Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.772
Filtrar
1.
Arch Insect Biochem Physiol ; 117(1): e22148, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39250333

RESUMO

Our previous research reported the influence of 50 µM selenium (Se) on the cytosolization (endocytosis) pathway, which in turn stimulates the growth and development of Bombyx mori. Lately, dynamin is recognized as one of the key proteins in endocytosis. To explore the underlying mechanisms of Se impact, the dynamin gene was knocked down by injecting siRNAs (Dynamin-1, Dynamin-2, and Dynamin-3). This was followed by an analysis of the target gene and levels of silk protein genes, as well as growth and developmental indices, Se-enrichment capacity, degree of oxidative damage, and antioxidant capacity of B. mori. Our findings showed a considerable decrease in the relative expression of the dynamin gene in all tissues 24 h after the interference and a dramatic decrease in the silkworm body after 48 h. RNAi dynamin gene decreased the silkworm body weight, cocoon shell weight, and the ratio of cocoon. In the meantime, malondialdehyde level increased and glutathione level and superoxide dismutase/catalase activities decreased. 50 µM Se markedly ameliorated these growth and physiological deficits as well as decreases in dynamin gene expression. On the other hand, there were no significant effects on fertility (including produced eggs and laid eggs) between the interference and Se treatments. Additionally, the Se content in the B. mori increased after the dynamin gene interference. The dynamin gene was highly expressed in the silk gland and declined significantly after interference. Among the three siRNAs (Dynamin-1, Dynamin-2, and Dynamin-3), the dynamin-2 displayed the highest interference effects to target gene expression. Our results demonstrated that 50 µM Se was effective to prevent any adverse effects caused by dynamin knockdown in silkworms. This provides practical implications for B. mori breeding industry.


Assuntos
Bombyx , Dinaminas , Técnicas de Silenciamento de Genes , Selênio , Animais , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Bombyx/efeitos dos fármacos , Selênio/farmacologia , Dinaminas/genética , Dinaminas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Larva/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Feminino , Seda
2.
Sci Rep ; 14(1): 20990, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251726

RESUMO

Lepidopteran silk is a complex mixture of proteins, consisting mainly of fibroins and sericins. Sericins are a small family of highly divergent proteins that serve as adhesives and coatings for silk fibers. So far, five genes encoding sericin proteins have been identified in Bombyx mori. Having previously identified sericin protein 150 (SP150) as a major sericin-like protein in the cocoons of the pyralid moths Galleria mellonella and Ephestia kuehniella, we describe the identification of its homolog in B. mori. Our refined gene model shows that it consists of four exons and a long open reading frame with a conserved motif, CXCXCX, at the C-terminus, reminiscent of the structure observed in a class of mucin proteins. Notably, despite a similar expression pattern, both mRNA and protein levels of B. mori SP150 were significantly lower than those of its pyralid counterpart. We also discuss the synteny of homologous genes on corresponding chromosomes in different moth species and the possible phylogenetic relationships between SP150 and certain mucin-like proteins. Our results improve our understanding of silk structure and the evolutionary relationships between adhesion proteins in the silk of different lepidopteran species.


Assuntos
Bombyx , Filogenia , Sericinas , Bombyx/genética , Bombyx/metabolismo , Animais , Sericinas/metabolismo , Sericinas/genética , Sericinas/química , Sequência de Aminoácidos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Seda/metabolismo , Seda/genética , Seda/química
3.
Pestic Biochem Physiol ; 204: 106111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277412

