Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.663
Filtrar
1.
Elife ; 122024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829367

RESUMO

After exocytosis, release sites are cleared of vesicular residues to replenish with transmitter-filled vesicles. Endocytic and scaffold proteins are thought to underlie this site-clearance mechanism. However, the physiological significance of this mechanism at diverse mammalian central synapses remains unknown. Here, we tested this in a physiologically optimized condition using action potential evoked EPSCs at fast calyx synapse and relatively slow hippocampal CA1 synapse, in post-hearing mice brain slices at 37°C and in 1.3 mM [Ca2+]. Pharmacological block of endocytosis enhanced synaptic depression at the calyx synapse, whereas it attenuated synaptic facilitation at the hippocampal synapse. Block of scaffold protein activity likewise enhanced synaptic depression at the calyx but had no effect at the hippocampal synapse. At the fast calyx synapse, block of endocytosis or scaffold protein activity significantly enhanced synaptic depression as early as 10 ms after the stimulation onset. Unlike previous reports, neither endocytic blockers nor scaffold protein inhibitors prolonged the recovery from short-term depression. We conclude that the release-site clearance by endocytosis can be a universal phenomenon supporting vesicle replenishment at both fast and slow synapses, whereas the presynaptic scaffold mechanism likely plays a specialized role in vesicle replenishment predominantly at fast synapses.


Assuntos
Endocitose , Vesículas Sinápticas , Endocitose/fisiologia , Animais , Camundongos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Sinapses/fisiologia , Hipocampo/fisiologia , Exocitose , Região CA1 Hipocampal/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(24): e2320064121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833477

RESUMO

Synapse maintenance is essential for generating functional circuitry, and decrement in this process is a hallmark of neurodegenerative disease. Yet, little is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single-nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in the CSPα KO brain. Significantly, all neuronal classes in CSPα KO brains show strong signatures of repression in synaptic pathways, while up-regulating autophagy-related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. Glial responses varied by cell type, with microglia exhibiting activation. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, with the classical Neurexin1-Neuroligin 1 pair being the most prominent, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice to preserve synapse maintenance. Together, this study provides a rich dataset of transcriptional changes in the CSPα KO cortex and reveals insights into synapse maintenance and neurodegeneration.


Assuntos
Proteínas de Choque Térmico HSP40 , Proteínas de Membrana , Camundongos Knockout , Neurônios , Sinapses , Transcriptoma , Animais , Sinapses/metabolismo , Camundongos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Neurônios/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Neuroglia/metabolismo
3.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38842573

RESUMO

Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Complexos Endossomais de Distribuição Requeridos para Transporte , Vesículas Extracelulares , Neurônios Motores , Transdução de Sinais , Sinapses , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Vesículas Extracelulares/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Sinapses/metabolismo , Neurônios Motores/metabolismo , Autofagia , Sinaptotagminas/metabolismo , Sinaptotagminas/genética , Neuroglia/metabolismo
4.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839340

RESUMO

A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.


Assuntos
Receptores de AMPA , Sinapses , Receptores de AMPA/metabolismo , Receptores de AMPA/química , Sinapses/metabolismo , Sinapses/ultraestrutura , Animais , Humanos , Transmissão Sináptica/fisiologia , Nanoestruturas/química
5.
Methods Mol Biol ; 2799: 139-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727906

RESUMO

Epilepsy is one of the most represented neurological diseases worldwide. However, in many cases, the precise molecular mechanisms of epileptogenesis and ictiogenesis are unknown. Because of their important role in synaptic function and neuronal excitability, NMDA receptors are implicated in various epileptogenic mechanisms. Most of these are subunit specific and require a precise analysis of the subunit composition of the NMDARs implicated. Here, we describe an express electrophysiological method to analyze the contribution of NMDAR subunits to spontaneous postsynaptic activity in identified cells in brain slices using patch clamp whole cell recordings.


Assuntos
Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato , Sinapses , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Técnicas de Patch-Clamp/métodos , Sinapses/metabolismo , Sinapses/fisiologia , Encéfalo/metabolismo , Encéfalo/citologia , Neurônios/metabolismo , Camundongos , Ratos , Subunidades Proteicas/metabolismo
6.
Elife ; 122024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727712

RESUMO

Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.


Assuntos
Hipocampo , Sinapses , Vesículas Sinápticas , Animais , Hipocampo/fisiologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Ratos , Exocitose , Terminações Pré-Sinápticas/fisiologia
7.
Cereb Cortex ; 34(13): 161-171, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696595

RESUMO

Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.


Assuntos
Córtex Pré-Frontal Dorsolateral , Proteômica , Humanos , Criança , Masculino , Feminino , Adulto , Córtex Pré-Frontal Dorsolateral/metabolismo , Pré-Escolar , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Sinapses/metabolismo , Adolescente , Adulto Jovem , Transtorno Autístico/metabolismo , Transtorno Autístico/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Sinaptossomos/metabolismo , Córtex Pré-Frontal/metabolismo , Densidade Pós-Sináptica/metabolismo
8.
Cereb Cortex ; 34(13): 121-128, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696601

RESUMO

Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.


Assuntos
Proteínas de Membrana , Córtex Pré-Frontal , Sinapses , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Humanos , Masculino , Feminino , Sinapses/patologia , Sinapses/metabolismo , Adulto , Pessoa de Meia-Idade , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Adulto Jovem , Adolescente , Criança , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Inibição Neural/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
9.
Front Neural Circuits ; 18: 1358570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715983

RESUMO

A morphologically present but non-functioning synapse is termed a silent synapse. Silent synapses are categorized into "postsynaptically silent synapses," where AMPA receptors are either absent or non-functional, and "presynaptically silent synapses," where neurotransmitters cannot be released from nerve terminals. The presence of presynaptically silent synapses remains enigmatic, and their physiological significance is highly intriguing. In this study, we examined the distribution and developmental changes of presynaptically active and silent synapses in individual neurons. Our findings show a gradual increase in the number of excitatory synapses, along with a corresponding decrease in the percentage of presynaptically silent synapses during neuronal development. To pinpoint the distribution of presynaptically active and silent synapses, i.e., their positional information, we employed Sholl analysis. Our results indicate that the distribution of presynaptically silent synapses within a single neuron does not exhibit a distinct pattern during synapse development in different distance from the cell body. However, irrespective of neuronal development, the proportion of presynaptically silent synapses tends to rise as the projection site moves farther from the cell body, suggesting that synapses near the cell body may exhibit higher synaptic transmission efficiency. This study represents the first observation of changes in the distribution of presynaptically active and silent synapses within a single neuron.


Assuntos
Hipocampo , Neurônios , Sinapses , Animais , Hipocampo/citologia , Hipocampo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Células Cultivadas , Terminações Pré-Sinápticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ratos , Transmissão Sináptica/fisiologia
10.
Methods Cell Biol ; 187: 139-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705623

RESUMO

Array tomography (AT) allows one to localize sub-cellular components within the structural context of cells in 3D through the imaging of serial sections. Using this technique, the z-resolution can be improved physically by cutting ultra-thin sections. Nevertheless, conventional immunofluorescence staining of those sections is time consuming and requires relatively large amounts of costly antibody solutions. Moreover, epitopes are only readily accessible at the section's surface, leaving the volume of the serial sections unlabeled. Localization of receptors at neuronal synapses in 3D in their native cellular ultrastructural context is important for understanding signaling processes. Here, we present in vivo labeling of receptors via fluorophore-coupled tags in combination with super-resolution AT. We present two workflows where we label receptors at the plasma membrane: first, in vivo labeling via microinjection with a setup consisting of readily available components and self-manufactured microscope table equipment and second, live receptor labeling by using a cell-permeable tag. To take advantage of a near-to-native preservation of tissues for subsequent scanning electron microscopy (SEM), we also apply high-pressure freezing and freeze substitution. The advantages and disadvantages of our workflows are discussed.


Assuntos
Sinapses , Tomografia , Animais , Sinapses/metabolismo , Sinapses/ultraestrutura , Tomografia/métodos , Imageamento Tridimensional/métodos , Coloração e Rotulagem/métodos , Camundongos , Microscopia Eletrônica de Varredura/métodos , Corantes Fluorescentes/química , Microinjeções/métodos , Neurônios/metabolismo , Ratos
11.
Methods Cell Biol ; 187: 57-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705630

RESUMO

Correlative light and electron microscopy (CLEM) can provide valuable information about a biological sample by giving information on the specific localization of a molecule of interest within an ultrastructural context. In this work, we describe a simple CLEM method to obtain high-resolution images of neurotransmitter receptor distribution in synapses by electron microscopy (EM). We use hippocampal organotypic slices from a previously reported mouse model expressing a modified AMPA receptor (AMPAR) subunit that binds biotin at the surface (Getz et al., 2022). This tag can be recognized by StreptAvidin-Fluoronanogold™ conjugates (SA-FNG), which reach receptors at synapses (synaptic cleft is 50-100nm thick). By using pre-embedding labeling, we found that SA-FNG reliably bind synaptic receptors and penetrate around 10-15µm in depth in live tissue. However, the silver enhancement was only reaching the surface of the slices. We show that permeabilization with triton is highly effective at increasing the in depth-gold amplification and that the membrane integrity is well preserved. Finally, we also apply high-resolution electron tomography, thus providing important information about the 3D organization of surface AMPA receptors in synapses at the nanoscale.


Assuntos
Hipocampo , Receptores de AMPA , Sinapses , Animais , Camundongos , Hipocampo/metabolismo , Hipocampo/citologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteínas de Membrana/metabolismo , Ouro/química , Microscopia Eletrônica/métodos , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo
12.
Int J Neural Syst ; 34(6): 2450028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706265

RESUMO

Spiking neural membrane systems (or spiking neural P systems, SNP systems) are a new type of computation model which have attracted the attention of plentiful scholars for parallelism, time encoding, interpretability and extensibility. The original SNP systems only consider the time delay caused by the execution of rules within neurons, but not caused by the transmission of spikes via synapses between neurons and its adaptive adjustment. In view of the importance of time delay for SNP systems, which are a time encoding computation model, this study proposes SNP systems with adaptive synaptic time delay (ADSNP systems) based on the dynamic regulation mechanism of synaptic transmission delay in neural systems. In ADSNP systems, besides neurons, astrocytes that can generate adenosine triphosphate (ATP) are introduced. After receiving spikes, astrocytes convert spikes into ATP and send ATP to the synapses controlled by them to change the synaptic time delays. The Turing universality of ADSNP systems in number generating and accepting modes is proved. In addition, a small universal ADSNP system using 93 neurons and astrocytes is given. The superiority of the ADSNP system is demonstrated by comparison with the six variants. Finally, an ADSNP system is constructed for credit card fraud detection, which verifies the feasibility of the ADSNP system for solving real-world problems. By considering the adaptive synaptic delay, ADSNP systems better restore the process of information transmission in biological neural networks, and enhance the adaptability of SNP systems, making the control of time more accurate.


Assuntos
Astrócitos , Modelos Neurológicos , Redes Neurais de Computação , Neurônios , Sinapses , Transmissão Sináptica , Sinapses/fisiologia , Astrócitos/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/metabolismo , Fatores de Tempo , Humanos
13.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695719

RESUMO

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Assuntos
Microglia , Receptores de GABA-A , Sono de Ondas Lentas , Sinapses , Fator de Necrose Tumoral alfa , Animais , Masculino , Camundongos , Consolidação da Memória , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Transdução de Sinais , Sono/fisiologia , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Phys Rev E ; 109(4-1): 044404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755896

RESUMO

Statistically inferred neuronal connections from observed spike train data are often skewed from ground truth by factors such as model mismatch, unobserved neurons, and limited data. Spike train covariances, sometimes referred to as "functional connections," are often used as a proxy for the connections between pairs of neurons, but reflect statistical relationships between neurons, not anatomical connections. Moreover, covariances are not causal: spiking activity is correlated in both the past and the future, whereas neurons respond only to synaptic inputs in the past. Connections inferred by maximum likelihood inference, however, can be constrained to be causal. However, we show in this work that the inferred connections in spontaneously active networks modeled by stochastic leaky integrate-and-fire networks strongly correlate with the covariances between neurons, and may reflect noncausal relationships, when many neurons are unobserved or when neurons are weakly coupled. This phenomenon occurs across different network structures, including random networks and balanced excitatory-inhibitory networks. We use a combination of simulations and a mean-field analysis with fluctuation corrections to elucidate the relationships between spike train covariances, inferred synaptic filters, and ground-truth connections in partially observed networks.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Rede Nervosa , Neurônios , Neurônios/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/citologia , Sinapses/fisiologia , Processos Estocásticos
15.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745307

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Assuntos
Encefalomielite Autoimune Experimental , Interleucina-9 , Camundongos Endogâmicos C57BL , Microglia , Sinapses , Fator de Necrose Tumoral alfa , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Camundongos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Interleucina-9/metabolismo , Feminino , Fator de Necrose Tumoral alfa/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças
16.
Hear Res ; 447: 109022, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705005

RESUMO

The disruption of ribbon synapses in the cochlea impairs the transmission of auditory signals from the cochlear sensory receptor cells to the auditory cortex. Although cisplatin-induced loss of ribbon synapses is well-documented, and studies have reported nitration of cochlear proteins after cisplatin treatment, yet the underlying mechanism of cochlear synaptopathy is not fully understood. This study tests the hypothesis that cisplatin treatment alters the abundance of cochlear synaptosomal proteins, and selective targeting of nitrative stress prevents the associated synaptic dysfunction. Auditory brainstem responses of mice treated with cisplatin showed a reduction in amplitude and an increase in latency of wave I, indicating cisplatin-induced synaptic dysfunction. The mass spectrometry analysis of cochlear synaptosomal proteins identified 102 proteins that decreased in abundance and 249 that increased in abundance after cisplatin treatment. Pathway analysis suggested that the dysregulated proteins were involved in calcium binding, calcium ion regulation, synapses, and endocytosis pathways. Inhibition of nitrative stress by co-treatment with MnTBAP, a peroxynitrite scavenger, attenuated cisplatin-induced changes in the abundance of 27 proteins. Furthermore, MnTBAP co-treatment prevented the cisplatin-induced decrease in the amplitude and increase in the latency of wave I. Together, these findings suggest a potential role of oxidative/nitrative stress in cisplatin-induced cochlear synaptic dysfunction.


Assuntos
Cisplatino , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico , Proteômica , Sinapses , Sinaptossomos , Cisplatino/toxicidade , Cisplatino/farmacologia , Animais , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Cóclea/patologia , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Sinaptossomos/metabolismo , Sinaptossomos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos CBA , Masculino , Ototoxicidade/metabolismo , Ototoxicidade/fisiopatologia , Camundongos
17.
PLoS Comput Biol ; 20(5): e1012110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743789

RESUMO

Filopodia are thin synaptic protrusions that have been long known to play an important role in early development. Recently, they have been found to be more abundant in the adult cortex than previously thought, and more plastic than spines (button-shaped mature synapses). Inspired by these findings, we introduce a new model of synaptic plasticity that jointly describes learning of filopodia and spines. The model assumes that filopodia exhibit strongly competitive learning dynamics -similarly to additive spike-timing-dependent plasticity (STDP). At the same time it proposes that, if filopodia undergo sufficient potentiation, they consolidate into spines. Spines follow weakly competitive learning, classically associated with multiplicative, soft-bounded models of STDP. This makes spines more stable and sensitive to the fine structure of input correlations. We show that our learning rule has a selectivity comparable to additive STDP and captures input correlations as well as multiplicative models of STDP. We also show how it can protect previously formed memories and perform synaptic consolidation. Overall, our results can be seen as a phenomenological description of how filopodia and spines could cooperate to overcome the individual difficulties faced by strong and weak competition mechanisms.


Assuntos
Espinhas Dendríticas , Aprendizagem , Modelos Neurológicos , Plasticidade Neuronal , Pseudópodes , Pseudópodes/fisiologia , Plasticidade Neuronal/fisiologia , Espinhas Dendríticas/fisiologia , Aprendizagem/fisiologia , Animais , Humanos , Biologia Computacional , Sinapses/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia
18.
Mol Pain ; 20: 17448069241258110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38744422

RESUMO

Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.


Assuntos
Adenilil Ciclases , Colforsina , Giro do Cíngulo , Potenciação de Longa Duração , Animais , Camundongos , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Colforsina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Masculino , Receptores de AMPA/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Cálcio/metabolismo
19.
ACS Nano ; 18(20): 13277-13285, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728175

RESUMO

Synapses in the brain utilize two distinct communication mechanisms: chemical and electrical. For a comprehensive investigation of neural circuitry, neural interfaces should be capable of both monitoring and stimulating these types of physiological interactions. However, previously developed interfaces for neurotransmitter monitoring have been limited in interaction modality due to constraints in device size, fabrication techniques, and the usage of flexible materials. To address this obstacle, we propose a multifunctional and flexible fiber probe fabricated through the microwire codrawing thermal drawing process, which enables the high-density integration of functional components with various materials such as polymers, metals, and carbon fibers. The fiber enables real-time monitoring of transient dopamine release in vivo, real-time stimulation of cell-specific neuronal populations via optogenetic stimulation, single-unit electrophysiology of individual neurons localized to the tip of the neural probe, and chemical stimulation via drug delivery. This fiber will improve the accessibility and functionality of bidirectional interrogation of neurochemical mechanisms in implantable neural probes.


Assuntos
Encéfalo , Neurônios , Sinapses , Animais , Encéfalo/metabolismo , Sinapses/metabolismo , Sinapses/química , Neurônios/metabolismo , Optogenética , Dopamina/metabolismo , Camundongos , Temperatura
20.
Sci Adv ; 10(21): eadl2882, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781346

RESUMO

Neuromorphic sensors, designed to emulate natural sensory systems, hold the promise of revolutionizing data extraction by facilitating rapid and energy-efficient analysis of extensive datasets. However, a challenge lies in accurately distinguishing specific analytes within mixtures of chemically similar compounds using existing neuromorphic chemical sensors. In this study, we present an artificial olfactory system (AOS), developed through the integration of human olfactory receptors (hORs) and artificial synapses. This AOS is engineered by interfacing an hOR-functionalized extended gate with an organic synaptic device. The AOS generates distinct patterns for odorants and mixtures thereof, at the molecular chain length level, attributed to specific hOR-odorant binding affinities. This approach enables precise pattern recognition via training and inference simulations. These findings establish a foundation for the development of high-performance sensor platforms and artificial sensory systems, which are ideal for applications in wearable and implantable devices.


Assuntos
Odorantes , Receptores Odorantes , Humanos , Receptores Odorantes/metabolismo , Odorantes/análise , Olfato/fisiologia , Sinapses/metabolismo , Reconhecimento Automatizado de Padrão/métodos , Neurônios Receptores Olfatórios/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...