Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.634
Filtrar
1.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38701782

RESUMO

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Assuntos
Epigênese Genética , Bainha de Mielina , Oligodendroglia , Remielinização , Animais , Bainha de Mielina/metabolismo , Humanos , Camundongos , Remielinização/efeitos dos fármacos , Oligodendroglia/metabolismo , Sistema Nervoso Central/metabolismo , Camundongos Endogâmicos C57BL , Rejuvenescimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Organoides/metabolismo , Organoides/efeitos dos fármacos , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/genética , Diferenciação Celular/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Masculino , Regeneração/efeitos dos fármacos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia
2.
Nat Commun ; 15(1): 3883, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719805

RESUMO

The long interspersed nuclear element-1 (LINE-1 or L1) retrotransposon is the only active autonomously replicating retrotransposon in the human genome. L1 harms the cell by inserting new copies, generating DNA damage, and triggering inflammation. Therefore, L1 inhibition could be used to treat many diseases associated with these processes. Previous research has focused on inhibition of the L1 reverse transcriptase due to the prevalence of well-characterized inhibitors of related viral enzymes. Here we present the L1 endonuclease as another target for reducing L1 activity. We characterize structurally diverse small molecule endonuclease inhibitors using computational, biochemical, and biophysical methods. We also show that these inhibitors reduce L1 retrotransposition, L1-induced DNA damage, and inflammation reinforced by L1 in senescent cells. These inhibitors could be used for further pharmacological development and as tools to better understand the life cycle of this element and its impact on disease processes.


Assuntos
Endonucleases , Elementos Nucleotídeos Longos e Dispersos , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Endonucleases/metabolismo , Endonucleases/genética , Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Dano ao DNA , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Senescência Celular/efeitos dos fármacos , Desoxirribonuclease I
3.
Protein Sci ; 33(6): e5007, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723187

RESUMO

The identification of an effective inhibitor is an important starting step in drug development. Unfortunately, many issues such as the characterization of protein binding sites, the screening library, materials for assays, etc., make drug screening a difficult proposition. As the size of screening libraries increases, more resources will be inefficiently consumed. Thus, new strategies are needed to preprocess and focus a screening library towards a targeted protein. Herein, we report an ensemble machine learning (ML) model to generate a CDK8-focused screening library. The ensemble model consists of six different algorithms optimized for CDK8 inhibitor classification. The models were trained using a CDK8-specific fragment library along with molecules containing CDK8 activity. The optimized ensemble model processed a commercial library containing 1.6 million molecules. This resulted in a CDK8-focused screening library containing 1,672 molecules, a reduction of more than 99.90%. The CDK8-focused library was then subjected to molecular docking, and 25 candidate compounds were selected. Enzymatic assays confirmed six CDK8 inhibitors, with one compound producing an IC50 value of ≤100 nM. Analysis of the ensemble ML model reveals the role of the CDK8 fragment library during training. Structural analysis of molecules reveals the hit compounds to be structurally novel CDK8 inhibitors. Together, the results highlight a pipeline for curating a focused library for a specific protein target, such as CDK8.


Assuntos
Quinase 8 Dependente de Ciclina , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/química , Quinase 8 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos
4.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727307

RESUMO

Tumor necrosis factor-α-induced protein 8-like 3 (TNFAIP8L3 or TIPE3) functions as a transfer protein for lipid second messengers. TIPE3 is highly upregulated in several human cancers and has been established to significantly promote tumor cell proliferation, migration, and invasion and inhibit the apoptosis of cancer cells. Thus, inhibiting the function of TIPE3 is expected to be an effective strategy against cancer. The advancement of artificial intelligence (AI)-driven drug development has recently invigorated research in anti-cancer drug development. In this work, we incorporated DFCNN, Autodock Vina docking, DeepBindBC, MD, and metadynamics to efficiently identify inhibitors of TIPE3 from a ZINC compound dataset. Six potential candidates were selected for further experimental study to validate their anti-tumor activity. Among these, three small-molecule compounds (K784-8160, E745-0011, and 7238-1516) showed significant anti-tumor activity in vitro, leading to reduced tumor cell viability, proliferation, and migration and enhanced apoptotic tumor cell death. Notably, E745-0011 and 7238-1516 exhibited selective cytotoxicity toward tumor cells with high TIPE3 expression while having little or no effect on normal human cells or tumor cells with low TIPE3 expression. A molecular docking analysis further supported their interactions with TIPE3, highlighting hydrophobic interactions and their shared interaction residues and offering insights for designing more effective inhibitors. Taken together, this work demonstrates the feasibility of incorporating deep learning and MD simulations in virtual drug screening and provides inhibitors with significant potential for anti-cancer drug development against TIPE3-.