RESUMO

Bombyx mori is an insect species of great economic importance, and its silk gland is a vital organ for the synthesis and secretion of silk protein. However, long-term artificial domestication of B. mori has resulted in high sensitivity to chemical toxins, especially insecticides. Cyantraniliprole (Cya), a second-generation ryanodine receptor modulator insecticide, is widely utilized in agriculture for pest control. In this study, the impact of Cya toxicity on the development of silk glands in the 5th instar larvae of B. mori was assessed using Cya LC5, LC10 and LC20, as well as a starvation treatment group for comparison. Short-term exposure (24 h) to different concentrations of Cya resulted in delayed development of silk glands in B. mori. Meanwhile, the body weight, silk gland weight, silk gland index and cocoon quality were significantly reduced in a concentration-dependent manner, except for the Cya LC5 treatment. Histopathological and ultrastructural analysis revealed that Cya LC10 induced disruption of the nuclear membrane and endoplasmic reticulum in the posterior silk gland (PSG) cells, leading to the formation of intracellular vacuoles. Transcriptome sequencing of PSGs identified 2152 genes that were differentially expressed after exposure to Cya LC10, with 1153 down-regulated genes and 999 up-regulated genes. All differentially expressed genes were subjected to functional annotation using gene ontology and Kyoto encyclopedia of genes and genomes database, and it was found that protein synthesis-related pathways were significantly enriched, with the majority of genes being down-regulated. Furthermore, the transcription levels of genes involved in "protein processing in endoplasmic reticulum", "protein export", "proteasome" and "DNA replication" were quantified using qRT-PCR. Our findings suggested that short-term exposure to Cya LC10 resulted in disruption of DNA replication, as well as protein transport, processing and hydrolysis in the PSG cells of B. mori. The results of this study provide a theoretical foundation for the safe utilization of Cya in sericulture production.


Assuntos
Bombyx , Inseticidas , Larva , Pirazóis , Transcriptoma , ortoaminobenzoatos , Animais , Bombyx/efeitos dos fármacos , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Transcriptoma/efeitos dos fármacos , ortoaminobenzoatos/toxicidade , Inseticidas/toxicidade , Pirazóis/toxicidade , Larva/efeitos dos fármacos , Larva/genética , Seda , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
4.
ACS Nano ; 18(37): 25778-25794, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39222009

RESUMO

Efforts have been devoted to developing strategies for converting spider silk proteins (spidroins) into functional silk materials. However, studies mimicking the exact natural spinning process of spiders encounter arduous challenges. In this paper, consistent with the natural spinning process of spiders, we report a high-efficient spinning strategy that enables the mass preparation of multifunctional artificial spider silk at different scales. By simulating the structural stability mechanism of the cross-ß-spine of the amyloid polypeptide by computer dynamics, we designed and obtained an artificial amyloid spidroin with a significantly increased yield (13.5 g/L). Using the obtained artificial amyloid spidroin, we fabricated artificial spiders with artificial spinning glands (hollow MNs). Notably, by combining artificial spiders with 3D printing, we perform patterned air spinning at the macro- and microscales, and the resulting patterned artificial spider silk has excellent pump-free liquid flow and conductive and frictional electrical properties. Based on these findings, we used macroscale artificial spider silk to treat rheumatoid arthritis in mice and micro artificial spider silk to prepare wound dressings for diabetic mice. We believe that artificial spider silk based on an exact spinning strategy will provide a high-efficient way to construct and modulate the next generation of smart materials.


Assuntos
Fibroínas , Aranhas , Animais , Fibroínas/química , Aranhas/química , Camundongos , Agulhas , Impressão Tridimensional , Seda/química , Ar
5.
Int J Nanomedicine ; 19: 8485-8499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39185343

RESUMO

Introduction: With the development of technology, personal heat management has become a focus of attention. Phase change fabrics, as intelligent materials, are expected to be widely used in multiple fields, bringing comfortable, intelligent and convenient living experience. Methods: In this study, miniature phase change microcapsules (MPCM) with n-octadecane as core and poly(methyl methacrylate) as shell were successfully prepared. Using the in-situ reduction property of polydopamine, gold nanoparticles were deposited on the surface of the microcapsules, which retained the heat storage function and imparted photothermal and antibacterial properties. The MPCM with photothermal conversion function was modified on the surface of silk fabric using aqueous polyurethane after verified by comprehensive material characterisation techniques. Results: Under the near infrared light of 808 nm wavelength and 0.134 W/cm² irradiation intensity, the MPCM@PDA@Au modified silk fabrics showed excellent photothermal conversion performance, which could be increased from 25°C to 60°C in 50s. After the light source was cut off, the fabrics showed good heat release ability, with melting enthalpy and crystallisation enthalpy reaching 41.58 J/g and 43.3 J/g, respectively, which were not changed after repeated cycles. After the light source is cut off, the fabric has good heat release ability, and the enthalpy of melting and crystallisation reaches 41.58 J/g and 43.3 J/g, respectively, and the photothermal efficiency remains unchanged after many cycles of use, which proves that it has excellent durability and stability. The antimicrobial test shows that the fabric has significant antibacterial effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Discussion: MPCM@PDA@Au silk fabrics bring new possibilities for the future of personal thermal management and antimicrobial protection in the field of medical health, outdoor sports and other areas of broad application prospects, heralding the birth of a series of innovative applications and solutions.


Assuntos
Antibacterianos , Cápsulas , Ouro , Nanopartículas Metálicas , Seda , Têxteis , Ouro/química , Nanopartículas Metálicas/química , Cápsulas/química , Seda/química , Antibacterianos/química , Antibacterianos/farmacologia , Indóis/química , Indóis/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polímeros/química , Humanos , Transição de Fase , Polimetil Metacrilato/química , Raios Infravermelhos
6.
Sci Adv ; 10(33): eadn0597, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39141739

RESUMO

Spiders produce nature's toughest fiber using renewable components at ambient temperatures and with water as solvent, making it highly interesting to replicate for the materials industry. Despite this, much remains to be understood about the bioprocessing and composition of spider silk fibers. Here, we identify 18 proteins that make up the spiders' strongest silk type, the major ampullate fiber. Single-cell RNA sequencing and spatial transcriptomics revealed that the secretory epithelium of the gland harbors six cell types. These cell types are confined to three distinct glandular zones that produce specific combinations of silk proteins. Image analysis of histological sections showed that the secretions from the three zones do not mix, and proteomics analysis revealed that these secretions form layers in the final fiber. Using a multi-omics approach, we provide substantial advancements in the understanding of the structure and function of the major ampullate silk gland as well as of the architecture and composition of the fiber it produces.


Assuntos
Genômica , Proteômica , Seda , Análise de Célula Única , Aranhas , Transcriptoma , Aranhas/metabolismo , Aranhas/genética , Animais , Seda/metabolismo , Seda/química , Seda/genética , Proteômica/métodos , Genômica/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
7.
Drug Dev Ind Pharm ; 50(7): 577-592, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39087808

RESUMO

OBJECTIVE: The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE: Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS: Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS: This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.


Assuntos
Sericinas , Cicatrização , Sericinas/química , Sericinas/farmacologia , Sericinas/administração & dosagem , Cicatrização/efeitos dos fármacos , Humanos , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Seda/química , Nanopartículas/química
8.
J Insect Physiol ; 158: 104695, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154710

RESUMO

The silkworm (Bombyx mori) is a model organism for lepidopteran insects. It is an oligophagous insect that primarily feeds on mulberry leaves and has industrial use for the production of raw silk. The development of artificial diets has provided an alternative nutrient source for silkworms; however, one significant issue is that the production of cocoons is lower in silkworms reared on artificial diets compared with those reared on mulberry leaves. The differences in the silk gland in the late-stage fifth instar silkworm larvae, when silk synthesis is most active, between those raised on artificial diets and mulberry leaves, are unknown. In this study, we identified differences in the transcriptomes of the middle and posterior silk glands of fifth instar day five silkworm larvae reared on artificial diets compared with those reared on mulberry leaves using three strains: Daizo, Nichi01, and J137 × C146. We found that the silk-related genes fibrohexamerin (fhx), fibroin-light-chain (fibL), and fibroin-heavy-chain (fibH) in the middle silk gland, and ser1 in the posterior silk gland, were differentially expressed in a strain-dependent manner. In silkworms reared on artificial diets, fhx, fibL, and fibH in the middle silk gland were upregulated in Nichi01 and downregulated in J137 × C146, whereas ser1 in the posterior silk gland was upregulated in J137 × C146 compared with silkworms reared on mulberry leaves. Our results demonstrate that the diet and strain of silkworm larvae affect the expression of genes related to silk production in their silk glands during the late fifth instar stage.


Assuntos
Bombyx , Fibroínas , Larva , Morus , Animais , Bombyx/genética , Bombyx/metabolismo , Bombyx/crescimento & desenvolvimento , Fibroínas/genética , Fibroínas/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Morus/genética , Morus/metabolismo , Seda/genética , Seda/metabolismo , Dieta , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Transcriptoma , Folhas de Planta/metabolismo , Folhas de Planta/genética
9.
Int J Biol Macromol ; 278(Pt 2): 134650, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128739

RESUMO

The efficient synthesis of silk protein is heavily reliant on the ingestion of massive nutrients during the peak growth phase in the silkworm. However, the molecular mechanism of nutritional regulation of silk protein synthesis remains unknown. In this study, we investigated the impact of nutrient deficiency on the synthesis of silk protein. Nutritional deficiency led to a reduction in silk yield, accompanied by decreased levels of silk proteins and fibroin heavy chain (FibH)-activating transcription factors SGF1 and Dimm. Furthermore, insulin enhanced the protein levels of SGF1 and Dimm, which can be attenuated by specific inhibitors of PI3K. Co-immunoprecipitation analysis showed that the nutrient pathway factor protein kinase B (Akt) could interact with SGF1 protein. Knockdown of Akt reduced the phosphorylation level of SGF1 and impedes its nuclear translocation. Further studies revealed that SGF1 was directly bound to Fkh site in the 22-43 region upstream of ATG of Dimm gene to activate its transcription. In conclusion, during the peak growth phase, nutrition promotes the massive synthesis of silk protein through the PI3K-Akt-SGF1-Dimm pathway. This study offers valuable insights into the efficient synthesis of silk proteins and establishes a theoretical foundation for improving silk yield.


Assuntos
Bombyx , Proteínas de Insetos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Seda , Bombyx/metabolismo , Bombyx/genética , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos
10.
Int J Biol Macromol ; 278(Pt 2): 134372, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39134201

RESUMO

Bone tissue engineering scaffolds are an important means of repairing bone defects, but current solutions do not adequately simulate complex extracellular microenvironment fibrous structures and adjustable mechanical properties. We use template-assisted fiber freeze-shaping technology to construct silk fibroin nanofiber aerogels (SNFAs) with nanofibrous textures and adjustable mechanical properties. The parallel arranged channels, the pores, electrospun nanofibers, and silk protein conformation together constitute the hierarchical structure of SNFAs. Especially, the introduced electrospun nanofibers formed a biomimetic nanofibrous texture similar to the extracellular matrix, providing favorable conditions for cell migration and tissue regeneration. In addition, Young's modulus of SNFAs can be adjusted freely between 7 and 88 kPa. The rationally designed 3D architecture makes SNFAs perfectly mimic the fiber structure of the extracellular matrix and can adjust its mechanical properties to match the bone tissue perfectly. Finally, fiber-containing SNFAs observably promoted cell adhesion, proliferation, and differentiation, accelerating the bone repair process. The bone density in the defect area reached 0.53 g/cm3 and the bone volume/total volume (BV/TV) ratio reached 57 % at 12 weeks, respectively. It can be expected that this kind of tissue engineering scaffold with highly simulating extracellular matrix microenvironment and adjustable mechanical properties will possess broad prospects in the field of bone repair.


Assuntos
Regeneração Óssea , Fibroínas , Nanofibras , Engenharia Tecidual , Alicerces Teciduais , Nanofibras/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Animais , Fibroínas/química , Osso e Ossos/fisiologia , Proliferação de Células , Adesão Celular , Diferenciação Celular , Géis/química , Bombyx/química , Seda/química , Fenômenos Mecânicos
11.
Int J Biol Macromol ; 278(Pt 2): 134604, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137853

RESUMO

The development of self-powered sensors with interference-resistant detection is a priority area of research for the next generation of wearable electronic devices. Nevertheless, the presence of multiple stimuli in the actual environment will result in crosstalk with the sensor, thereby hindering the ability to obtain an accurate response to a singular stimulus. Here, we present a self-powered sensor composed of silk-based conductive composite fibers (CNFA@ESF), which is capable of energy storage and sensing. The fabricated CNFA@ESF exhibits excellent mechanical performance, as well as flexibility that can withstand various deformations. The CNFA@ESF provides a good areal capacitance (44.44 mF cm-2), high-rate capability, and excellent cycle stability (91 % for 5000 cycles). In addition, CNFA@ESF also shows good sensing performance for multiple signals including strain, temperature, and humidity. It was observed that the assembly of the symmetrical device with a stiff hydrogel surface layer for protection enabled the real-time, interference-free monitoring of temperature signals. Also, the CNFA@ESF can be woven into fabrics and integrated with a solar cell to form a self-powered sensor system, which has been proven to convert and store solar energy to power electronic watches, indicating its huge potential for future wearable electronics.


Assuntos
Capacitância Elétrica , Seda , Temperatura , Dispositivos Eletrônicos Vestíveis , Seda/química , Técnicas Biossensoriais/métodos
12.
Int J Biol Macromol ; 278(Pt 2): 134774, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154681

RESUMO

Controlling biomolecular-cell interactions is crucial for the design of scaffolds for tissue engineering (TE). Regenerated silk fibroin (RSF) has been extensively used as TE scaffolds, however, RSF showed poor attachment of neuronal cells, such as rat pheochromocytoma (PC12) cells. In this work, amphiphilic peptides containing a hydrophobic isoleucine tail (I3) and laminin or fibronectin derived peptides (IKVAV, PDSGR, YIGSR, RGDS and PHSRN) were designed for promoting scaffold-cell interaction. Three of them (I3KVAV, I3RGDS and I3YIGSR) can self-assemble into nanofibers, therefore, were used to enhance the application of RSF in neuron TE. Live / dead assays revealed that the peptides exhibited negligible cytotoxicity against PC12 cells. The specific interaction between PC12 cells and the peptides were investigate using atomic force microscopy (AFM). The results indicated a synergistic effect in the designed peptides, promoting cellular attachment, proliferation and morphology changes. In addition, AFM results showed that co-assembling peptides I3KVAV and I3YIGSR possesses the best regulation of proliferation and attachment of PC12 cells, consistent with immunofluorescence staining results. Moreover, cell culture with hydrogels revealed that a mixture of peptides I3KVAV and I3YIGSR can also promote 3D neurites outgrowth. The approach of combining two different self-assembling peptides shows great potential for nerve regeneration applications.


Assuntos
Nanofibras , Crescimento Neuronal , Peptídeos , Seda , Alicerces Teciduais , Animais , Células PC12 , Ratos , Nanofibras/química , Alicerces Teciduais/química , Crescimento Neuronal/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Seda/química , Proliferação de Células/efeitos dos fármacos , Fibroínas/química , Fibroínas/farmacologia , Engenharia Tecidual/métodos , Adesão Celular/efeitos dos fármacos
13.
Int J Biol Macromol ; 278(Pt 4): 134830, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154694

RESUMO

Diabetic infected bone defects (DIBD) with abnormal immune metabolism are prone to the hard-to-treat bacterial infections and delayed bone regeneration, which present significant challenges in clinic. Control of immune metabolism is believed to be important in regulating fundamental immunological processes. Here, we developed a macrophage metabolic reprogramming hydrogel composed of modified silk fibroin (Silk-6) and poly-l-lysine (ε-PL) and further integrated with M2 Macrophage-derived Exo (M2-Exo), named Silk-6/ε-PL@Exo. This degradable hydrogel showed a broad-spectrum antibacterial performance against both Gram-positive and -negative bacteria. More importantly, the release of M2-Exo from Silk-6/ε-PL@Exo could target M1 macrophages, modulating the activity of the key enzyme hexokinase II (HK2) to control the inflammation-related NF-κB pathway, alleviate lactate accumulation, and inhibit glycolysis to normalize the cycle, thereby promoting M1-to-M2 balance. Using a rat model of DIBD, Silk-6/ε-PL@Exo hydrogel promoted infection control, balanced immune responses and accelerated the bone defect healing. Overall, this study demonstrates that this Silk-6/ε-PL @Exo is a promising filler biomaterial with multi-function to treat DIBD and emphasizes the importance of metabolic reprogramming in bone regeneration.


Assuntos
Regeneração Óssea , Exossomos , Fibroínas , Hidrogéis , Macrófagos , Animais , Hidrogéis/química , Ratos , Regeneração Óssea/efeitos dos fármacos , Exossomos/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Fibroínas/química , Fibroínas/farmacologia , Camundongos , Seda/química , Diabetes Mellitus Experimental , Células RAW 264.7 , Masculino , Antibacterianos/farmacologia , Antibacterianos/química , Ratos Sprague-Dawley , NF-kappa B/metabolismo , Reprogramação Metabólica
14.
Int J Biol Macromol ; 278(Pt 4): 134927, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182862

RESUMO

Silk fibroin (SF) microspheres show bright prospects for biomedical applications, such as microcarriers, drug delivery, tumor embolization agents, and microscaffolds. However, the chemistry-independent preparation of SF microspheres, which is critical to biomedical applications, has been challenging. In this study, the SF microspheres with silk I crystal type were generated by using electrostatic spraying and freezing-induced assembly. The SF solution was sprayed into liquid nitrogen to form frozen microspheres with tunable size. Annealing can crystallize frozen SF to form silk I crystal type, providing a green approach to harvest water-insoluble microspheres. The SF microspheres can retain a monolithic shape in water for up to 30 days, while having a 77 % degradation ratio in PBS in 14 days, showing high stability in water and rapid degradation under physiological conditions. The biomedical application prospects of the silk I microspheres were demonstrated by cell culture and small molecule drugs (doxorubicin). The microspheres can support the growth and expansion of mammalian cells, and provide a sustainable release for DOX with 10 days. This strategy offers a green approach that avoids the use of organic solvents and cross-linkers for designing SF microsphere biomaterials.


Assuntos
Doxorrubicina , Fibroínas , Microesferas , Fibroínas/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Animais , Humanos , Bombyx/química , Materiais Biocompatíveis/química , Liberação Controlada de Fármacos , Seda/química
15.
Nat Commun ; 15(1): 6671, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107276

RESUMO

Silk fibers' unique mechanical properties have made them desirable materials, yet their formation mechanism remains poorly understood. While ions are known to support silk fiber production, their exact role has thus far eluded discovery. Here, we use cryo-electron microscopy coupled with elemental analysis to elucidate the changes in the composition and spatial localization of metal ions during silk evolution inside the silk gland. During the initial protein secretion and storage stages, ions are homogeneously dispersed in the silk gland. Once the fibers are spun, the ions delocalize from the fibroin core to the sericin-coating layer, a process accompanied by protein chain alignment and increased feedstock viscosity. This change makes the protein more shear-sensitive and initiates the liquid-to-solid transition. Selective metal ion doping modifies silk fibers' mechanical performance. These findings enhance our understanding of the silk fiber formation mechanism, laying the foundations for developing new concepts in biomaterial design.


Assuntos
Bombyx , Microscopia Crioeletrônica , Fibroínas , Seda , Bombyx/metabolismo , Animais , Seda/química , Seda/biossíntese , Seda/metabolismo , Fibroínas/química , Fibroínas/metabolismo , Íons , Metais/química , Metais/metabolismo , Sericinas/química , Sericinas/metabolismo , Viscosidade
16.
Ultrason Sonochem ; 109: 107018, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128406

RESUMO

Ultrasound-assisted regulation of biomaterial properties has attracted increasing attention due to the unique reaction conditions induced by ultrasound cavitation. In this study, we explored the fabrication of wild tussah silk nanofiber membranes via ultrasound spray spinning from an ionic liquid system, characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), water contact angle, cytocompatibility tests, and enzymatic degradation studies. We investigated the effects of ultrasound propagation in an ionic liquid on the morphology, structure, thermal and mechanical properties, surface hydrophilicity, biocompatibility, and biodegradability of the fabricated fibers. The results showed that as ultrasound treatment time increased from 0 to 60 min, the regenerated silk fiber diameter decreased by 0.97 µm and surface area increased by 30.44 µm2, enhancing the fiber surface smoothness and uniformity. Ultrasound also promoted the rearrangement of protein molecular chains and transformation of disordered protein structures into ß-sheets, increasing the ß-sheet content to 54.32 %, which significantly improved the materials' thermal stability (with decomposition temperatures rising to 256.38 °C) and mechanical properties (elastic modulus reaching 0.75 GPa). In addition, hydrophilicity, cytocompatibility, and biodegradability of the fiber membranes all improved with longer ultrasound exposure, highlighting the potential of ultrasound technology in advancing the properties of natural biopolymers for applications in sustainable materials science and tissue regeneration.


Assuntos
Materiais Biocompatíveis , Líquidos Iônicos , Seda , Ondas Ultrassônicas , Líquidos Iônicos/química , Seda/química , Materiais Biocompatíveis/química , Animais
17.
Biomacromolecules ; 25(9): 5512-5540, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39133748

RESUMO

Current bone repair methods have limitations, prompting the exploration of innovative approaches. Tissue engineering emerges as a promising solution, leveraging biomaterials to craft scaffolds replicating the natural bone environment, facilitating cell growth and differentiation. Among fabrication techniques, three-dimensional (3D) printing stands out for its ability to tailor intricate scaffolds. Silk proteins (SPs), known for their mechanical strength and biocompatibility, are an excellent choice for engineering 3D-printed bone tissue engineering (BTE) scaffolds. This article comprehensively reviews bone biology, 3D printing, and the unique attributes of SPs, specifically detailing criteria for scaffold fabrication such as composition, structure, mechanics, and cellular responses. It examines the structural, mechanical, and biological attributes of SPs, emphasizing their suitability for BTE. Recent studies on diverse 3D printing approaches using SPs-based for BTE are highlighted, alongside advancements in their 3D and four-dimensional (4D) printing and their role in osteo-immunomodulation. Future directions in the use of SPs for 3D printing in BTE are outlined.


Assuntos
Regeneração Óssea , Imunomodulação , Impressão Tridimensional , Seda , Engenharia Tecidual , Alicerces Teciduais , Regeneração Óssea/efeitos dos fármacos , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Seda/química , Animais , Imunomodulação/efeitos dos fármacos , Materiais Biocompatíveis/química , Osso e Ossos/metabolismo
18.
Regen Med ; 19(7-8): 421-437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101556

RESUMO

The paper highlights how significant characteristics of liver can be modeled in tissue-engineered constructs using unconventional scaffolds. Hepatic lobular organization and metabolic zonation can be mimicked with decellularized plant structures with vasculature resembling a native-hepatic lobule vascular arrangement or silk blend scaffolds meticulously designed for guided cellular arrangement as hepatic patches or metabolic activities. The functionality of hepatocytes can be enhanced and maintained for long periods in naturally fibrous structures paving way for bioartificial liver development. The phase I enzymatic activity in hepatic models can be raised exploiting the microfibrillar structure of paper to allow cellular stacking creating hypoxic conditions to induce in vivo-like xenobiotic metabolism. Lastly, the paper introduces amalgamation of carbon-based nanomaterials into existing scaffolds in liver tissue engineering.


Unconventional scaffolds have the potential to meet the current challenges in liver tissue engineering- loss of hepatic morphology and functions over long-term culture, absence of native-like cell-cell and cell-matrix interactions, organization of hepatocytes into lobular structures exhibiting metabolic variations-which hinder pharmaceutical analysis, regenerative therapies and artificial organ development. Paper with cellulose microfibril network develops cellular aggregates with hypoxic conditions that influence enzymes of xenobiotic metabolism proving to be a better scaffold for hepatotoxicity testing compared with conventional monolayers in tissue culture plates. Decellularized plant stems provide already-built vasculature to be exploited for the development of intricate vessel networks that exist in hepatic lobules aiding in regenerative medicine for hepatic pathologies. Fibrous plant structures are excellent materials for the immobilization of hepatocytes and improve albumin secretion enabling their use in bioartificial liver development. Biomimicry of metabolic zonation in hepatic lobules can be achieved with perfusion culture using silk blend scaffolds with varying proportions of the liver matrix that orchestrate cellular function. The mechanical properties of silk allow the fabrication of structures that resemble liver anatomy to generate native-like hepatic lobules. Nanomaterials have immense potential as a component of composite material development for scaffolds to achieve improved predictive ability in pharmacokinetics. Most of these unconventional scaffolds have the added advantage of being readily available, accessible, affordable and sustainable for liver tissue engineering applications. Conclusively, the shift of attention away from conventional scaffolds poses a promising future in the field of tissue engineering.


