Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.362
Filtrar
1.
Exp Dermatol ; 33(6): e15111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840411

RESUMO

Keloids are pathological scar tissue resulting from skin trauma or spontaneous formation, often accompanied by itching and pain. Although GNAS antisense RNA 1 (GNAS-AS1) shows abnormal upregulation in keloids, the underlying molecular mechanism is unclear. The levels of genes and proteins in clinical tissues from patients with keloids and human keloid fibroblasts (HKFs) were measured using quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay. The features of HKFs, including proliferation and migration, were evaluated using cell counting kit 8 and a wound healing assay. The colocalization of GNAS-AS1 and miR-196a-5p in HKFs was measured using fluorescence in situ hybridization. The relationships among GNAS-AS1, miR-196a-5p and C-X-C motif chemokine ligand 12 (CXCL12) in samples from patients with keloids were analysed by Pearson correlation analysis. Gene interactions were validated by chromatin immunoprecipitation and luciferase reporter assays. GNAS-AS1 and CXCL12 expression were upregulated and miR-196a-5p expression was downregulated in clinical tissues from patients with keloids. GNAS-AS1 knockdown inhibited proliferation, migration, and extracellular matrix (ECM) accumulation of HKFs, all of which were reversed by miR-196a-5p downregulation. Signal transducer and activator of transcription 3 (STAT3) induced GNAS-AS1 transcription through GNAS-AS1 promoter interaction, and niclosamide, a STAT3 inhibitor, decreased GNAS-AS1 expression. GNAS-AS1 positively regulated CXCL12 by sponging miR-196-5p. Furthermore, CXCL12 knockdown restrained STAT3 phosphorylation in HKFs. Our findings revealed a feedback loop of STAT3/GNAS-AS1/miR-196a-5p/CXCL12/STAT3 that promoted HKF proliferation, migration and ECM accumulation and affected keloid progression.


Assuntos
Proliferação de Células , Quimiocina CXCL12 , Fibroblastos , Queloide , MicroRNAs , RNA Longo não Codificante , Fator de Transcrição STAT3 , Queloide/metabolismo , Queloide/genética , Queloide/patologia , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Fibroblastos/metabolismo , Movimento Celular , Retroalimentação Fisiológica , Cromograninas/genética , Cromograninas/metabolismo , Masculino , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Adulto , Células Cultivadas , Regulação para Cima
2.
Oncol Res ; 32(6): 1079-1091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827318

RESUMO

Approximately 30%-40% of growth hormone-secreting pituitary adenomas (GHPAs) harbor somatic activating mutations in GNAS (α subunit of stimulatory G protein). Mutations in GNAS are associated with clinical features of smaller and less invasive tumors. However, the role of GNAS mutations in the invasiveness of GHPAs is unclear. GNAS mutations were detected in GHPAs using a standard polymerase chain reaction (PCR) sequencing procedure. The expression of mutation-associated maternally expressed gene 3 (MEG3) was evaluated with RT-qPCR. MEG3 was manipulated in GH3 cells using a lentiviral expression system. Cell invasion ability was measured using a Transwell assay, and epithelial-mesenchymal transition (EMT)-associated proteins were quantified by immunofluorescence and western blotting. Finally, a tumor cell xenograft mouse model was used to verify the effect of MEG3 on tumor growth and invasiveness. The invasiveness of GHPAs was significantly decreased in mice with mutated GNAS compared with that in mice with wild-type GNAS. Consistently, the invasiveness of mutant GNAS-expressing GH3 cells decreased. MEG3 is uniquely expressed at high levels in GHPAs harboring mutated GNAS. Accordingly, MEG3 upregulation inhibited tumor cell invasion, and conversely, MEG3 downregulation increased tumor cell invasion. Mechanistically, GNAS mutations inhibit EMT in GHPAs. MEG3 in mutated GNAS cells prevented cell invasion through the inactivation of the Wnt/ß-catenin signaling pathway, which was further validated in vivo. Our data suggest that GNAS mutations may suppress cell invasion in GHPAs by regulating EMT through the activation of the MEG3/Wnt/ß-catenin signaling pathway.


Assuntos
Cromograninas , Transição Epitelial-Mesenquimal , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Adenoma Hipofisário Secretor de Hormônio do Crescimento , Mutação , Invasividade Neoplásica , RNA Longo não Codificante , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Animais , Humanos , Adenoma Hipofisário Secretor de Hormônio do Crescimento/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Camundongos , Cromograninas/genética , Cromograninas/metabolismo , Transição Epitelial-Mesenquimal/genética , RNA Longo não Codificante/genética , Feminino , Masculino , Linhagem Celular Tumoral , Adenoma/genética , Adenoma/patologia , Adenoma/metabolismo , Pessoa de Meia-Idade , Adulto , Proliferação de Células/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Via de Sinalização Wnt/genética , Regulação Neoplásica da Expressão Gênica
3.
Front Endocrinol (Lausanne) ; 15: 1296886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828417

RESUMO

Introduction: The dysregulation of cell fate toward osteoprecursor cells associated with most GNAS-based disorders may lead to episodic de novo extraskeletal or ectopic bone formation in subcutaneous tissues. The bony lesion distribution suggests the involvement of abnormal differentiation of mesenchymal stem cells (MSCs) and/or more committed precursor cells. Data from transgenic mice support the concept that GNAS is a crucial factor in regulating lineage switching between osteoblasts (OBs) and adipocyte fates. The mosaic nature of heterotopic bone lesions suggests that GNAS genetic defects provide a sensitized background for ectopic osteodifferentiation, but the underlying molecular mechanism remains largely unknown. Methods: The effect of GNAS silencing in the presence and/or absence of osteoblastic stimuli was evaluated in the human L88/5 MSC line during osteodifferentiation. A comparison of the data obtained with data coming from a bony lesion from a GNAS-mutated patient was also provided. Results: Our study adds some dowels to the current fragmented notions about the role of GNAS during osteoblastic differentiation, such as the premature transition of immature OBs into osteocytes and the characterization of the differences in the deposed bone matrix. Conclusion: We demonstrated that our cell model partially replicates the in vivo behavior results, resulting in an applicable human model to elucidate the pathophysiology of ectopic bone formation in GNAS-based disorders.


Assuntos
Diferenciação Celular , Cromograninas , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Células-Tronco Mesenquimais , Osteoblastos , Osteogênese , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Cromograninas/genética , Diferenciação Celular/genética , Osteogênese/genética , Osteoblastos/metabolismo , Osteoblastos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Inativação Gênica , Linhagem Celular
4.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727310

RESUMO

Fibrous dysplasia (FD) is a mosaic skeletal disorder caused by somatic activating variants of GNAS encoding for Gαs and leading to excessive cyclic adenosine monophosphate signaling in bone-marrow stromal cells (BMSCs). The effect of Gαs activation in the BMSC transcriptome and how it influences FD lesion microenvironment are unclear. We analyzed changes induced by Gαs activation in the BMSC transcriptome and secretome. RNAseq analysis of differential gene expression of cultured BMSCs from patients with FD and healthy volunteers, and from an inducible mouse model of FD, was performed, and the transcriptomic profiles of both models were combined to build a robust FD BMSC genetic signature. Pathways related to Gαs activation, cytokine signaling, and extracellular matrix deposition were identified. To assess the modulation of several key secreted factors in FD pathogenesis, cytokines and other factors were measured in culture media. Cytokines were also screened in a collection of plasma samples from patients with FD, and positive correlations of several cytokines to their disease burden score, as well as to one another and bone turnover markers, were found. These data support the pro-inflammatory, pro-osteoclastic behavior of FD BMSCs and point to several cytokines and other secreted factors as possible therapeutic targets and/or circulating biomarkers for FD.


Assuntos
Displasia Fibrosa Óssea , Células-Tronco Mesenquimais , Transcriptoma , Humanos , Animais , Células-Tronco Mesenquimais/metabolismo , Transcriptoma/genética , Camundongos , Displasia Fibrosa Óssea/genética , Displasia Fibrosa Óssea/metabolismo , Displasia Fibrosa Óssea/patologia , Masculino , Feminino , Citocinas/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Adulto , Pessoa de Meia-Idade
5.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791144

RESUMO

Cellular myxoma is a benign soft tissue tumor frequently associated with GNAS mutation that may morphologically resemble low-grade myxofibrosarcoma. This study aimed to identify the undescribed methylation profile of cellular myxoma and compare it to myxofibrosarcoma. We performed molecular analysis on twenty cellular myxomas and nine myxofibrosarcomas and analyzed the results using the methylation-based DKFZ sarcoma classifier. A total of 90% of the cellular myxomas had GNAS mutations (four loci had not been previously described). Copy number variations were found in all myxofibrosarcomas but in none of the cellular myxomas. In the classifier, none of the cellular myxomas reached the 0.9 threshold. Unsupervised t-SNE analysis demonstrated that cellular myxomas form their own clusters, distinct from myxofibrosarcomas. Our study shows the diagnostic potential and the limitations of molecular analysis in cases where morphology and immunohistochemistry are not sufficient to distinguish cellular myxoma from myxofibrosarcoma, particularly regarding GNAS wild-type tumors. The DKFZ sarcoma classifier only provided a valid prediction for one myxofibrosarcoma case; this limitation could be improved by training the tool with a more considerable number of cases. Additionally, the classifier should be introduced to a broader spectrum of mesenchymal neoplasms, including benign tumors like cellular myxoma, whose distinct methylation pattern we demonstrated.


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Fibrossarcoma , Mixoma , Humanos , Mixoma/genética , Mixoma/diagnóstico , Mixoma/patologia , Fibrossarcoma/genética , Fibrossarcoma/patologia , Fibrossarcoma/diagnóstico , Fibrossarcoma/metabolismo , Pessoa de Meia-Idade , Feminino , Idoso , Masculino , Adulto , Mutação , Diagnóstico Diferencial , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Cromograninas/genética , Idoso de 80 Anos ou mais , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/patologia
6.
BMC Pediatr ; 24(1): 271, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664677

RESUMO

BACKGROUND: Pseudohypoparathyroidism (PHP) is caused by loss-of-function mutations at the GNAS gene (as in the PHP type 1A; PHP1A), de novo or inherited at heterozygous state, or by epigenetic alterations at the GNAS locus (as in the PHP1B). The condition of PHP refers to a heterogeneous group of disorders that share common clinical and biological features of PTH resistance. Manifestations related to resistance to other hormones are also reported in many patients with PHP, in association with the phenotypic picture of Albright hereditary osteodystrophy characterized by short stature, round facies, subcutaneous ossifications, brachydactyly, mental retardation and, in some subtypes, obesity. The purpose of our study is to report a new mutation in the GNAS gene and to describe the significant phenotypic variability of three sisters with PHP1A bearing the same mutation. CASE PRESENTATION: We describe the cases of three sisters with PHP1A bearing the same mutation but characterized by a significantly different phenotypic picture at onset and during follow-up in terms of clinical features, auxological pattern and biochemical changes. Clinical exome sequencing revealed a never before described heterozygote mutation in the GNAS gene (NM_000516.5 c.118_139 + 51del) of autosomal dominant maternal transmission in the three siblings, confirming the diagnosis of PHP1A. CONCLUSIONS: This study reported on a novel mutation of GNAS gene and highlighted the clinical heterogeneity of PHP1A characterized by wide genotype-phenotype variability. The appropriate diagnosis has crucial implications for patient care and long-term multidisciplinary follow-up.


Assuntos
Cromograninas , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Pseudo-Hipoparatireoidismo , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Pseudo-Hipoparatireoidismo/genética , Pseudo-Hipoparatireoidismo/diagnóstico , Cromograninas/genética , Feminino , Criança , Fenótipo , Linhagem , Mutação , Adolescente , Pré-Escolar
7.
Nature ; 629(8011): 481-488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632411

RESUMO

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores de Detecção de Cálcio , Humanos , Cálcio/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/química , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Sítios de Ligação , Estrutura Secundária de Proteína , Especificidade por Substrato
8.
Nature ; 629(8014): 1182-1191, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480881

RESUMO

G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the ß2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα switch regions and the α5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the α-helical domain against the nucleotide-bound Ras-homology domain correlates with α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.


Assuntos
Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Receptores Adrenérgicos beta 2 , Humanos , Sítios de Ligação , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/ultraestrutura , Fatores de Tempo , Ativação Enzimática/efeitos dos fármacos , Domínios Proteicos , Estrutura Secundária de Proteína , Transdução de Sinais/efeitos dos fármacos
9.
J Pediatr Endocrinol Metab ; 37(5): 467-471, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38529810

RESUMO

OBJECTIVES: Inactivating GNAS mutations result in varied phenotypes depending on parental origin. Maternally inherited mutations typically lead to hormone resistance and Albright's hereditary osteodystrophy (AHO), characterised by short stature, round facies, brachydactyly and subcutaneous ossifications. Paternal inheritance presents with features of AHO or ectopic ossification without hormone resistance. This report describes the case of a child with osteoma cutis and medulloblastoma. The objective of this report is to highlight the emerging association between inactivating germline GNAS mutations and medulloblastoma, aiming to shed light on its implications for tumor biology and promote future development of targeted surveillance strategies to improve outcomes in paediatric patients with these mutations. CASE PRESENTATION: A 12-month-old boy presented with multiple plaque-like skin lesions. Biopsy confirmed osteoma cutis, prompting genetic testing which confirmed a heterozygous inactivating GNAS mutation. At 2.5 years of age, he developed neurological symptoms and was diagnosed with a desmoplastic nodular medulloblastoma, SHH molecular group, confirmed by MRI and histology. Further analysis indicated a biallelic loss of GNAS in the tumor. CONCLUSIONS: This case provides important insights into the role of GNAS as a tumor suppressor and the emerging association between inactivating GNAS variants and the development of medulloblastoma. The case underscores the importance of careful neurological assessment and ongoing vigilance in children with known inactivating GNAS variants or associated phenotypes. Further work to establish genotype-phenotype correlations is needed to inform optimal management of these patients.


Assuntos
Neoplasias Cerebelares , Cromograninas , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Meduloblastoma , Ossificação Heterotópica , Dermatopatias Genéticas , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Masculino , Cromograninas/genética , Meduloblastoma/genética , Meduloblastoma/patologia , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/patologia , Dermatopatias Genéticas/complicações , Lactente , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/complicações , Prognóstico , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/patologia , Mutação
10.
Cardiovasc Pathol ; 71: 107632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492686

RESUMO

PURPOSE: Cardiac myxomas (CMs) are the second most common benign primary cardiac tumors, mainly originating within the left atrium. Approximately 5% of CM cases are associated with Carney Complex (CNC), an autosomal dominant multiple neoplasia syndrome often caused by germline mutations in the protein kinase A regulatory subunit 1A (PRKAR1A). Data concerning PRKAR1A alterations in sporadic myxomas are variable and sparse, with PRKAR1A mutations reported to range from 0% to 87%. Therefore, we investigated the frequency of PRKAR1A mutations in sporadic CM using next-generation sequencing (NGS). Additionally, we explored mutations in the catalytic domain of the Protein Kinase A complex (PRKACA) and examined the presence of GNAS mutations as another potential driver. METHODS AND RESULTS: This study retrospectively collected histological and clinical data from 27 patients with CM. First, we ruled out the possibility of underlying CNC through clinical evaluations and standardized interviews for each patient. Second, we performed PRKAR1A immunohistochemistry (IHC) analysis and graded the reactivity of myxoma cells semi-quantitatively. NGS was then applied to analyze the coding regions of PRKAR1A, PRKACA, and GNAS in all 27 cases. Of the 27 sporadic CM cases, 13 (48%) harbored mutations in PRKAR1A. Among these 13 mutant cases, six displayed more than one mutation in PRKAR1A. Most of the identified mutations resulted in premature stop codons or affected splicing. In PRKAR1A mutant CM cases, the loss of PRKAR1A protein expression was significantly more common. In two cases with missense mutations, protein expression remained preserved. Furthermore, a single mutation was detected in the catalytic domain of the protein kinase A complex, while no GNAS mutations were found. CONCLUSION: We identified a relatively high frequency of PRKAR1A mutations in sporadic CM. These PRKAR1A mutations may also represent an important oncogenic mechanism in sporadic myxomas, as already known in CM cases associated with CNC.


Assuntos
Cromograninas , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Neoplasias Cardíacas , Mixoma , Humanos , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Cromograninas/genética , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/patologia , Neoplasias Cardíacas/enzimologia , Pessoa de Meia-Idade , Feminino , Masculino , Mixoma/genética , Mixoma/patologia , Mixoma/enzimologia , Adulto , Idoso , Estudos Retrospectivos , Análise Mutacional de DNA , Predisposição Genética para Doença , Mutação , Adulto Jovem , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala , Adolescente , Complexo de Carney/genética , Complexo de Carney/enzimologia , Complexo de Carney/patologia , Biomarcadores Tumorais/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico
11.
Int J Cancer ; 154(11): 1987-1998, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319157

RESUMO

Approximately 5% of colorectal cancers (CRCs) have a gain-of-function mutation in the GNAS gene, which leads to the activation of cAMP-dependent signaling pathways and associates with poor prognosis. We investigated the effect of an activating GNAS mutation in CRC cell lines on gene expression and cell proliferation in vitro, and tumor growth in vivo. GNAS-mutated (GNASmt) HCT116 cells showed stimulated synthesis of cAMP as compared to parental (Par) cells. The most upregulated gene in the GNASmt cells was cAMP-hydrolyzing phosphodiesterase 4D (PDE4D) as detected by RNA sequencing. To further validate our finding, we analyzed PDE4D expression in a set of human CRC tumors (n = 35) and demonstrated overexpression in GNAS mutant CRC tumors as compared to GNAS wild-type tumors. The GNASmt HCT116 cells proliferated more slowly than the Par cells. PDE4 inhibitor Ro 20-1724 and PDE4D subtype selective inhibitor GEBR-7b further suppressed the proliferation of GNASmt cells without an effect on Par cells. The growth inhibitory effect of these inhibitors was also seen in the intrinsically GNAS-mutated SK-CO-1 CRC cell line having high levels of cAMP synthesis and PDE4D expression. In vivo, GNASmt HCT116 cells formed smaller tumors than the Par cells in nude mice. In conclusion, our findings demonstrate that GNAS mutation results in the growth suppression of CRC cells. Moreover, the GNAS mutation-induced overexpression of PDE4D provides a potential avenue to impede the proliferation of CRC cells through the use of PDE4 inhibitors.


Assuntos
Cromograninas , Neoplasias Colorretais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Animais , Humanos , Camundongos , Cromograninas/genética , Cromograninas/metabolismo , Neoplasias Colorretais/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HCT116 , Camundongos Nus , Mutação , Inibidores da Fosfodiesterase 4/farmacologia
12.
J Pediatr Endocrinol Metab ; 37(3): 289-295, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38353264

RESUMO

OBJECTIVES: Pseudohypoparathyroidism type 1A (PHP1A) encompasses the association of resistance to multiple hormones, features of Albright hereditary osteodystrophy and decreased Gsα activity. Little is known about the early signs of PHP1A, with a delay in diagnosis. We report two PHP1A cases and their clinical and biochemical findings during a 20-year follow-up. CASE PRESENTATION: Clinical suspicion was based on obesity, TSH resistance and ectopic ossifications which appeared several months before PTH resistance, at almost 3 years of age. Treatment with levothyroxine, calcitriol and calcium was required in both patients. DNA sequencing of GNAS gene detected a heterozygous pathogenic variant within exon 7 (c.569_570delAT) in patient one and a deletion from XLAS to GNAS-exon 5 on the maternal allele in patient 2. In patient 1, ectopic ossifications that required surgical excision were found. Noticeably, patient 2 displayed adult short stature, intracranial calcifications and psychomotor delay. In terms of weight, despite early diagnosis of obesity, dietary measures were established successfully in both cases. CONCLUSIONS: GNAS mutations should be considered in patients with obesity, ectopic ossifications and TSH resistance presented in early infancy. These cases emphasize the highly heterogeneous clinical picture PHP1A patients may present, especially in terms of final height and cognitive impairment.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Pseudo-Hipoparatireoidismo , Adulto , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Pseudo-Hipoparatireoidismo/diagnóstico , Pseudo-Hipoparatireoidismo/genética , Mutação , Obesidade , Tireotropina , Cromograninas/genética
13.
Biol Chem ; 405(5): 297-309, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353111

RESUMO

G proteins are interacting partners of G protein-coupled receptors (GPCRs) in eukaryotic cells. Upon G protein activation, the ability of the Gα subunit to exchange GDP for GTP determines the intracellular signal transduction. Although various studies have successfully shown that both Gαs and Gαi have an opposite effect on the intracellular cAMP production, with the latter being commonly described as "more active", the functional analysis of Gαs is a comparably more complicated matter. Additionally, the thorough investigation of the ubiquitously expressed variants of Gαs, Gαs(short) and Gαs(long), is still pending. Since the previous experimental evaluation of the activity and function of the Gαs isoforms is not consistent, the focus was laid on structural investigations to understand the GTPase activity. Herein, we examined recombinant human Gαs by applying an established methodological setup developed for Gαi characterization. The ability for GTP binding was evaluated with fluorescence and fluorescence anisotropy assays, whereas the intrinsic hydrolytic activity of the isoforms was determined by a GTPase assay. Among different nucleotide probes, BODIPY FL GTPγS exhibited the highest binding affinity towards the Gαs subunit. This work provides a deeper understanding of the Gαs subunit and provides novel information concerning the differences between the two protein variants.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Nucleotídeos de Guanina/metabolismo , Nucleotídeos de Guanina/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Guanosina Trifosfato/metabolismo
15.
Neoplasia ; 49: 100965, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38245923

RESUMO

BACKGROUND: The demethylation agent decitabine (DAC) is a pivotal non-intensive alternative treatment for acute myeloid leukemia (AML). However, patient responses to DAC are highly variable, and predictive biomarkers are warranted. Herein, the DNA methylation landscape of patients treated with a DAC-based combination regimen was compared with that of patients treated with standard chemotherapy to develop a molecular approach for predicting clinical response to DAC. METHODS: Twenty-five non-M3 AML patients were enrolled and subjected to DNA methylation sequencing and profiling to identify differentially methylated regions (DMRs) and genes of interest. Moreover, the effects of a DAC-based regimen on apoptosis and gene expression were explored using Kasumi-1 and K562 cells. RESULTS: Overall, we identified 541 DMRs that were specifically responsive to DAC, among which 172 DMRs showed hypomethylation patterns upon treatment and were aligned with the promoter regions of 182 genes. In particular, GNAS was identified as a critical DAC-responsive gene, with in vitro GNAS downregulation leading to reduced cell apoptosis induced by DAC and cytarabine combo treatment. CONCLUSIONS: We found that GNAS is a DAC-sensitive gene in AML and may serve as a prognostic biomarker to assess the responsiveness of patients with AML to DAC-based therapy.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacologia , Decitabina/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Metilação de DNA , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Cromograninas/genética , Cromograninas/uso terapêutico , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/uso terapêutico
16.
Nature ; 626(7997): 128-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233523

RESUMO

The assembly and specification of synapses in the brain is incompletely understood1-3. Latrophilin-3 (encoded by Adgrl3, also known as Lphn3)-a postsynaptic adhesion G-protein-coupled receptor-mediates synapse formation in the hippocampus4 but the mechanisms involved remain unclear. Here we show in mice that LPHN3 organizes synapses through a convergent dual-pathway mechanism: activation of Gαs signalling and recruitment of phase-separated postsynaptic protein scaffolds. We found that cell-type-specific alternative splicing of Lphn3 controls the LPHN3 G-protein-coupling mode, resulting in LPHN3 variants that predominantly signal through Gαs or Gα12/13. CRISPR-mediated manipulation of Lphn3 alternative splicing that shifts LPHN3 from a Gαs- to a Gα12/13-coupled mode impaired synaptic connectivity as severely as the overall deletion of Lphn3, suggesting that Gαs signalling by LPHN3 splice variants mediates synapse formation. Notably, Gαs-coupled, but not Gα12/13-coupled, splice variants of LPHN3 also recruit phase-transitioned postsynaptic protein scaffold condensates, such that these condensates are clustered by binding of presynaptic teneurin and FLRT ligands to LPHN3. Moreover, neuronal activity promotes alternative splicing of the synaptogenic Gαs-coupled variant of LPHN3. Together, these data suggest that activity-dependent alternative splicing of a key synaptic adhesion molecule controls synapse formation by parallel activation of two convergent pathways: Gαs signalling and clustered phase separation of postsynaptic protein scaffolds.


Assuntos
Processamento Alternativo , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Sinapses , Animais , Camundongos , Processamento Alternativo/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Ligantes , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/deficiência , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Sinapses/metabolismo , Transdução de Sinais
17.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38290008

RESUMO

Pseudohypoparathyroidism type 1B (PHP1B) results from aberrant genomic imprinting at the GNAS gene. Defining the underlying genetic cause in new patients is challenging because various genetic alterations (e.g., deletions, insertions) within the GNAS genomic region, including the neighboring STX16 gene, can cause PHP1B, and the genotype-epigenotype correlation has not been clearly established. Here, by analyzing patients with PHP1B with a wide variety of genotypes and epigenotypes, we identified a GNAS differentially methylated region (DMR) of distinct diagnostic value. This region, GNAS AS2, was hypomethylated in patients with genetic alterations located centromeric but not telomeric of this DMR. The AS2 methylation status was captured by a single probe of the methylation-sensitive multiplex ligation-dependent probe amplification (MS-MLPA) assay utilized to diagnose PHP1B. In human embryonic stem cells, where NESP55 transcription regulates GNAS methylation status on the maternal allele, AS2 methylation depended on 2 imprinting control regions (STX16-ICR and NESP-ICR) essential for NESP55 transcription. These results suggest that the AS2 methylation status in patients with PHP1B reflects the position at which the genetic alteration affects NESP55 transcription during an early embryonic period. Therefore, AS2 methylation levels can enable mechanistic PHP1B categorization based on genotype-epigenotype correlation and, thus, help identify the underlying molecular defect in patients.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Pseudo-Hipoparatireoidismo , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Metilação de DNA , Pseudo-Hipoparatireoidismo/genética , Pseudo-Hipoparatireoidismo/diagnóstico , Impressão Genômica , Alelos , Cromograninas/genética
19.
J Clin Endocrinol Metab ; 109(2): 424-438, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37669316

RESUMO

CONTEXT: Pseudohypoparathyroidism type IA (PHPIA) is a rare genetic disorder characterized by hormone resistance and a typical phenotype named Albright hereditary osteodystrophy. Unawareness of this rare disease leads to delays in diagnosis. OBJECTIVE: The aims of this study were to describe the clinical and molecular characteristics of patients with genetically confirmed GNAS mutations and to evaluate their long-term outcomes. METHODS: A retrospective search for all patients diagnosed with PHPIA in 2 referral centers in Israel was conducted. RESULTS: Nine children (8 females) belonging to 6 families were included in the study. Five patients had GNAS missense mutations, 2 had deletions, and 2 had frameshift mutations. Four mutations were novel. Patients were referred at a mean age of 2.4 years due to congenital hypothyroidism (5 patients), short stature (2 patients), or obesity (2 patients), with a follow-up duration of up to 20 years. Early obesity was observed in the majority of patients. Elevated parathyroid hormone was documented at a mean age of 3 years; however, hypocalcemia became evident at a mean age of 5.9 years, about 3 years later. All subjects were diagnosed with mild to moderate mental retardation. Female adult height was very short (mean -2.5 SD) and 5 females had primary or secondary amenorrhea. CONCLUSION: Long-term follow-up of newborns with a combination of congenital hypothyroidism, early-onset obesity, and minor dysmorphic features associated with PHPIA is warranted and molecular analysis is recommended since the complete clinical phenotype may develop a long time after initial presentation.


Assuntos
Hipotireoidismo Congênito , Pseudo-Hipoparatireoidismo , Recém-Nascido , Criança , Adulto , Humanos , Feminino , Pré-Escolar , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Seguimentos , Estudos Retrospectivos , Cromograninas/genética , Pseudo-Hipoparatireoidismo/diagnóstico , Pseudo-Hipoparatireoidismo/genética , Obesidade
20.
J Pediatr Endocrinol Metab ; 37(1): 84-89, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38095637

RESUMO

OBJECTIVES: Pseudohypoparathyroidism (PHP1B) is most commonly caused by epigenetic defects resulting in loss of methylation at the GNAS locus, although deletions of STX16 leading to GNAS methylation abnormalities have been previously reported. The phenotype of this disorder is variable and can include hormonal resistances and severe infantile obesity with hyperphagia. A possible time relationship between the onset of obesity and endocrinopathies has been previously reported but remains unclear. Understanding of the condition's natural history is limited, partly due to a scarcity of literature, especially in children. CASE PRESENTATION: We report three siblings with autosomal dominant PHP1B caused by a deletion in STX16 who presented with early childhood onset PTH-resistance with normocalcemia with a progressive nature, accompanied by TSH-resistance and severe infantile obesity with hyperphagia in some, not all of the affected individuals. CONCLUSIONS: PHP1B from a STX16 deletion displays intrafamilial phenotypic variation. It is a novel cause of severe infantile obesity, which is not typically included in commercially available gene panels but must be considered in the genetic work-up. Finally, it does not seem to have a clear time relationship between the onset of obesity and hormonal resistance.


Assuntos
Obesidade Mórbida , Obesidade Infantil , Pseudo-Hipoparatireoidismo , Criança , Humanos , Pré-Escolar , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Irmãos , Obesidade Infantil/genética , Cromograninas/genética , Pseudo-Hipoparatireoidismo/genética , Metilação de DNA , Obesidade Mórbida/genética , Fenótipo , Hiperfagia , Sintaxina 16/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...