Assuntos
Proliferação de Células , Aprendizado Profundo , Peptídeos e Proteínas de Sinalização Intracelular , Simulação de Acoplamento Molecular , Humanos , Proliferação de Células/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
5.
Eur J Med Chem ; 271: 116437, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701712

RESUMO

As a cytosolic enzyme involved in the purine salvage pathway metabolism, purine nucleoside phosphorylase (PNP) plays an important role in a variety of cellular functions but also in immune system, including cell growth, apoptosis and cancer development and progression. Based on its T-cell targeting profile, PNP is a potential target for the treatment of some malignant T-cell proliferative cancers including lymphoma and leukemia, and some specific immunological diseases. Numerous small-molecule PNP inhibitors have been developed so far. However, only Peldesine, Forodesine and Ulodesine have entered clinical trials and exhibited some potential for the treatment of T-cell leukemia and gout. The most recent direction in PNP inhibitor development has been focused on PNP small-molecule inhibitors with better potency, selectivity, and pharmacokinetic property. In this perspective, considering the structure, biological functions, and disease relevance of PNP, we highlight the recent research progress in PNP small-molecule inhibitor development and discuss prospective strategies for designing additional PNP therapeutic agents.


Assuntos
Inibidores Enzimáticos , Purina-Núcleosídeo Fosforilase , Bibliotecas de Moléculas Pequenas , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Purina-Núcleosídeo Fosforilase/metabolismo , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Estrutura Molecular , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Desenvolvimento de Medicamentos
6.
J Hematol Oncol ; 17(1): 30, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711100

RESUMO

As the most common form of epigenetic regulation by RNA, N6 methyladenosine (m6A) modification is closely involved in physiological processes, such as growth and development, stem cell renewal and differentiation, and DNA damage response. Meanwhile, its aberrant expression in cancer tissues promotes the development of malignant tumors, as well as plays important roles in proliferation, metastasis, drug resistance, immunity and prognosis. This close association between m6A and cancers has garnered substantial attention in recent years. An increasing number of small molecules have emerged as potential agents to target m6A regulators for cancer treatment. These molecules target the epigenetic level, enabling precise intervention in RNA modifications and efficiently disrupting the survival mechanisms of tumor cells, thus paving the way for novel approaches in cancer treatment. However, there is currently a lack of a comprehensive review on small molecules targeting m6A regulators for anti-tumor. Here, we have comprehensively summarized the classification and functions of m6A regulators, elucidating their interactions with the proliferation, metastasis, drug resistance, and immune responses in common cancers. Furthermore, we have provided a comprehensive overview on the development, mode of action, pharmacology and structure-activity relationships of small molecules targeting m6A regulators. Our aim is to offer insights for subsequent drug design and optimization, while also providing an outlook on future prospects for small molecule development targeting m6A.


Assuntos
Adenosina , Adenosina/análogos & derivados , Neoplasias , Bibliotecas de Moléculas Pequenas , Humanos , Neoplasias/tratamento farmacológico , Adenosina/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Animais
7.
Yakugaku Zasshi ; 144(5): 539-543, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692930

RESUMO

Researchers collect data and use various methods to organize it. Ensuring the reliability and reproducibility of data is crucial, and collaboration across different research fields is on the rise. However, when there is geographical distance, sharing data becomes a challenging task. Therefore, there is a need for the development of a mechanism for sharing data on the web. We have developed an integrated database to facilitate the sharing and management of research data, particularly focusing on small molecules. The integrated database serves as a platform for centralizing data related to small molecules, including their chemical structures, wet lab experimental data, simulation data, and more. It has been constructed as a web application, offering features such as library management for small molecules, registration and viewing of wet lab experiment results, generation of initial conformations for simulations, and data visualization. This enables researchers to efficiently share their research data and collaborate seamlessly, whether within their research group or via cloud-based access that allows project and team members to connect from anywhere. This integrated database plays a critical role in connecting wet lab experiments and simulations, enabling researchers to cross-reference and analyze experimental data comprehensively. It serves as an essential tool to advance research and foster idea generation.


Assuntos
Bases de Dados Factuais , Disseminação de Informação , Simulação por Computador , Internet , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
8.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731601

RESUMO

Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for developing effective metabolism-based therapies for cancer, particularly in the context of colorectal cancer (CRC). In this regard, the present review explores the complex field of metabolic reprogramming in tumorigenesis and progression, providing insights into the current landscape of small molecule inhibitors targeting tumorigenic metabolic pathways and their implications for CRC treatment.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Glicólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 121(19): e2322934121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701119

RESUMO

EPH receptors (EPHs), the largest family of tyrosine kinases, phosphorylate downstream substrates upon binding of ephrin cell surface-associated ligands. In a large cohort of endometriotic lesions from individuals with endometriosis, we found that EPHA2 and EPHA4 expressions are increased in endometriotic lesions relative to normal eutopic endometrium. Because signaling through EPHs is associated with increased cell migration and invasion, we hypothesized that chemical inhibition of EPHA2/4 could have therapeutic value. We screened DNA-encoded chemical libraries (DECL) to rapidly identify EPHA2/4 kinase inhibitors. Hit compound, CDD-2693, exhibited picomolar/nanomolar kinase activity against EPHA2 (Ki: 4.0 nM) and EPHA4 (Ki: 0.81 nM). Kinome profiling revealed that CDD-2693 bound to most EPH family and SRC family kinases. Using NanoBRET target engagement assays, CDD-2693 had nanomolar activity versus EPHA2 (IC50: 461 nM) and EPHA4 (IC50: 40 nM) but was a micromolar inhibitor of SRC, YES, and FGR. Chemical optimization produced CDD-3167, having picomolar biochemical activity toward EPHA2 (Ki: 0.13 nM) and EPHA4 (Ki: 0.38 nM) with excellent cell-based potency EPHA2 (IC50: 8.0 nM) and EPHA4 (IC50: 2.3 nM). Moreover, CDD-3167 maintained superior off-target cellular selectivity. In 12Z endometriotic epithelial cells, CDD-2693 and CDD-3167 significantly decreased EFNA5 (ligand) induced phosphorylation of EPHA2/4, decreased 12Z cell viability, and decreased IL-1ß-mediated expression of prostaglandin synthase 2 (PTGS2). CDD-2693 and CDD-3167 decreased expansion of primary endometrial epithelial organoids from patients with endometriosis and decreased Ewing's sarcoma viability. Thus, using DECL, we identified potent pan-EPH inhibitors that show specificity and activity in cellular models of endometriosis and cancer.


Assuntos
Inibidores de Proteínas Quinases , Humanos , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Endometriose/tratamento farmacológico , Endometriose/metabolismo , Endometriose/patologia , DNA/metabolismo , Receptores da Família Eph/metabolismo , Receptores da Família Eph/antagonistas & inibidores , Receptor EphA2/metabolismo , Receptor EphA2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Movimento Celular/efeitos dos fármacos
10.
J Chem Inf Model ; 64(9): 3744-3755, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38662925

RESUMO

Generating the three-dimensional (3D) structure of small molecules is crucial in both structure- and ligand-based drug design. Structure-based drug design needs bioactive conformations of compounds for lead identification and optimization. Ligand-based drug design techniques, such as 3D shape similarity search, 3D pharmacophore model, 3D-QSAR, etc., all require high-quality small-molecule ligand conformations to obtain reliable results. Although predicting a small molecular bioactive conformer requires information from the receptor, a crystal structure of the molecule is a proper approximation to its bioactive conformer in a specific receptor because the binding pose of a small molecule in its receptor's binding pockets should be energetically close to the crystal structures. This study presents a de novo small molecular structure predictor (dMXP) with graph attention networks based on crystal data derived from the Cambridge Structural Database (CSD) combined with molecular electrostatic information calculated by density-functional theory (DFT). Two featuring strategies (topological and atomic partial change features) were employed to explore the relation between these features and the 3D crystal structure of a small molecule. These features were then assembled to construct the holistic 3D crystal structure of a molecule. Molecular graphs were encoded using a graph attention mechanism to deal with the issues of the inconsistencies of local substructures contributing to the entire molecular structure. The root-mean-square deviation (RMSDs) of approximately 80% dMXP predicted structures and the native binding poses within receptors are less than 2.0 Å.


Assuntos
Modelos Moleculares , Conformação Molecular , Bibliotecas de Moléculas Pequenas/química , Ligantes , Desenho de Fármacos , Eletricidade Estática , Relação Quantitativa Estrutura-Atividade
11.
mBio ; 15(5): e0063324, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587428

RESUMO

Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE: Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.


Assuntos
Antifúngicos , CDPdiacilglicerol-Serina O-Fosfatidiltransferase , Candida albicans , Inibidores Enzimáticos , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candida albicans/genética , Antifúngicos/farmacologia , Antifúngicos/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Testes de Sensibilidade Microbiana , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Fosfatidilserinas/metabolismo , Furanos , Tiofenos
12.
Bioorg Med Chem ; 105: 117718, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621319

RESUMO

Targeted protein degradation (TPD) has recently emerged as an exciting new drug modality. However, the strategy of developing small molecule-based protein degraders has evolved over the past two decades and has now established molecular tags that are already in clinical use, as well as chimeric molecules, PROteolysis TArgeting Chimeras (PROTACs), based mainly on ligand systems developed for the two E3 ligases CRBN and VHL. The large size of the human E3 ligase family suggests that PROTACs can be developed by targeting a large diversity of E3 ligases, some of which have restricted expression patterns with the potential to design disease- or tissue-specific degraders. Indeed, many new E3 ligands have been published recently, confirming the druggability of E3 ligases. This review summarises recent data on E3 ligases and highlights the challenges in developing these molecules into efficient PROTACs rivalling the established degrader systems.


Assuntos
Proteólise , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Ligantes , Proteólise/efeitos dos fármacos , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Estrutura Molecular
13.
Sci Rep ; 14(1): 8620, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616188

RESUMO

Scientists and researchers have been searching for drugs targeting the main protease (Mpro) of SARS-CoV-2, which is crucial for virus replication. This study employed a virtual screening based on molecular docking to identify benzoylguanidines from an in-house chemical library that can inhibit Mpro on the active site and three allosteric sites. Molecular docking was performed on the LaSMMed Chemical Library using 88 benzoylguanidine compounds. Based on their RMSD values and conserved pose, three potential inhibitors (BZG1, BZG2, and BZG3) were selected. These results indicate that BZG1 and BZG3 may bind to the active site, while BZG2 may bind to allosteric sites. Molecular dynamics data suggest that BZG2 selectively targets allosteric site 3. In vitro tests were performed to measure the proteolytic activity of rMpro. The tests showed that BZG2 has uncompetitive inhibitory activity, with an IC50 value of 77 µM. These findings suggest that benzoylguanidines possess potential as Mpro inhibitors and pave the way towards combating SARS-Cov-2 effectively.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Guanidina , Simulação de Acoplamento Molecular , Guanidinas/farmacologia , Ensaios Enzimáticos , Bibliotecas de Moléculas Pequenas
14.
J Phys Chem B ; 128(16): 3795-3806, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606592

RESUMO

The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.


Assuntos
Lipoilação , Simulação de Dinâmica Molecular , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Humanos , Aciltransferases/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Regulação Alostérica/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição de Domínio TEA/química , Fatores de Transcrição de Domínio TEA/metabolismo , Transativadores/metabolismo , Transativadores/química , Transativadores/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/química , Proteínas de Sinalização YAP/metabolismo
15.
Sci Rep ; 14(1): 7526, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565852

RESUMO

High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Ensaios de Triagem em Larga Escala/métodos , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química
16.
ACS Infect Dis ; 10(5): 1561-1575, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38577994

RESUMO

DNA-encoded chemical library (DEL) technology provides a time- and cost-efficient method to simultaneously screen billions of compounds for their affinity to a protein target of interest. Here we report its use to identify a novel chemical series of inhibitors of the thioesterase activity of polyketide synthase 13 (Pks13) from Mycobacterium tuberculosis (Mtb). We present three chemically distinct series of inhibitors along with their enzymatic and Mtb whole cell potency, the measure of on-target activity in cells, and the crystal structures of inhibitor-enzyme complexes illuminating their interactions with the active site of the enzyme. One of these inhibitors showed a favorable pharmacokinetic profile and demonstrated efficacy in an acute mouse model of tuberculosis (TB) infection. These findings and assay developments will aid in the advancement of TB drug discovery.


Assuntos
Antituberculosos , Inibidores Enzimáticos , Mycobacterium tuberculosis , Bibliotecas de Moléculas Pequenas , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Camundongos , Antituberculosos/farmacologia , Antituberculosos/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Policetídeo Sintases/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Cristalografia por Raios X , Humanos , Modelos Animais de Doenças
17.
Eur J Med Chem ; 271: 116386, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614063

RESUMO

Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aß oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.


Assuntos
Doenças Neurodegenerativas , Inibidores de Fosfodiesterase , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/uso terapêutico , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Estrutura Molecular
18.
Eur J Med Chem ; 271: 116408, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38621327

RESUMO

As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.


Assuntos
Aciltransferases , Lipoilação , Bibliotecas de Moléculas Pequenas , Humanos , Aciltransferases/metabolismo , Aciltransferases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular , Proteínas/metabolismo , Proteínas/química
19.
Eur J Med Chem ; 271: 116404, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38631262

RESUMO

Hearing loss (HL) is a health burden that seriously affects the quality of life of cancer patients receiving platinum-based chemotherapy, and few FDA-approved treatment specifically targets this condition. The main mechanisms that contribute to cisplatin-induced hearing loss are oxidative stress and subsequent cell death, including ferroptosis revealed by us as a new mechanism recently. In this study, we employed the frontier molecular orbital (FMO) theory approach as a convenient prediction method for the glutathione peroxidase (GPx)-like activity of isoselenazolones and discovered new isoselenazolones with great GPx-like activity. Notably, compound 19 exhibited significant protective effects against cisplatin-induced hair cell (HC) damage in vitro and in vivo and effectively reverses cisplatin-induced hearing loss through oral administration. Further investigations revealed that this compound effectively alleviated hair cell oxidative stress, apoptosis and ferroptosis. This research highlights the potential of GPx mimics as a therapeutic strategy against cisplatin-induced hearing loss. The application of quantum chemistry (QC) calculations in the study of GPx mimics sheds light on the development of new, innovative treatments for hearing loss.


Assuntos
Cisplatino , Glutationa Peroxidase , Perda Auditiva , Cisplatino/farmacologia , Glutationa Peroxidase/metabolismo , Animais , Perda Auditiva/tratamento farmacológico , Perda Auditiva/induzido quimicamente , Humanos , Teoria Quântica , Estrutura Molecular , Camundongos , Relação Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Descoberta de Drogas , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos
20.
Eur J Med Chem ; 271: 116396, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643671

RESUMO

Neglected tropical diseases (NTDs) comprise diverse infections with more incidence in tropical/sub-tropical areas. In spite of preventive and therapeutic achievements, NTDs are yet serious threats to the public health. Epidemiological reports of world health organization (WHO) indicate that more than 1.5 billion people are afflicted with at least one NTD type. Among NTDs, leishmaniasis, chagas disease (CD) and human African trypanosomiasis (HAT) result in substantial morbidity and death, particularly within impoverished countries. The statistical facts call for robust efforts to manage the NTDs. Currently, most of the anti-NTD drugs are engaged with drug resistance, lack of efficient vaccines, limited spectrum of pharmacological effect and adverse reactions. To circumvent the issue, numerous scientific efforts have been directed to the synthesis and pharmacological development of chemical compounds as anti-infectious agents. A survey of the anti-NTD agents reveals that the majority of them possess privileged nitrogen, sulfur and oxygen-based heterocyclic structures. In this review, recent achievements in anti-infective small molecules against parasitic NTDs are described, particularly from the SAR (Structure activity relationship) perspective. We also explore current advocating strategies to extend the scope of anti-NTD agents.


Assuntos
Doenças Negligenciadas , Doenças Negligenciadas/tratamento farmacológico , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Doença de Chagas/tratamento farmacológico , Leishmaniose/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Testes de Sensibilidade Parasitária , Medicina Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...