Assuntos
Fígado , Nanoestruturas , Seda , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Nanoestruturas/química , Humanos , Fígado/citologia , Fígado/metabolismo , Seda/química , Animais , Papel , Plantas/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo
19.
ACS Biomater Sci Eng ; 10(9): 5412-5438, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39136701

RESUMO

The remarkable material properties of spider silk, such as its high toughness and tensile strength combined with its low density, make it a highly sought-after material with myriad applications. In addition, the biological nature of spider silk makes it a promising, potentially sustainable alternative to many toxic or petrochemical-derived materials. Therefore, interest in the heterologous production of spider silk proteins has greatly increased over the past few decades, making recombinant spider silk an important frontier in biomanufacturing. This has resulted in a diversity of potential host organisms, a large space for sequence design, and a variety of downstream processing techniques and product applications for spider silk production. Here, we highlight advances in each of these technical aspects as well as white spaces therein, still ripe for further investigation and discovery. Additionally, industry landscaping, patent analyses, and interviews with Key Opinion Leaders help define both the research and industry landscapes. In particular, we found that though textiles dominated the early products proposed by companies, the versatile nature of spider silk has opened up possibilities in other industries, such as high-performance materials in automotive applications or biomedical therapies. While continuing enthusiasm has imbued scientists and investors alike, many technical and business considerations still remain unsolved before spider silk can be democratized as a high-performance product. We provide insights and strategies for overcoming these initial hurdles, and we highlight the importance of collaboration between academia, industry, and policy makers. Linking technical considerations to business and market entry strategies highlights the importance of a holistic approach for the effective scale-up and commercial viability of spider silk bioproduction.


Assuntos
Seda , Aranhas , Aranhas/metabolismo , Animais , Seda/química , Seda/metabolismo , Seda/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Humanos
20.
J Biotechnol ; 394: 85-91, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39178917

RESUMO

The degummed wastewater from silk processing contains a huge amount of amino acids and polypeptides from sericin. The silk degumming water is far from being exploited fully. Sericin in the degumming water is generally wasted and causes environmental pollution. In this study, simulated silk degumming water was hydrolyzed by alkaline protease to produce abundant amino acids and polypeptides. After enzymatic hydrolysis, the maximum free amino groups concentration in the silk degumming water was approximately 54 mM. It facilitated the recycling of silk degumming water for the production of melanin-like amino acid surfactants as raw materials. 4-Tert-butylcatechol was used as the starting material to generate o-quinone via oxidation by ceric ammonium nitrate. o-Quinone was coupled with free amino groups in enzymatic hydrolysates of silk degumming water to synthesize a sericin-based amino acid surfactant as hydrophobic and hydrophilic group, respectively. Through the green and simple synthesis route, the product was characterized to have a novel melanin-like structure. The product exhibited superior surface-active properties by lowering the surface tension to 32.39 mN m-1. Furthermore, it demonstrated good foaming ability and foam stability, with the initial foam volume of 37 mL and the foam half-life time of more than 25 min. The product owned a good emulsification ability in the oil-water emulsion with delamination time of 297 s and 291 s for emulsion formed by soybean oil and liquid paraffin, respectively. The wetting time of the canvas sheet was only 134 s. Consequently, the product showed low surface tension, good foaming, emulsifying, and wetting properties.


Assuntos
Aminoácidos , Melaninas , Sericinas , Seda , Tensoativos , Tensoativos/química , Aminoácidos/química , Seda/química , Sericinas/química , Melaninas/química , Melaninas/metabolismo , Hidrólise , Águas Residuárias/química , Água/química , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA