Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.003
Filtrar
1.
Genomics ; 116(3): 110856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38734154

RESUMO

Temperature is one of the most important non-genetic sex differentiation factors for fish. The technique of high temperature-induced sex reversal is commonly used in Nile tilapia (Oreochromis niloticus) culture, although the molecular regulatory mechanisms involved in this process remain unclear. The brain is an essential organ for the regulation of neural signals involved in germ cell differentiation and gonad development. To investigate the regulatory roles of miRNAs-mRNAs in the conversion of female to male Nile tilapia gender under high-temperature stress, we compared RNA-Seq data from brain tissues between a control group (28 °C) and a high temperature-treated group (36 °C). The result showed that a total of 123,432,984 miRNA valid reads, 288,202,524 mRNA clean reads, 1128 miRNAs, and 32,918 mRNAs were obtained. Among them, there were 222 significant differentially expressed miRNAs (DE miRNAs) and 810 differentially expressed mRNAs (DE mRNAs) between the two groups. Eight DE miRNAs and eight DE mRNAs were randomly selected, and their expression patterns were validated by qRT-PCR. The miRNA-mRNA co-expression network demonstrated that 40 DE miRNAs targeted 136 protein-coding genes. Functional enrichment analysis demonstrated that these genes were involved in several gonadal differentiation pathways, including the oocyte meiosis signaling pathway, progesterone-mediated oocyte maturation signaling pathway, cell cycle signaling pathway and GnRH signaling pathway. Then, an interaction network was constructed for 8 miRNAs (mir-137-5p, let-7d, mir-1388-5p, mir-124-4-5p, mir-1306, mir-99, mir-130b and mir-21) and 10 mRNAs (smc1al, itpr2, mapk1, ints8, cpeb1b, bub1, fbxo5, mmp14b, cdk1 and hrasb) involved in the oocyte meiosis signaling pathway. These findings provide novel information about the mechanisms underlying miRNA-mediated sex reversal in female Nile tilapia.


Assuntos
Encéfalo , Ciclídeos , MicroRNAs , RNA Mensageiro , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Ciclídeos/crescimento & desenvolvimento , Feminino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Diferenciação Sexual , Masculino , Temperatura Alta , Redes Reguladoras de Genes , Processos de Determinação Sexual
2.
Sci Adv ; 10(22): eadp1532, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820161

RESUMO

Animals have evolved various sex determination systems. Here, we describe a newly found mechanism. A long noncoding RNA (lncRNA) transduces complementary sex determination (CSD) signal in the invasive Argentine ant. In this haplodiploid species, we identified a 5-kilobase hyper-polymorphic region underlying CSD: Heterozygous embryos become females, while homozygous and hemizygous embryos become males. Heterozygosity at the CSD locus correlates with higher expression of ANTSR, a gene that overlaps with the CSD locus and specifies an lncRNA transcript. ANTSR knockdown in CSD heterozygotes leads to male development. Comparative analyses indicated that, in Hymenoptera, ANTSR is an ancient yet rapidly evolving gene. This study reveals an lncRNA involved in genetic sex determination, alongside a previously unknown regulatory mechanism underlying sex determination based on complementarity among noncoding alleles.


Assuntos
Formigas , RNA Longo não Codificante , Processos de Determinação Sexual , Animais , Formigas/genética , Processos de Determinação Sexual/genética , RNA Longo não Codificante/genética , Feminino , Masculino , Alelos
3.
PLoS One ; 19(5): e0304554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820287

RESUMO

Genetic sex-determining mechanisms have been extensively elucidated in mammals; however, the sex chromosomes, sex-determining genes, and gene regulatory networks involved in sex differentiation remain poorly understood in amphibians. In this study, we investigated the sex-determining mechanism in the Hyla eximia treefrog based on karyotypic analysis and identification of H-Y antigen, a sex-linked peptide that is present in the gonads of the heterogametic sex (XY or ZW) in all vertebrates. Results show a diploid chromosome number 2n = 24 with homomorphic sex chromosomes. The heterogametic sex, ZW-female, were hypothesized based on H-Y antigen mRNA expression in female gonads (24,ZZ/24,ZW). The treefrog H-Y peptide exhibited a high percentage of identity with other vertebrate sequences uploaded to GenBank database. To obtain gene expression profiles, we also obtained the coding sequence of the housekeeping Actb gene. High H-Y antigen expression levels were further confirmed in ovaries using real-time polymerase chain reaction (RT-PCR) during non-breeding season, we noted a decrease in the expression of the H-Y antigen during breeding season. This study provides evidence that sex hormones might suppress H-Y antigen expression in the gonads of heterogametic females 24,ZW during the breeding season. These findings suggest that H-Y gene expression is a well-suited model for studying heterogametic sex by comparing the male and female gonads.


Assuntos
Anuros , Processos de Determinação Sexual , Animais , Feminino , Masculino , Processos de Determinação Sexual/genética , Anuros/genética , Ovário/metabolismo , Cromossomos Sexuais/genética , Gônadas/metabolismo , Sequência de Aminoácidos
4.
Sci Adv ; 10(18): eadj6979, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701204

RESUMO

Nature has devised many ways of producing males and females. Here, we report on a previously undescribed mechanism for Lepidoptera that functions without a female-specific gene. The number of alleles or allele heterozygosity in a single Z-linked gene (BaMasc) is the primary sex-determining switch in Bicyclus anynana butterflies. Embryos carrying a single BaMasc allele develop into WZ (or Z0) females, those carrying two distinct alleles develop into ZZ males, while (ZZ) homozygotes initiate female development, have mismatched dosage compensation, and die as embryos. Consequently, selection against homozygotes has favored the evolution of spectacular allelic diversity: 205 different coding sequences of BaMasc were detected in a sample of 246 females. The structural similarity of a hypervariable region (HVR) in BaMasc to the HVR in Apis mellifera csd suggests molecular convergence between deeply diverged insect lineages. Our discovery of this primary switch highlights the fascinating diversity of sex-determining mechanisms and underlying evolutionary drivers.


Assuntos
Borboletas , Processos de Determinação Sexual , Animais , Borboletas/genética , Feminino , Masculino , Processos de Determinação Sexual/genética , Alelos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Homozigoto
5.
Front Endocrinol (Lausanne) ; 15: 1357594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699384

RESUMO

In mammals, gonadal somatic cell lineage differentiation determines the development of the bipotential gonad into either the ovary or testis. Sertoli cells, the only somatic cells in the spermatogenic tubules, support spermatogenesis during gonadal development. During embryonic Sertoli cell lineage differentiation, relevant genes, including WT1, GATA4, SRY, SOX9, AMH, PTGDS, SF1, and DMRT1, are expressed at specific times and in specific locations to ensure the correct differentiation of the embryo toward the male phenotype. The dysregulated development of Sertoli cells leads to gonadal malformations and male fertility disorders. Nevertheless, the molecular pathways underlying the embryonic origin of Sertoli cells remain elusive. By reviewing recent advances in research on embryonic Sertoli cell genesis and its key regulators, this review provides novel insights into sex determination in male mammals as well as the molecular mechanisms underlying the genealogical differentiation of Sertoli cells in the male reproductive ridge.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células de Sertoli , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Masculino , Humanos , Animais , Reprodução/fisiologia , Espermatogênese/fisiologia , Processos de Determinação Sexual/fisiologia
6.
Nat Commun ; 15(1): 3809, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714644

RESUMO

Mammalian sex determination is controlled by antagonistic gene cascades operating in embryonic undifferentiated gonads. The expression of the Y-linked gene SRY is sufficient to trigger the testicular pathway, whereas its absence in XX embryos leads to ovarian differentiation. Yet, the potential involvement of non-coding regulation in this process remains unclear. Here we show that the deletion of a single microRNA cluster, miR-17~92, induces complete primary male-to-female sex reversal in XY mice. Sry expression is delayed in XY knockout gonads, which develop as ovaries. Sertoli cell differentiation is reduced, delayed and unable to sustain testicular development. Pre-supporting cells in mutant gonads undergo a transient state of sex ambiguity which is subsequently resolved towards the ovarian fate. The miR-17~92 predicted target genes are upregulated, affecting the fine regulation of gene networks controlling gonad development. Thus, microRNAs emerge as key components for mammalian sex determination, controlling Sry expression timing and Sertoli cell differentiation.


Assuntos
Diferenciação Celular , MicroRNAs , Ovário , Células de Sertoli , Processos de Determinação Sexual , Proteína da Região Y Determinante do Sexo , Testículo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/citologia , Camundongos , Ovário/metabolismo , Testículo/metabolismo , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Diferenciação Celular/genética , Processos de Determinação Sexual/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Diferenciação Sexual/genética , Transtornos do Desenvolvimento Sexual/genética , Gônadas/metabolismo
7.
Curr Biol ; 34(11): 2359-2372.e9, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38692276

RESUMO

Host reproduction can be manipulated by bacterial symbionts in various ways. Parthenogenesis induction is the most effective type of reproduction manipulation by symbionts for their transmission. Insect sex is determined by regulation of doublesex (dsx) splicing through transformer2 (tra2) and transformer (tra) interaction. Although parthenogenesis induction by symbionts has been studied since the 1970s, its underlying molecular mechanism is unknown. Here we identify a Wolbachia parthenogenesis-induction feminization factor gene (piff) that targets sex-determining genes and causes female-producing parthenogenesis in the haplodiploid parasitoid Encarsia formosa. We found that Wolbachia elimination repressed expression of female-specific dsx and enhanced expression of male-specific dsx, which led to the production of wasp haploid male offspring. Furthermore, we found that E. formosa tra is truncated and non-functional, and Wolbachia has a functional tra homolog, termed piff, with an insect origin. Wolbachia PIFF can colocalize and interact with wasp TRA2. Moreover, Wolbachia piff has coordinated expression with tra2 and dsx of E. formosa. Our results demonstrate the bacterial symbiont Wolbachia has acquired an insect gene to manipulate the host sex determination cascade and induce parthenogenesis in wasps. This study reveals insect-to-bacteria horizontal gene transfer drives the evolution of animal sex determination systems, elucidating a striking mechanism of insect-microbe symbiosis.


Assuntos
Transferência Genética Horizontal , Simbiose , Vespas , Wolbachia , Animais , Wolbachia/fisiologia , Wolbachia/genética , Vespas/fisiologia , Vespas/microbiologia , Vespas/genética , Simbiose/genética , Feminino , Masculino , Partenogênese/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Processos de Determinação Sexual/genética
8.
New Phytol ; 242(6): 2872-2887, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581199

RESUMO

In the Vetrix clade of Salix, a genus of woody flowering plants, sex determination involves chromosome 15, but an XY system has changed to a ZW system. We studied the detailed genetic changes involved. We used genome sequencing, with chromosome conformation capture (Hi-C) and PacBio HiFi reads to assemble chromosome level gap-free X and Y of Salix arbutifolia, and distinguished the haplotypes in the 15X- and 15Y-linked regions, to study the evolutionary history of the sex-linked regions (SLRs). Our sequencing revealed heteromorphism of the X and Y haplotypes of the SLR, with the X-linked region being considerably larger than the corresponding Y region, mainly due to accumulated repetitive sequences and gene duplications. The phylogenies of single-copy orthogroups within the SLRs indicate that S. arbutifolia and Salix purpurea share an ancestral SLR within a repeat-rich region near the chromosome 15 centromere. During the change in heterogamety, the X-linked region changed to a W-linked one, while the Z was derived from the Y.


Assuntos
Cromossomos de Plantas , Filogenia , Salix , Cromossomos de Plantas/genética , Salix/genética , Haplótipos/genética , Evolução Biológica , Evolução Molecular , Loci Gênicos , Processos de Determinação Sexual/genética
9.
Sci Rep ; 14(1): 9407, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688940

RESUMO

The cladoceran crustacean Daphnia exhibits phenotypic plasticity, a phenomenon that leads to diverse phenotypes from one genome. Alternative usage of gene isoforms has been considered a key gene regulation mechanism for controlling different phenotypes. However, to understand the phenotypic plasticity of Daphnia, gene isoforms have not been comprehensively analyzed. Here we identified 25,654 transcripts derived from the 9710 genes expressed during environmental sex determination of Daphnia magna using the long-read RNA-Seq with PacBio Iso-Seq. We found that 14,924 transcripts were previously unidentified and 5713 genes produced two or more isoforms. By a combination of Illumina short-read RNA-Seq, we detected 824 genes that implemented switching of the highest expressed isoform between females and males. Among the 824 genes, we found isoform switching of an ortholog of CREB-regulated transcription coactivator, a major regulator of carbohydrate metabolism in animals, and a correlation of this switching event with the sexually dimorphic expression of carbohydrate metabolic genes. These results suggest that a comprehensive catalog of isoforms may lead to understanding the molecular basis for environmental sex determination of Daphnia. We also infer the applicability of the full-length isoform analyses to the elucidation of phenotypic plasticity in Daphnia.


Assuntos
Daphnia , Isoformas de Proteínas , Animais , Daphnia/genética , Daphnia/fisiologia , Daphnia/embriologia , Feminino , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processos de Determinação Sexual/genética , Partenogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Embrião não Mamífero/metabolismo , Daphnia magna
10.
Curr Biol ; 34(9): 2002-2010.e3, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38579713

RESUMO

Some organisms have developed a mechanism called environmental sex determination (ESD), which allows environmental cues, rather than sex chromosomes or genes, to determine offspring sex.1,2,3,4 ESD is advantageous to optimize sex ratios according to environmental conditions, enhancing reproductive success.5,6 However, the process by which organisms perceive and translate diverse environmental signals into offspring sex remains unclear. Here, we analyzed the environmental perception mechanism in the crustacean, Daphnia pulex, a seasonal (photoperiodic) ESD arthropod, capable of producing females under long days and males under short days.7,8,9,10 Through breeding experiments, we found that their circadian clock likely contributes to perception of day length. To explore this further, we created a genetically modified daphnid by knocking out the clock gene, period, using genome editing. Knockout disrupted the daphnid's ability to sustain diel vertical migration (DVM) under constant darkness, driven by the circadian clock, and leading them to produce females regardless of day length. Additionally, when exposed to an analog of juvenile hormone (JH), an endocrine factor synthesized in mothers during male production, or subjected to unfavorable conditions of high density and low food availability, these knockout daphnids produced males regardless of day length, like wild-type daphnids. Based on these findings, we propose that recognizing short days via the circadian clock is the initial step in sex determination. This recognition subsequently triggers male production by signaling the endocrine system, specifically via the JH signal. Establishment of a connection between these two processes may be the crucial element in evolution of ESD in Daphnia.


Assuntos
Relógios Circadianos , Daphnia , Fotoperíodo , Processos de Determinação Sexual , Animais , Daphnia/genética , Daphnia/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Feminino , Masculino
11.
Sci Rep ; 14(1): 8867, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632280

RESUMO

Papaya (Carica papaya) is a trioecious species with female, male, and hermaphrodite plants. Given the sex segregation, selecting hermaphroditic plants is vital for orchard establishment due to their greater commercial value. However, selecting hermaphrodite plants through sexing is laborious and costly. Moreover, environmental stressors can exacerbate the issue by potentially inducing abnormal flower development, thus affecting fruit quality. Despite these challenges, the molecular mechanisms governing sex development in papaya remain poorly understood. Thus, this study aimed to identify proteins associated with sex development in female and hermaphrodite flowers of papaya through comparative proteomic analysis. Proteins from flower buds at the early and late developmental stages of three papaya genotypes (UENF-CALIMAN 01, JS12, and Sunrise Solo 72/12) were studied via proteomic analysis via the combination of the shotgun method and nanoESI-HDMSE technology. In buds at an early stage of development, 496 (35.9%) proteins exhibited significantly different abundances between sexes for the SS72/12 genotype, 139 (10%) for the JS12 genotype, and 165 (11.9%) for the UC-01 genotype. At the final stage of development, there were 181 (13.5%) for SS72/12, 113 (8.4%) for JS12, and 125 (9.1%) for UC-01. The large group of differentially accumulated proteins (DAPs) between the sexes was related to metabolism, as shown by the observation of only the proteins that exhibited the same pattern of accumulation in the three genotypes. Specifically, carbohydrate metabolism proteins were up-regulated in hermaphrodite flower buds early in development, while those linked to monosaccharide and amino acid metabolism increased during late development. Enrichment of sporopollenin and phenylpropanoid biosynthesis pathways characterizes hermaphrodite samples across developmental stages, with predicted protein interactions highlighting the crucial role of phenylpropanoids in sporopollenin biosynthesis for pollen wall formation. Most of the DAPs played key roles in pectin, cellulose, and lignin synthesis and were essential for cell wall formation and male flower structure development, notably in the pollen coat. These findings suggest that hermaphrodite flowers require more energy for development, likely due to complex pollen wall formation. Overall, these insights illuminate the molecular mechanisms of papaya floral development, revealing complex regulatory networks and energetic demands in the formation of male reproductive structures.


Assuntos
Biopolímeros , Carica , Carotenoides , Carica/genética , Proteômica , Processos de Determinação Sexual , Flores/genética , Regulação da Expressão Gênica de Plantas
12.
PeerJ ; 12: e17072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525278

RESUMO

Sex determination in chickens at an early embryonic stage has been a longstanding challenge in poultry production due to the unique ZZ:ZW sex chromosome system and various influencing factors. This review has summarized the genes related to the sex differentiation of chicken early embryos (mainly Dmrt1, Sox9, Amh, Cyp19a1, Foxl2, Tle4z1, Jun, Hintw, Ube2i, Spin1z, Hmgcs1, Foxd1, Tox3, Ddx4, cHemgn and Serpinb11 in this article), and has found that these contributions enhance our understanding of the genetic basis of sex determination in chickens, while identifying potential gene targets for future research. This knowledge may inform and guide the development of sex screening technologies for hatching eggs and support advancements in gene-editing approaches for chicken embryos. Moreover, these insights offer hope for enhancing animal welfare and promoting conservation efforts in poultry production.


Assuntos
Galinhas , Diferenciação Sexual , Embrião de Galinha , Animais , Galinhas/genética , Diferenciação Sexual/genética , Processos de Determinação Sexual/genética , Cromossomos Sexuais
13.
PLoS Genet ; 20(3): e1011210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536778

RESUMO

Sex is determined by multiple factors derived from somatic and germ cells in vertebrates. We have identified amhy, dmrt1, gsdf as male and foxl2, foxl3, cyp19a1a as female sex determination pathway genes in Nile tilapia. However, the relationship among these genes is largely unclear. Here, we found that the gonads of dmrt1;cyp19a1a double mutants developed as ovaries or underdeveloped testes with no germ cells irrespective of their genetic sex. In addition, the gonads of dmrt1;cyp19a1a;cyp19a1b triple mutants still developed as ovaries. The gonads of foxl3;cyp19a1a double mutants developed as testes, while the gonads of dmrt1;cyp19a1a;foxl3 triple mutants eventually developed as ovaries. In contrast, the gonads of amhy;cyp19a1a, gsdf;cyp19a1a, amhy;foxl2, gsdf;foxl2 double and amhy;cyp19a1a;cyp19a1b, gsdf;cyp19a1a;cyp19a1b triple mutants developed as testes with spermatogenesis via up-regulation of dmrt1 in both somatic and germ cells. The gonads of amhy;foxl3 and gsdf;foxl3 double mutants developed as ovaries but with germ cells in spermatogenesis due to up-regulation of dmrt1. Taking the respective ovary and underdeveloped testis of dmrt1;foxl3 and dmrt1;foxl2 double mutants reported previously into consideration, we demonstrated that once dmrt1 mutated, the gonad could not be rescued to functional testis by mutating any female pathway gene. The sex reversal caused by mutation of male pathway genes other than dmrt1, including its upstream amhy and downstream gsdf, could be rescued by mutating female pathway gene. Overall, our data suggested that dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia.


Assuntos
Processos de Determinação Sexual , Tilápia , Animais , Feminino , Masculino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Ovário/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Testículo/metabolismo , Tilápia/genética
14.
J Exp Zool A Ecol Integr Physiol ; 341(5): 597-605, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497303

RESUMO

The prevalence of environmental sex determination (ESD) in squamate reptiles is often overestimated in the literature. This is surprising because we have reliable data demonstrating ESD in only a few species. The documentation of ESD in three species of geckos presented here has significantly increased our knowledge, given that satisfactory evidence for ESD existed in only eight other gecko species. For the first time, we document the occurrence of ESD in the family Sphaerodactylidae. Our finding of unexpected variability in the shapes of reaction norms among geckos highlights that traditional descriptions using parameters such as pivotal temperature, that is, temperature producing a 50:50 sex ratio, are unsatisfactory. For example, the gecko Pachydactylus tigrinus lacks any pivotal temperature and its sex ratios are strongly female-biased across the entire range of viable temperatures. We argue for the effective capture of the relationship between temperature and sex ratio using specific nonlinear models rather than using classical simplistic descriptions and classifications of reaction norms.


Assuntos
Lagartos , Processos de Determinação Sexual , Razão de Masculinidade , Temperatura , Animais , Lagartos/fisiologia , Feminino , Masculino , Processos de Determinação Sexual/fisiologia , Especificidade da Espécie
15.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38466753

RESUMO

Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex-determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting that Chr4R transcriptomics might differ from the rest of the genome. To test this hypothesis, we conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes in the Nadia strain and identified 4 regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brains and livers validated reduced transcripts from Region-2 in somatic cells, but without sex specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. Region-2 lacks protein-coding genes with human orthologs; has zinc finger genes expressed early in zygotic genome activation; has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and a distinct set of repetitive elements. The colocalization of (1) genes silenced in ovaries but not in testes that are (2) expressed in embryos briefly at the onset of zygotic genome activation; (3) maternal-specific genes for translation machinery; (4) maternal-specific spliceosome components; and (5) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a maternal-to-zygotic-transition gene regulatory block.


Assuntos
Cromossomos Sexuais , Peixe-Zebra , Animais , Peixe-Zebra/genética , Feminino , Masculino , Cromossomos Sexuais/genética , Zigoto/metabolismo , Processos de Determinação Sexual/genética , Transcriptoma , Testículo/metabolismo , Perfilação da Expressão Gênica
16.
Science ; 383(6689): eadk5466, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513029

RESUMO

In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution's ability to recurrently use the same genetic "toolkit" to accomplish similar tasks.


Assuntos
Algas Comestíveis , Proteínas HMGB , Laminaria , Phaeophyceae , Cromossomos Sexuais , Processos de Determinação Sexual , Animais , Evolução Biológica , Phaeophyceae/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Cromossomo Y , Proteínas HMGB/genética , Cromossomos de Plantas/genética , Domínios HMG-Box , Algas Comestíveis/genética , Laminaria/genética , Pólen/genética
17.
Gen Comp Endocrinol ; 351: 114482, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432348

RESUMO

In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17ß (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.


Assuntos
Perciformes , Processos de Determinação Sexual , Animais , Feminino , Masculino , Maturidade Sexual , Gônadas/metabolismo , Perciformes/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Peixes/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Encéfalo/metabolismo , Expressão Gênica
18.
PLoS One ; 19(3): e0299900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427681

RESUMO

Eusocial insects such as termites, ants, bees, and wasps exhibit a reproductive division of labor. The developmental regulation of reproductive organ (ovaries and testes) is crucial for distinguishing between reproductive and sterile castes. The development of reproductive organ in insects is regulated by sex-determination pathways. The sex determination gene Doublesex (Dsx), encoding transcription factors, plays an important role in this pathway. Therefore, clarifying the function of Dsx in the developmental regulation of sexual traits is important to understand the social evolution of eusocial insects. However, no studies have reported the function of Dsx in hemimetabolous eusocial group termites. In this study, we searched for binding sites and candidate target genes of Dsx in species with available genome information as the first step in clarifying the function of Dsx in termites. First, we focused on the Reticulitermes speratus genome and identified 101 candidate target genes of Dsx. Using a similar method, we obtained 112, 39, and 76 candidate Dsx target genes in Reticulitermes lucifugus, Coptotermes formosanus, and Macrotermes natalensis, respectively. Second, we compared the candidate Dsx target genes between species and identified 37 common genes between R. speratus and R. lucifugus. These included several genes probably involved in spermatogenesis and longevity. However, only a few common target genes were identified between R. speratus and the other two species. Finally, Dsx dsRNA injection resulted in the differential expression of several target genes, including piwi-like protein and B-box type zinc finger protein ncl-1 in R. speratus. These results provide valuable resource data for future functional analyses of Dsx in termites.


Assuntos
Formigas , Isópteros , Masculino , Animais , Isópteros/genética , Isópteros/metabolismo , Processos de Determinação Sexual/genética
19.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339020

RESUMO

The mechanism of fish gonadal sex differentiation is complex and regulated by multiple factors. It has been widely known that proper steroidogenesis in Leydig cells and sex-related genes in Sertoli cells play important roles in gonadal sex differentiation. In teleosts, the precise interaction of these signals during the sexual fate determination remains elusive, especially their effect on the bi-potential gonad during the critical stage of sexual fate determination. Recently, all-testis phenotypes have been observed in the cyp17a1-deficient zebrafish and common carp, as well as in cyp19a1a-deficient zebrafish. By mating cyp17a1-deficient fish with transgenic zebrafish Tg(piwil1:EGFP-nanos3UTR), germ cells in the gonads were labelled with enhanced green fluorescent protein (EGFP). We classified the cyp17a1-deficient zebrafish and their control siblings into primordial germ cell (PGC)-rich and -less groups according to the fluorescence area of the EGFP labelling. Intriguingly, the EGFP-labelled bi-potential gonads in cyp17a1+/+ fish from the PGC-rich group were significantly larger than those of the cyp17a1-/- fish at 23 days post-fertilization (dpf). Based on the transcriptome analysis, we observed that the cyp17a1-deficient fish of the PGC-rich group displayed a significantly upregulated expression of amh and gsdf compared to that of control fish. Likewise, the upregulated expressions of amh and gsdf were observed in cyp19a1a-deficient fish as examined at 23 dpf. This upregulation of amh and gsdf could be repressed by treatment with an exogenous supplement of estradiol. Moreover, tamoxifen, an effective antagonist of both estrogen receptor α and ß (ERα and Erß), upregulates the expression of amh and gsdf in wild-type (WT) fish. Using the cyp17a1- and cyp19a1a-deficient zebrafish, we provide evidence to show that the upregulated expression of amh and gsdf due to the compromised estrogen signaling probably determines their sexual fate towards testis differentiation. Collectively, our data suggest that estrogen signaling inhibits the expression of amh and gsdf during the critical time of sexual fate determination, which may broaden the scope of sex steroid hormones in regulating gonadal sex differentiation in fish.


Assuntos
Hormônios Peptídicos , Processos de Determinação Sexual , Peixe-Zebra , Animais , Feminino , Masculino , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Estrogênios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Ovário/metabolismo , Hormônios Peptídicos/genética , Testículo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Biol Reprod ; 110(5): 985-999, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38376238

RESUMO

Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development. In the B6.YTIR mouse, carrying the YTIR-chromosome on the B6 genetic background, Sry is expressed in a comparable manner with that in the B6.XY mouse, yet, only ovaries or ovotestes develop. We asked how testicular and ovarian differentiation pathways interact to determine the gonadal sex in the B6.YTIR mouse. Our results showed that (1) transcript levels of Sox9 were much lower than in B6.XY gonads while those of Rspo1 and Runx1 were as high as B6.XX gonads at 11.5 and 12.5 days postcoitum. (2) FOXL2-positive cells appeared in mosaic with SOX9-positive cells at 12.5 days postcoitum. (3) SOX9-positive cells formed testis cords in the central area while those disappeared to leave only FOXL2-positive cells in the poles or the entire area at 13.5 days postcoitum. (4) No difference was found at transcript levels of all genes between the left and right gonads up to 12.5 days postcoitum, although ovotestes developed much more frequently on the left than the right at 13.5 days postcoitum. These results suggest that inefficient Sox9 upregulation and the absence of Rspo1 repression prevent testicular differentiation in the B6.YTIR gonad.


Assuntos
Fatores de Transcrição SOX9 , Processos de Determinação Sexual , Testículo , Trombospondinas , Regulação para Cima , Animais , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Masculino , Feminino , Camundongos , Trombospondinas/genética , Trombospondinas/metabolismo , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Testículo/metabolismo , Gônadas/metabolismo , Ovário/metabolismo , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Sexual/genética , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...