ATL III) is a natural bioactive compound, that possesses anti-inflammatory, antioxidant, and neuroprotective properties. However, whether ATL III can protect against neuronal injury induced by cerebral ischemia/reperfusion (I/R) have not yet been studied. This study aimed to investigate the protective effects of ATL III on neuronal injury using an oxygen-glucose deprivation/reperfusion (OGD/R) model in HT22 cells. METHODS: Establishment of OGD/R model to induce HT22 cell injury in vitro. Cell viability, live-dead cell staining, oxidative stress levels, and pro-inflammatory cytokine levels were detected using kits. Cell apoptosis was observed by flow cytometry, and the expression of Bax, Bcl-2, and Caspase-3 proteins was detected by western blot. RESULTS: ATL III significantly alleviates OGD/R-induced cell injury, as evidenced by the increased cell viability and reduced apoptosis rate. ATL III increased the levels of superoxide dismutase (SOD) and glutathione (GSH), while reducing malondialdehyde (MDA), reactive oxygen species (ROS), and the levels of TNF-α, IL-1ß, and IL-6. The protein expression of Bax and Caspase-3 was downregulated, while Bcl-2 expression was upregulated by ATL III. CONCLUSION: ATL III as a potential therapeutic agent for reducing neuronal injury by mitigating oxidative stress, apoptosis, and inflammation.


Assuntos
Apoptose , Sobrevivência Celular , Glucose , Lactonas , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Sesquiterpenos , Lactonas/farmacologia , Lactonas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Camundongos , Linhagem Celular , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Biomolecules ; 14(9)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39334899

RESUMO

The tricyclic-aromadendrene-type sesquiterpenes are widely distributed and exhibit a range of biological activities, including anti-inflammatory, analgesic, antioxidant, antibacterial, insecticidal and cytotoxic properties. Several key sesquiterpene synthases (STSs) of this type have been identified, of which, viridiflorol synthase has been engineered for efficiently biosynthesizing viridiflorol in an Escherichia coli strain. This paper comprehensively summarizes the distribution and biological activity of aromadendrene-type sesquiterpenes in plant essential oils and microorganisms. The progress in aromadendrene-type sesquiterpene biosynthesis research, including the modifications of key STSs and the optimization of synthetic pathways, is reviewed. Finally, the prospects and associated challenges for the application and biosynthesis of these natural products are also discussed.


Assuntos
Sesquiterpenos , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Antibacterianos/química , Animais
18.
Biomolecules ; 14(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39334908

RESUMO

Nasopharyngeal carcinoma (NPC) is closely linked to Epstein-Barr virus (EBV) infection. Curcumae Rhizoma, a traditional Chinese herb, has shown antitumor effects, primarily through its component curcumol (Cur), which has been shown to reduce NPC cell invasion and migration by targeting nucleolin (NCL) and Epstein-Barr Virus Nuclear Antigen 1 (EBNA1). We constructed an EBV-positive NPC cell model using C666-1 cells and performed transcriptomics studies after treatment with curcumol, which revealed a significant enrichment of ubiquitin-mediated proteolysis, the PI3K-AKT and mTOR signaling pathways, cell cycle and apoptosis involved in tumor invasion and migration. To investigate the importance of NCL and EBNA1 in curcumol-resistant EBV-positive NPC, we performed a multi-omics study using short hairpin NCL (shNCL) and shEBNA1 EBV-positive NPC cells, and the proteomics results showed enrichment in complement and coagulation cascades and ubiquitin-mediated proteolysis signaling pathways. Here, we focused on ubiquitin-conjugating enzyme E2C (UBE2C), which plays an important role in the ubiquitin-mediated proteolysis signaling pathway. In addition, metabolomics revealed that UBE2C is highly associated with 4-Aminobutanoic acid (GABA). In vitro studies further validated the function of the key targets, suggesting that UBE2C plays an important role in NCL and EBNA1-mediated curcumol resistance to nasopharyngeal carcinoma invasion and metastasis.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Nucleolina , Fosfoproteínas , Sesquiterpenos , Enzimas de Conjugação de Ubiquitina , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/virologia , Carcinoma Nasofaríngeo/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/genética , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Invasividade Neoplásica , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteômica , Metástase Neoplásica/prevenção & controle , Regulação para Cima/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Multiômica
19.
Biomolecules ; 14(9)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39334934

RESUMO

The freshwater planarian is an emerging animal model in neuroscience due to its centralized nervous system that closely parallels closely parallels the nervous system of vertebrates. Cocaine, an abused drug, is the 'founding member' of the local anesthetic family. Parthenolide, a sesquiterpene lactone, acts as a behavioral and physiological antagonist of cocaine in planarians and rats, respectively. Previous work from our laboratory showed that both parthenolide and cocaine reduced planarian motility and that parthenolide reversed the cocaine-induced motility decrease at concentrations where parthenolide does not affect the movement of the worms. However, the exact mechanism of the cocaine/parthenolide antagonism is unknown. Here, we report the results of a Schild analysis to explore the parthenolide/cocaine relationship in the planarian Girardia tigrina. The Schild slopes of a family of concentration-response curves of parthenolide ± a single concentration of cocaine and vice versa were -0.55 and -0.36, respectively. These slopes were not statistically different from each other. Interestingly, the slope corresponding to the parthenolide ± cocaine (but not the cocaine ± parthenolide) data set was statistically different from -1. Our data suggest an allosteric relationship between cocaine and parthenolide for their effect on planarian motility. To the best of our knowledge, this is the first study about the mechanism of action of the antagonism between cocaine and parthenolide. Further studies are needed to determine the specific nature of the parthenolide/cocaine target(s) in this organism.


Assuntos
Cocaína , Planárias , Sesquiterpenos , Animais , Planárias/efeitos dos fármacos , Planárias/fisiologia , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Cocaína/farmacologia , Regulação Alostérica/efeitos dos fármacos , Movimento/efeitos dos fármacos
20.
Planta ; 260(4): 95, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271529

RESUMO

MAIN CONCLUSION: New findings are presented for Chaerophyllum coloratum L. on the volatile composition of the essential oil, based on data of hydrosol and fresh plant material, light and electron microscopy of leaves, and cytotoxic and antiviral activity. The widespread Apiaceae family includes many well-known and economically important plants that are cultivated as food or spices. Many produce essential oils and are generally a source of secondary metabolites and compounds that have numerous applications in daily life. In this study, the chemical composition of volatile organic compounds (VOCs), ultrastructure and biological activity of the Mediterranean endemic species Cheaerophyllum coloratum L. are investigated, as literature data for this plant species are generally very scarce. The essential oil and hydrosol were extracted from the air-dried leaves by hydrodistillation and the chemical composition of both extracts was analysed by GC-MS in conjunction with headspace solid-phase microextraction (HS-SPME) of VOCs from the hydrosol and the fresh plant material. In the composition of the essential oil, the oxygenated sesquiterpenes spathulenol and caryophyllene oxide were the most abundant components. In the fresh plant material, non-oxygenated sesquiterpenes dominated, with ß-caryophyllene and germacrene D being the main components. The hydrosol was dominated by monoterpenes, with the oxygenated monoterpene p-cymen-8-ol being the most abundant. Light and electron micrographs of the leaf of C. coloratum show secretory structures, and we hypothesize that glandular leaf trichomes, secretory epidermal cells and secretory canals are involved in the production of volatiles and their secretion on the leaf surface. Since the biological potential of C. coloratum is poorly investigated, we tested its cytotoxic activity on cancer and healthy cell lines and its antiviral activity on plants infected with tobacco mosiac virus (TMV). Our results dealing with the composition, ultrastructure and biological activity show that C. coloratum represent a hidden valuable plant species with a potential for future research.


Assuntos
Óleos Voláteis , Folhas de Planta , Compostos Orgânicos Voláteis , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Antivirais/farmacologia , Microextração em Fase Sólida , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA