Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.564
Filtrar
1.
J Plant Physiol ; 297: 154260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701679

RESUMO

Sulfur is an essential nutrient for all plants, but also crucial for the nitrogen fixing symbiosis between legumes and rhizobia. Sulfur limitation can hamper nodule development and functioning. Until now, it remained unclear whether sulfate uptake into nodules is local or mainly systemic via the roots, and if long-distance transport from shoots to roots and into nodules occurs. Therefore, this work investigates the systemic regulation of sulfur transportation in the model legume Lotus japonicus by applying stable isotope labeling to a split-root system. Metabolite and protein extraction together with mass spectrometry analyses were conducted to determine the plants molecular phenotype and relative isotope protein abundances. Data show that treatments of varying sulfate concentrations including the absence of sulfate on one side of a nodulated root was not affecting nodule development as long as the other side of the root system was provided with sufficient sulfate. Concentrations of shoot metabolites did not indicate a significant stress response caused by a lack of sulfur. Further, we did not observe any quantitative changes in proteins involved in biological nitrogen fixation in response to the different sulfate treatments. Relative isotope abundance of 34S confirmed a long-distance transport of sulfur from one side of the roots to the other side and into the nodules. Altogether, these results provide evidence for a systemic long-distance transport of sulfur via the upper part of the plant to the nodules suggesting a demand driven sulfur distribution for the maintenance of symbiotic N-fixation.


Assuntos
Lotus , Proteínas de Plantas , Nódulos Radiculares de Plantas , Enxofre , Simbiose , Nódulos Radiculares de Plantas/metabolismo , Enxofre/metabolismo , Proteínas de Plantas/metabolismo , Lotus/metabolismo , Transporte Biológico , Fixação de Nitrogênio , Sulfatos/metabolismo , Raízes de Plantas/metabolismo
2.
Bioprocess Biosyst Eng ; 47(6): 943-955, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703203

RESUMO

At present, the application of sewage treatment technologies is restricted by high sulfate concentrations. In the present work, the sulfate removal was biologically treated using an upflow anaerobic sludge blanket (UASB) in the absence/presence of light. First, the start-up of UASB for the sulfate removal was studied in terms of COD degradation, sulfate removal, and effluent pH. Second, the impacts of different operation parameters (i.e., COD/SO42- ratio, temperature and illumination time) on the UASB performance were explored. Third, the properties of sludge derived from the UASB at different time were analyzed. Results show that after 28 days of start-up, the COD removal efficiencies in both the photoreactor and non-photoreactor could reach a range of 85-90% while such reactors could achieve > 90% of sulfate being removed. Besides, higher illumination time could facilitate the removal of pollutants in the photoreactor. To sum up, the present study can provide technical support for the clean removal of sulfate from wastewater using photoreactors.


Assuntos
Luz , Esgotos , Sulfatos , Sulfatos/química , Esgotos/microbiologia , Reatores Biológicos , Anaerobiose , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Purificação da Água/métodos
3.
Sci Total Environ ; 931: 172846, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703858

RESUMO

The development of low-cost, highly efficient adsorbent materials is of significant importance for environmental remediation. In this study, a novel material, sulfurized nano zero-valent iron loaded biomass carbon (S-nZVI/BC), was successfully synthesized by a simple manufacturing process. The preparation of S-nZVI/BC does not require the use of expensive and hazardous chemicals. Instead, residual sludge, a solid waste product, is used as feedstock. The sludge is rich in Sulfate-Reducing Bacteria (SRB), which can provide carbon and sulfur sources for the synthesis of S-nZVI/BC. It was observed that S-nZVI particles formed in situ were dispersed within BC and covered by it. Additionally, S-nZVI/BC inherited the large specific surface area and porosity of BC. The adsorption capacity of S-nZVI/BC can reach 857.55 mg g-1 Hg (II) during the remediation of mercury-polluted water. This research offers new perspectives for developing composites in terms of the low cost and harmlessness of raw materials.


Assuntos
Biomassa , Ferro , Mercúrio , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/análise , Adsorção , Enxofre/química , Recuperação e Remediação Ambiental/métodos , Bactérias Redutoras de Enxofre/metabolismo , Sulfatos/química
4.
Environ Sci Technol ; 58(20): 8966-8975, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722667

RESUMO

The absolute radical quantum yield (Φ) is a critical parameter to evaluate the efficiency of radical-based processes in engineered water treatment. However, measuring Φ is fraught with challenges, as current quantification methods lack selectivity, specificity, and anti-interference capabilities, resulting in significant error propagation. Herein, we report a direct and reliable time-resolved technique to determine Φ at pH 7.0 for commonly used radical precursors in advanced oxidation processes. For H2O2 and peroxydisulfate (PDS), the values of Φ•OH and ΦSO4•- at 266 nm were measured to be 1.10 ± 0.01 and 1.46 ± 0.05, respectively. For peroxymonosulfate (PMS), we developed a new approach to determine Φ•OHPMS with terephthalic acid as a trap-and-trigger probe in the nonsteady state system. For the first time, the Φ•OHPMS value was measured to be 0.56 by the direct method, which is stoichiometrically equal to ΦSO4•-PMS (0.57 ± 0.02). Additionally, radical formation mechanisms were elucidated by density functional theory (DFT) calculations. The theoretical results showed that the highest occupied molecular orbitals of the radical precursors are O-O antibonding orbitals, facilitating the destabilization of the peroxy bond for radical formation. Electronic structures of these precursors were compared, aiming to rationalize the tendency of the Φ values we observed. Overall, this time-resolved technique with specific probes can be used as a reliable tool to determine Φ, serving as a scientific basis for the accurate performance evaluation of diverse radical-based treatment processes.


Assuntos
Radical Hidroxila , Sulfatos , Sulfatos/química , Radical Hidroxila/química , Purificação da Água/métodos , Oxirredução , Peróxido de Hidrogênio/química
5.
Sci Total Environ ; 931: 172898, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697543

RESUMO

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Sulfitos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Sulfitos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Sulfatos/metabolismo , Hidrogênio/metabolismo , Bactérias/metabolismo , Ferro/metabolismo
6.
Geobiology ; 22(3): e12600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725144

RESUMO

Microbial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes. When energy availability is limited, cell-specific sulfate respiration rates and net sulfur isotope fractionation inversely covary. Beyond net S isotope fractionation values, we also quantified shifts in protein expression, abundances and isotopic composition of intracellular S metabolites, and lipid structures and lipid/water H isotope fractionation values. These coupled approaches reveal which protein abundances shift directly as a function of energy flux, those that vary minimally, and those that may vary independent of energy flux and likely do not contribute to shifts in S-isotope fractionation. By coupling the bulk S-isotope observations with quantitative proteomics, we provide novel constraints for metabolic isotope models. Together, these results lay the foundation for more predictive metabolic fractionation models, alongside interpretations of environmental sulfur and sulfate reducer lipid-H isotope data.


Assuntos
Desulfovibrio vulgaris , Proteômica , Isótopos de Enxofre , Isótopos de Enxofre/análise , Isótopos de Enxofre/metabolismo , Desulfovibrio vulgaris/metabolismo , Proteoma/metabolismo , Proteoma/análise , Metabolismo Energético , Metaboloma , Proteínas de Bactérias/metabolismo , Oxirredução , Sulfatos/metabolismo
7.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710573

RESUMO

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Assuntos
Antivirais , Herpesvirus Humano 1 , Polissacarídeos , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Herpesvirus Humano 1/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Células Vero , Humanos , Sulfatos/química , Sulfatos/farmacologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos
8.
Environ Microbiol Rep ; 16(3): e13263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705733

RESUMO

Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence.


Assuntos
Bactérias , Sedimentos Geológicos , Ferro , Metano , Oxirredução , Enxofre , Metano/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Água do Mar/microbiologia , Água do Mar/química , Sulfetos/metabolismo , Sulfatos/metabolismo , RNA Ribossômico 16S/genética , Filogenia
9.
Org Biomol Chem ; 22(19): 3986-3994, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695061

RESUMO

Algae-based marine carbohydrate drugs are typically decorated with negative ion groups such as carboxylate and sulfate groups. However, the precise synthesis of highly sulfated alginates is challenging, thus impeding their structure-activity relationship studies. Herein we achieve a microwave-assisted synthesis of a range of highly sulfated mannuronate glycans with up to 17 sulfation sites by overcoming the incomplete sulfation due to the electrostatic repulsion of crowded polyanionic groups. Although the partially sulfated tetrasaccharide had the highest affinity for the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, the fully sulfated octasaccharide showed the most potent interference with the binding of the RBD to angiotensin-converting enzyme 2 (ACE2) and Vero E6 cells, indicating that the sulfated oligosaccharides might inhibit the RBD binding to ACE2 in a length-dependent manner.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Micro-Ondas , Polissacarídeos , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Chlorocebus aethiops , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/química , Células Vero , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/síntese química , Humanos , Animais , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Ácidos Hexurônicos/síntese química , Sulfatos/química , Sulfatos/farmacologia , Sulfatos/síntese química , Tratamento Farmacológico da COVID-19 , Relação Estrutura-Atividade
10.
Environ Microbiol ; 26(5): e16628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757470

RESUMO

The degradation of freshwater systems by salt pollution is a threat to global freshwater resources. Salinization is commonly identified by increased specific conductance (conductivity), a proxy for salt concentrations. However, conductivity fails to account for the diversity of salts entering freshwaters and the potential implications this has on microbial communities and functions. We tested 4 types of salt pollution-MgCl2, MgSO4, NaCl, and Na2SO4-on bacterial taxonomic and functional α-, ß-diversity of communities originating from streams in two distinct localities (Nebraska [NE] and Ohio [OH], USA). Community responses depended on the site of origin, with NE and OH exhibiting more pronounced decreases in community diversity in response to Na2SO4 and MgCl2 than other salt amendments. A closer examination of taxonomic and functional diversity metrics suggests that core features of communities are more resistant to induced salt stress and that marginal features at both a population and functional level are more likely to exhibit significant structural shifts based on salt specificity. The lack of uniformity in community response highlights the need to consider the compositional complexities of salinization to accurately identify the ecological consequences of instances of salt pollution.


Assuntos
Bactérias , Água Doce , Microbiota , Salinidade , Cloreto de Sódio , Água Doce/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/genética , Microbiota/efeitos dos fármacos , Ohio , Sulfatos/metabolismo , Biodiversidade , Sulfato de Magnésio/farmacologia , Cloreto de Magnésio/farmacologia
11.
Mar Drugs ; 22(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786622

RESUMO

Five new sulfated arylpyrrole and arylpyrrolone alkaloids, denigrins H-L (1-5), along with two known compounds, dictyodendrin B and denigrin G, were isolated from an extract of a New Zealand Dictyodendrilla c.f. dendyi marine sponge. Denigrins H-L represent the first examples of sulfated denigrins, with denigrins H and I (1-2), as derivatives of denigrin D, containing a pyrrolone core, and denigrins J-L (3-5), as derivatives of denigrin E (6), containing a pyrrole core. Their structures were elucidated by interpretation of 1D and 2D NMR spectroscopic data, ESI, and HR-ESI-MS spectrometric data, as well as comparison with literature data. Compounds 1-5, along with six known compounds previously isolated from the same extract, showed minimal cytotoxicity against the HeLa cervical cancer cell line.


Assuntos
Alcaloides , Poríferos , Pirróis , Animais , Poríferos/química , Humanos , Nova Zelândia , Pirróis/farmacologia , Pirróis/química , Pirróis/isolamento & purificação , Células HeLa , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Sulfatos/química , Sulfatos/farmacologia , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação
12.
Mar Drugs ; 22(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786623

RESUMO

Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen-host interactions, presenting a strategic target for therapeutic intervention. In this study, we assembled a glycan library comprising heparin, its oligosaccharide derivatives, and a variety of marine-derived sulfated glycans to screen the potential inhibitors for the pathogen-host interactions. By using Surface Plasmon Resonance spectroscopy, we evaluated the library's efficacy in inhibiting the interaction between M. pneumoniae adhesion proteins and heparin. Our findings offer a promising avenue for developing novel therapeutic strategies against M. pneumoniae infections.


Assuntos
Heparina , Mycoplasma pneumoniae , Polissacarídeos , Mycoplasma pneumoniae/efeitos dos fármacos , Heparina/farmacologia , Heparina/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Organismos Aquáticos , Humanos , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Pneumonia por Mycoplasma/tratamento farmacológico , Pneumonia por Mycoplasma/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Interações Hospedeiro-Patógeno , Sulfatos/química , Sulfatos/farmacologia
13.
Chemosphere ; 358: 141959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608772

RESUMO

The sulfate-reduction process plays a crucial role in the biological valorization of SOx gases. However, a complete understanding of the sulfidogenic process in bioreactors is limited by the lack of technologies for characterizing the sulfate-reducing activity of immobilized biomass. In this work, we propose a flow-cell bioreactor (FCB) for characterizing sulfate-reducing biomass using H2S microsensors to monitor H2S production in real-time within a biofilm. To replace natural immobilization through extracellular polymeric substance production, sulfidogenic sludge was artificially immobilized using polymers. Physical and sulfate-reducing activity studies were performed to select a polymer-biomass matrix that maintained sulfate-reducing activity of biomass while providing strong microbial retention and mechanical strength. Several operational conditions of the sulfidogenic reactor allowed to obtain a H2S profiles under different inlet sulfate loads and, additionally, 3D mapping was assessed in order to perform a hydraulic characterization. Besides, the effects of artificial immobilization on biodiversity were investigated through the characterization of microbial communities. This study demonstrated the appropriateness of immobilized-biomass for characterization of sulfidogenic biomass in FCB using H2S electrochemical microsensors, and beneficial microbiological communities shifts as well as enrichment of sulfate-reducing bacteria have been confirmed.


Assuntos
Reatores Biológicos , Sulfeto de Hidrogênio , Esgotos , Sulfatos , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Sulfeto de Hidrogênio/análise , Sulfatos/metabolismo , Sulfatos/análise , Biomassa , Biofilmes , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Bactérias/metabolismo , Oxirredução
14.
Arch Microbiol ; 206(5): 218, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625565

RESUMO

There is a great scientific curiosity to discover all environments sheltering microalgae, especially those with exceptional characteristics from coldest to hottest ones, the purpose remains to explore the potential of the native microalgae flora and the research for new bioactive compounds. This study aimed to isolate a polysaccharide-producing microalga from an extreme ecosystem and to evaluate its capacity to inhibit the α-D-glucosidase enzyme. Chlorella strain is isolated from hypersaline Lake in the Algerian desert. The exopolysaccharide extraction was performed by the concentration of free-cell supernatant in a rotary evaporator. The infrared analysis showed a characteristic footprint of carbohydrates with particular functional groups, such as sulfate. Gas chromatography-mass spectrometry has revealed a hetero-exopolysaccharide composed of galactose 35.75%, glucose 21.13%, xylose 16.81%, fructose 6.96%, arabinose 5.10%, and glucuronic acid 2.68%. The evaluation of the anti-hyperglycemic activity demonstrated a significant α-D-glucosidase inhibition of 80.94 ± 0.01% at 10 mg mL-1 with IC50 equal to 4.31 ± 0.20 mg mL-1. This study opens a vast prospect to use exopolysaccharides as natural nutraceutical or food additive.


Assuntos
Chlorella , Sulfatos , Ecossistema , Arabinose , Glucosidases
15.
Environ Pollut ; 350: 124004, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641039

RESUMO

The Fe(II)/Fe(III) cycle is an important driving force for dissolution and transformation of jarosite. Divalent heavy metals usually coexist with jarosite; however, their effects on Fe(II)-induced jarosite transformation and different repartitioning behavior during mineral dissolution-recrystallization are still unclear. Here, we investigated Fe(II)-induced (1 mM Fe(II)) jarosite conversion in the presence of Cd(II), Mn(II), Co(II), Ni(II) and Pb(II) (denoted as Me(II), 1 mM), respectively, under anaerobic condition at neutral pH. The results showed that all co-existing Me(II) retarded Fe(II)-induced jarosite dissolution. In the Fe(II)-only system, jarosite first rapidly transformed to lepidocrocite (an intermediate product) and then slowly to goethite; lepidocrocite was the main product. In Fe(II)-Cd(II), -Mn(II), and -Pb(II) systems, coexisting Cd(II), Mn(II) and Pb(II) retarded the above process and lepidocrocite was still the dominant conversion product. In Fe(II)-Co(II) system, coexisting Co(II) promoted lepidocrocite transformation into goethite. In Fe(II)-Ni(II) system, jarosite appeared to be directly converted into goethite, although small amounts of lepidocrocite were detected in the final product. In all treatments, the appearance or accumulation of lepidocrocite may be also related to the re-adsorption of released sulfate. By the end of reaction, 6.0 %, 4.0 %, 76.0 % 11.3 % and 19.2 % of total Cd(II), Mn(II), Pb(II) Co(II) and Ni(II) were adsorbed on the surface of solid products. Up to 49.6 %, 44.3 %, and 21.6 % of Co(II), Ni(II), and Pb(II) incorporated into solid product, with the reaction indicating that the dynamic process of Fe(II) interaction with goethite may promote the continuous incorporation of Co(II), Ni(II), and Pb(II).


Assuntos
Compostos Férricos , Metais Pesados , Minerais , Compostos Férricos/química , Minerais/química , Metais Pesados/química , Cátions Bivalentes , Sulfatos/química , Compostos Ferrosos/química , Manganês/química , Ferro/química , Poluentes do Solo/química
16.
Environ Microbiol Rep ; 16(2): e13248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581137

RESUMO

Sulphate-reducing bacteria (SRB) are the main culprits of microbiologically influenced corrosion in water-flooding petroleum reservoirs, but some sulphur-oxidising bacteria (SOB) are stimulated when nitrate and oxygen are injected, which control the growth of SRB. This study aimed to determine the distributions of SRB and SOB communities in injection-production systems and to analyse the responses of these bacteria to different treatments involving nitrate and oxygen. Desulfovibrio, Desulfobacca, Desulfobulbus, Sulfuricurvum and Dechloromonas were commonly detected via 16S rRNA gene sequencing. Still, no significant differences were observed for either the SRB or SOB communities between injection and production wells. Three groups of water samples collected from different sampling sites were incubated. Statistical analysis of functional gene (dsrB and soxB) clone libraries and quantitative polymerase chain reaction showed that the SOB community structures were more strongly affected by the nitrate and oxygen levels than SRB clustered according to the sampling site; moreover, both the SRB and SOB community abundances significantly changed. Additionally, the highest SRB inhibitory effect and the lowest dsrB/soxB ratio were obtained under high concentrations of nitrate and oxygen in the three groups, suggesting that the synergistic effect of nitrate and oxygen level was strong on the inhibition of SRB by potential SOB.


Assuntos
Desulfovibrio , Petróleo , Nitratos , Sulfatos , Água , RNA Ribossômico 16S/genética , Bactérias , Desulfovibrio/genética , Compostos Orgânicos , Enxofre , Oxirredução
17.
Huan Jing Ke Xue ; 45(5): 3088-3097, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629569

RESUMO

Mulching to conserve moisture has become an important agronomic practice in saline soil cultivation, and the effects of the dual stress of salinity and microplastics on soil microbes are receiving increasing attention. In order to investigate the effect of polyethylene microplastics on the microbial community of salinized soils, this study investigated the effects of different types (chloride and sulphate) and concentrations (weak, medium, and strong) of polyethylene (PE) microplastics (1% and 4% of the dry weight mass of the soil sample) on the soil microbial community by simulating microplastic contamination in salinized soil environments indoors. The results showed that:PE microplastics reduced the diversity and abundance of microbial communities in salinized soils and were more strongly affected by sulphate saline soil treatments. The relative abundance of each group of bacteria was more strongly changed in the sulphate saline soil treatment than in the chloride saline soil treatment. At the phylum level, the relative abundance of Proteobacteria was positively correlated with the abundance of fugitive PE microplastics, whereas the relative abundances of Bacteroidota, Actinobacteriota, and Acidobacteria were negatively correlated with the abundance of fugitive PE microplastics. At the family level, the relative abundances of Flavobacteriaceae, Alcanivoracaceae, Halomonadaceae, and Sphingomonasceae increased with increasing abundance of PE microplastics. The KEGG metabolic pathway prediction showed that the relative abundance of microbial metabolism and genetic information functions were reduced by the presence of PE microplastics, and the inhibition of metabolic functions was stronger in sulphate saline soils than in chloride saline soils, whereas the inhibition of genetic information functions was weaker than that in chloride saline soils. The secondary metabolic pathways of amino acid metabolism, carbohydrate metabolism, and energy metabolism were inhibited. It was hypothesized that the reduction in metabolic functions may have been caused by the reduced relative abundance of the above-mentioned secondary metabolic pathways. This study may provide a theoretical basis for the study of the effects of microplastics and salinization on the soil environment under the dual pollution conditions.


Assuntos
Microplásticos , Polietileno , Plásticos , Solo , Cloretos , Halogênios , Sulfatos , Microbiologia do Solo
18.
ACS Appl Mater Interfaces ; 16(15): 18591-18607, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564431

RESUMO

Coronavirus disease 2019 (COVID-19) has caused a global pandemic since its onset in 2019, and the development of effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce potent and long-lasting immunity remains a priority. Herein, we prepared two Lactobacillus exopolysaccharide (EPS) nanoparticle adjuvants (NPs 7-4 and NPs 8-2) that were constructed by using sulfation-modified EPS and quaternization-modified chitosan. These two NPs displayed a spherical morphology with sizes of 39 and 47 nm. Furthermore, the zeta potentials of NPs 7-4 and NPs 8-2 were 50.40 and 44.40 mV, respectively. In vitro assays demonstrated that NPs could effectively adsorb antigenic proteins and exhibited a sustained release effect. Mouse immunization tests showed that the NPs induced the expression of cytokines and chemokines at the injection site and promoted the uptake of antigenic proteins by macrophages. Mechanically, the NPs upregulated the expression of pattern recognition receptors (toll-like receptors and nod-like receptors) and activated the immune response of T cells and the production of neutralizing antibodies. In addition, the NP adjuvants had favorable immune-enhancing effects in cats, which are of great significance for controlling the trans-host transmission and re-endemicity of SARS-CoV-2. Overall, we demonstrated that NP-adjuvanted SARS-CoV-2 receptor binding domain proteins could induce robust specific humoral and cellular immunity.


Assuntos
COVID-19 , Nanopartículas , Animais , Camundongos , Gatos , Vacinas contra COVID-19 , SARS-CoV-2 , Sulfatos/farmacologia , Adjuvantes Imunológicos/química , Nanopartículas/química , Adjuvantes Farmacêuticos/farmacologia , Imunidade Celular , Vacinas de Subunidades Antigênicas/farmacologia
19.
Chem Commun (Camb) ; 60(33): 4495-4498, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38567462

RESUMO

We have demonstrated that cisplatin (CP), an anticancer drug, showed a preference for binding the sulfated-L-iduronic acid (S-L-IdoA) unit over the sulfated-D-glucuronic acid unit of heparan sulfate. The multivalency of S-L-IdoA, such as in the proteoglycan mimic, resulted in distinct modes of cell-surface engineering in normal and cancer cells, with these disparities having a significant impact on CP-mediated toxicity.


Assuntos
Cisplatino , Proteoglicanas , Heparitina Sulfato/química , Ácido Glucurônico/metabolismo , Ácido Idurônico , Sulfatos
20.
J Environ Sci (China) ; 143: 85-98, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644026

RESUMO

Ciprofloxacin (CIP) is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections. When CIP is discharged into the sewage system, it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics. In this study, boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate (EAP) process. Iron was added to the system as a coactivator and the process was called EAP+Fe. The effects of independent variables, including pH, Fe2+, persulfate concentration, and electrolysis time on the system were optimized using the response surface methodology. The results showed that the EAP+Fe process removed 94% of CIP under the following optimum conditions: A pH of 3, persulfate/Fe2+ concentration of 0.4 mmol/L, initial CIP concentration 30 mg/L, and electrolysis time of 12.64 min. CIP removal efficiency was increased from 65.10% to 94.35% by adding Fe2+ as a transition metal. CIP degradation products, 7 pathways, and 78 intermediates of CIP were studied, and three of those intermediates (m/z 298, 498, and 505) were reported. The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals, including fathead minnow, Daphnia magna, Tetrahymena pyriformis, and rats. The optimum operation costs were similar in EAP and EAP+Fe processes, approximately 0.54 €/m3.


Assuntos
Antibacterianos , Ciprofloxacina , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Antibacterianos/química , Antibacterianos/toxicidade , Ciprofloxacina/toxicidade , Animais , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Técnicas Eletroquímicas , Sulfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...