Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.106
Filtrar
1.
Adv Exp Med Biol ; 1456: 3-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39261421

RESUMO

Depressive disorder exhibits heterogeneity in clinical presentation, progression, and treatment outcomes. While conventional antidepressants based on the monoamine hypothesis benefit many patients, a significant proportion remains unresponsive or fails to fully recover. An individualized integrative treatment approach, considering diverse pathophysiologies, holds promise for these individuals. The endocrine system, governing physiological regulation and organ homeostasis, plays a pivotal role in central nervous system functions. Dysregulations in endocrine system are major cause of depressive disorder due to other medical conditions. Subtle endocrine abnormalities, such as subclinical hypothyroidism, are associated with depression. Conversely, depressive disorder correlates with endocrine-related biomarkers. Fluctuations in sex hormone levels related to female reproduction, elevate depression risk in susceptible subjects. Consequently, extensive research has explored treatment strategies involving the endocrine system. Treatment guidelines recommend tri-iodothyronine augmentation for resistant depression, while allopregnanolone analogs have gained approval for postpartum depression, with ongoing investigations for broader depressive disorders. This book chapter will introduce the relationship between the endocrine system and depressive disorders, presenting clinical findings on neuroendocrinological treatments for depression.


Assuntos
Antidepressivos , Transtorno Depressivo , Humanos , Antidepressivos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/metabolismo , Feminino , Tri-Iodotironina/uso terapêutico , Tri-Iodotironina/metabolismo
3.
Sci Total Environ ; 950: 175337, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39117194

RESUMO

Because of its ubiquitous occurrence in the environment, decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, has been widely concerned. However, its transgenerational thyroid disrupting potential and intricate mechanism are barely explored. Therefore, zebrafish embryos were exposed to environmentally relevant concentrations of DBDPE (0, 0.1, 1 and 10 nM) until sexual maturity. The results indicated that life-time exposure to DBDPE caused anxiety-like behavior in unexposed offspring. Furthermore, the changing of thyroid hormones as well as transcriptional and DNA methylation level in the promoter region of related genes were evaluated. The thyroid disruptions observed in F1 larvae were primarily attributed to excessive transfer of thyroid hormone from F0 adults to F1 eggs. Conversely, the disruptions in F2 larvae were likely due to inherited epigenetic changes, specifically hypomethylation of crh and hypermethylation of ugt1ab, passed down from the F1 generation. Additionally, our results revealed sex-specific responses of the hypothalamic-pituitary-thyroid (HPT) axis in adult zebrafish. Furthermore, thyroid disruptions observed in unexposed offspring were more likely inherited from their mothers. The current results prompted our in-depth understanding of the multi- and transgenerational toxicity by DBDPE, and also highlighted the need to consider their adverse effects on persistent and inheritable epigenetic changes in future research on emerging pollutants.


Assuntos
Bromobenzenos , Epigênese Genética , Retardadores de Chama , Glândula Tireoide , Peixe-Zebra , Animais , Glândula Tireoide/efeitos dos fármacos , Retardadores de Chama/toxicidade , Bromobenzenos/toxicidade , Disruptores Endócrinos/toxicidade , Metilação de DNA/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Hormônios Tireóideos/metabolismo , Sistema Endócrino/efeitos dos fármacos , Feminino , Masculino
4.
Compr Physiol ; 14(2): 5371-5387, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-39109973

RESUMO

The exocrine and endocrine are functionally distinct compartments of the pancreas that have traditionally been studied as separate entities. However, studies of embryonic development, adult physiology, and disease pathogenesis suggest there may be critical communication between exocrine and endocrine cells. In fact, the incidence of the endocrine disease diabetes secondary to exocrine disease/dysfunction ranges from 25% to 80%, depending on the type and severity of the exocrine pathology. Therefore, it is necessary to investigate how exocrine-endocrine "crosstalk" may impact pancreatic function. In this article, we discuss common exocrine diseases, including cystic fibrosis, acute, hereditary, and chronic pancreatitis, and the impact of these exocrine diseases on endocrine function. Additionally, we review how obesity and fatty pancreas influence exocrine function and the impact on cellular communication between the exocrine and endocrine compartments. Interestingly, in all pathologies, there is evidence that signals from the exocrine disease contribute to endocrine dysfunction and the progression to diabetes. Continued research efforts to identify the mechanisms that underlie the crosstalk between various cell types in the pancreas are critical to understanding normal pancreatic physiology as well as disease states. © 2024 American Physiological Society. Compr Physiol 14:5371-5387, 2024.


Assuntos
Pâncreas Exócrino , Pancreatopatias , Humanos , Animais , Pancreatopatias/fisiopatologia , Pancreatopatias/patologia , Pancreatopatias/metabolismo , Pâncreas Exócrino/fisiopatologia , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia , Pâncreas/fisiopatologia , Pâncreas/patologia , Sistema Endócrino/fisiopatologia , Sistema Endócrino/fisiologia
5.
Front Endocrinol (Lausanne) ; 15: 1458422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188914

RESUMO

Despite the lack of endogenous synthesis and relevant nuclear receptors, several papers have been published over the decades claiming that the physiology of mollusks is affected by natural and synthetic sex steroids. With scant evidence for the existence of functional steroid nuclear receptors in mollusks, some scientists have speculated that the effects of steroids might be mediated via membrane receptors (i.e. via non-genomic/non-classical actions) - a mechanism that has been well-characterized in vertebrates. However, no study has yet investigated the ligand-binding ability of such receptor candidates in mollusks. The aim of the present study was to further trace the evolution of the endocrine system by investigating the presence of functional membrane sex steroid receptors in a mollusk, the great pond snail (Lymnaea stagnalis). We detected sequences homologous to the known vertebrate membrane sex steroid receptors in the Lymnaea transcriptome and genome data: G protein-coupled estrogen receptor-1 (GPER1); membrane progestin receptors (mPRs); G protein-coupled receptor family C group 6 member A (GPRC6A); and Zrt- and Irt-like protein 9 (ZIP9). Sequence analyses, including conserved domain analysis, phylogenetics, and transmembrane domain prediction, indicated that the mPR and ZIP9 candidates appeared to be homologs, while the GPER1 and GPRC6A candidates seemed to be non-orthologous receptors. All candidates transiently transfected into HEK293MSR cells were found to be localized at the plasma membrane, confirming that they function as membrane receptors. However, the signaling assays revealed that none of the candidates interacted with the main vertebrate steroid ligands. Our findings strongly suggest that functional membrane sex steroid receptors which would be homologous to the vertebrate ones are not present in Lymnaea. Although further experiments are required on other molluscan model species as well, we propose that both classical and non-classical sex steroid signaling for endocrine responses are specific to chordates, confirming that molluscan and vertebrate endocrine systems are fundamentally different.


Assuntos
Sistema Nervoso , Animais , Sistema Nervoso/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Lymnaea/metabolismo , Lymnaea/fisiologia , Moluscos/metabolismo , Sistema Endócrino/metabolismo , Filogenia , Receptores de Estrogênio/metabolismo , Humanos , Receptores de Progesterona/metabolismo , Hormônios Esteroides Gonadais/metabolismo
6.
Domest Anim Endocrinol ; 89: 106872, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059301

RESUMO

Fibroblast growth factors (FGFs) are a group of structurally homologous yet functionally pleiotropic proteins. Canonical and intracellular FGFs have primarily autocrine or paracrine effects. However, the FGF19 subfamily, composed of FGF15/19, FGF21, and FGF23, act as endocrine hormones that regulate bile acid, metabolic, and phosphorus homeostasis, respectively. Current research in human and rodent models demonstrates the potential of these endocrine FGFs to target various diseases, including disorders of inherited hypophosphatemia, chronic liver disease, obesity, and insulin resistance. Many diseases targeted for therapeutic use in humans have pathophysiological overlaps in domestic animals. Despite the potential clinical and economic impact, little is known about endocrine FGFs and their signaling pathways in major domestic animal species compared with humans and laboratory animals. This review aims to describe the physiology of these endocrine FGFs, discuss their current therapeutic use, and summarize the contemporary literature regarding endocrine FGFs in domestic animals, focusing on potential future directions.


Assuntos
Animais Domésticos , Fatores de Crescimento de Fibroblastos , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento de Fibroblastos 23 , Sistema Endócrino/fisiologia , Humanos
8.
Adv Protein Chem Struct Biol ; 142: 421-436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39059993

RESUMO

Host-pathogen interactions are complex associations which evolve over long co-evolutionary histories. Pathogens exhibit different mechanisms to gain advantage over their host. Mimicry of host factors is an influential tool in subverting host mechanisms to ensure pathogenesis. This chapter discusses such molecular mimicry exhibited during viral infections. Understanding the evolutionary relationships, shared identity and functional impact of the virus encoded mimics is critical. With a particular emphasis on viral mimics and their association with cancer and autoimmune diseases, this chapter highlights the importance of molecular mimicry in virus biology.


Assuntos
Mimetismo Molecular , Humanos , Vírus/metabolismo , Interações Hospedeiro-Patógeno , Viroses/metabolismo , Viroses/virologia , Viroses/imunologia , Sistema Endócrino/metabolismo , Neoplasias/metabolismo , Neoplasias/virologia , Animais , Doenças Autoimunes/metabolismo , Doenças Autoimunes/virologia , Doenças Autoimunes/imunologia
9.
Front Endocrinol (Lausanne) ; 15: 1418089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055053

RESUMO

A key goal of the field of endocrinology has been to understand the hormonal mechanisms that drive social behavior and influence reactions to others, such as oxytocin. However, it has sometimes been challenging to understand which aspects and influences of hormonal action are conserved and common among mammalian species, and which effects differ based on features of these species, such as social system. This challenge has been exacerbated by a focus on a relatively small number of traditional model species. In this review, we first demonstrate the benefits of using non-traditional models for the study of hormones, with a focus on oxytocin as a case study in adding species with diverse social systems. We then expand our discussion to explore differing effects of oxytocin (and its response to behavior) within a species, with a particular focus on relationship context and social environment among primate species. Finally, we suggest key areas for future exploration of oxytocin's action centrally and peripherally, and how non-traditional models can be an important resource for understanding the breadth of oxytocin's potential effects.


Assuntos
Sistema Endócrino , Ocitocina , Comportamento Social , Ocitocina/metabolismo , Ocitocina/fisiologia , Animais , Humanos , Sistema Endócrino/fisiologia , Primatas , Meio Social
10.
Aquat Toxicol ; 273: 107000, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875953

RESUMO

Nodularin is a potent cyanotoxin that has been detected in aquatic environments as well as in the body of aquatic organisms throughout the world, but its effects on the reproductive system are yet to be explored. The present study investigated the toxic effects of environmentally relevant concentrations of nodularin on the reproductive endocrine system of female zebrafish (Danio rerio). After exposure to nodularin for 14 days, decreased gonadosomatic Index (GSI), germinal vesicle breakdown (GVBD), and decreased level of follicle-stimulating hormone (FSH), luteinizing hormone (LH), 17ß-estradiol (E2) level and increased testosterone (T) content in female zebrafish suggested that nodularin may disrupt both oocyte growth and maturation. In support of this data, alteration in different marker gene expression on the hypothalamic-pituitary-gonadal-liver (HPGL) axis was observed. Transcriptional levels of genes related to steroidogenesis including cytochrome P450 aromatase (cyp19a1a) in the ovary and primary vitellogenin genes (vtg1, vtg2, and vtg3) in the liver were down-regulated and marker genes for oxidative stress (sod, cat, and gpx) were up-regulated on HPGL axis. These findings revealed for the first time that nodularin is a potent endocrine-disrupting compound posing oxidative stress and causes reproductive endocrine toxicity in female zebrafish, emphasizing the importance of assessing its environmental risks.


Assuntos
Ovário , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Feminino , Poluentes Químicos da Água/toxicidade , Ovário/efeitos dos fármacos , Vitelogeninas/genética , Vitelogeninas/metabolismo , Sistema Endócrino/efeitos dos fármacos , Estradiol , Disruptores Endócrinos/toxicidade , Reprodução/efeitos dos fármacos , Fígado/efeitos dos fármacos , Testosterona , Estresse Oxidativo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Hormônio Foliculoestimulante , Hormônio Luteinizante
11.
J Vet Med Sci ; 86(7): 756-768, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38777756

RESUMO

Effects of different winter paddock management of Thoroughbred weanlings and yearlings in Hokkaido, Japan, which is extremely cold in winter, on physiological function, endocrine function and growth were investigated. They were divided into two groups; those kept outdoors for 22 hr in the paddock (22hr group) and those kept outdoors for 7 hr in daytime with walking exercise for 1 hr using the horse-walker (7hr+W group), and the changes in daily distance travelled, body temperature (BT), heart rate (HR), HR variability (HRV), endocrine function and growth parameters were compared between the two groups from November at the year of birth to January at 1 year of age. The 7hr+W group could travel almost the same distance as the 22hr group by using the horse-walker. The 22hr group had a lower rate of increase in body weight than the 7hr+W group in January. In addition, lower in BT and HR were observed, and HRV analysis showed an increase in high frequency power spectral density, indicating that parasympathetic nervous activity was dominant. And also, changes in circulating cortisol and thyroxine were not observed despite cold environment. On the other hand, the 7hr+W group had higher prolactin and insulin like growth factor than the 22hr group in January, and cortisol and thyroxine were also increased. Physiological and endocrinological findings from the present study indicate that the management of the 7hr+W group is effective in promoting growth and maintaining metabolism during the winter season.


Assuntos
Criação de Animais Domésticos , Sistema Endócrino , Cavalos , Japão , Cavalos/crescimento & desenvolvimento , Criação de Animais Domésticos/métodos , Estações do Ano , Sistema Endócrino/fisiologia , Temperatura Baixa , Frequência Cardíaca , Masculino , Feminino , Animais , Hormônios/sangue , Aumento de Peso/fisiologia , Condicionamento Físico Animal
12.
Toxicology ; 505: 153846, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38815618

RESUMO

Atrazine (ATR) is one of the most widely utilized herbicides globally and is prevalent in the environment due to its extensive use and long half-life. It can infiltrate the human body through drinking water, ingestion, and dermal contact, and has been recognized as an environmental endocrine disruptor. This study aims to comprehensively outline the detrimental impacts of ATR on the endocrine system. Previous research indicates that ATR is harmful to various bodily systems, including the reproductive system, nervous system, adrenal glands, and thyroi d gland. The toxic effects of ATR on the endocrine system and its underlying molecular mechanisms are summarized as follows: influencing the expression of kisspeptin in the HPG axis, consequently affecting steroid synthesis; disrupting DNA synthesis and meiosis, as well as modifying DNA methylation levels, leading to reproductive and developmental toxicity; impacting dopamine by altering Nurr1, VMAT2, and DAT expression, consequently affecting dopamine synthesis and transporter expression, and influencing other neurotransmitters, resulting in neurotoxicity; and changing adipose tissue synthesis and metabolism by reducing basal metabolism, impairing cellular oxidative phosphorylation, and inducing insulin resistance. Additionally, a compilation of natural products used to mitigate the toxic effects of ATR has been provided, encompassing melatonin, curcumin, quercetin, lycopene, flavonoids, vitamin C, vitamin E, and other natural remedies. It is important to note that existing research predominantly relies on in vitro and ex vivo experiments, with limited population-based empirical evidence available.


Assuntos
Atrazina , Disruptores Endócrinos , Herbicidas , Atrazina/toxicidade , Humanos , Animais , Disruptores Endócrinos/toxicidade , Herbicidas/toxicidade , Sistema Endócrino/efeitos dos fármacos
13.
Arch Toxicol ; 98(7): 2019-2045, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38704806

RESUMO

For endocrine disrupting chemicals (EDC) the existence of "safe exposure levels", that is exposure levels that do not present an appreciable risk to human health is most controversially discussed, as is the existence of health-based reference values. Concerns have been especially raised that EDCs might not possess a threshold level such that no exposure level to EDCs can be considered safe. To explore whether or not threshold levels can be identified, we performed a screening exercise on 14 pesticidal and biocidal active substances previously identified as EDCs in the European Union. The respective substances are ideal subjects for case studies to review for endocrine activity and disruptive potential following well-defined regulatory assessment based on solid data to effectually establish adversity as consequence of endocrine disruption. Dimethomorph, metiram and propiconazole for which the weight of evidence demonstrating endocrine disruption was the strongest were used as subjects for further study. Epoxiconazole was additionally selected as its effects on the endocrine system are extensive. For all four substances, analysis of the toxicological data clearly indicated thresholds of adversity below which no adverse effects mediated through an endocrine mechanism were observed. Particular emphasis was placed on mechanistic considerations including homeostasis and the concept of adversity. As a proof of concept this study provides evidence that like other substances of toxicological concern EDCs have threshold levels for adversity. While for some EDCs the respective thresholds might indeed be very low this shows that, data allowing, for other EDCs sufficiently protective reference values can be derived.


Assuntos
Disruptores Endócrinos , Disruptores Endócrinos/toxicidade , Humanos , Medição de Risco , Animais , Praguicidas/toxicidade , Exposição Ambiental/efeitos adversos , Triazóis/toxicidade , União Europeia , Nível de Efeito Adverso não Observado , Sistema Endócrino/efeitos dos fármacos , Compostos de Epóxi/toxicidade
15.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612627

RESUMO

The aryl hydrocarbon receptor (AHR) serves as a ligand-activated transcription factor crucial for regulating fundamental cellular and molecular processes, such as xenobiotic metabolism, immune responses, and cancer development. Notably, a spectrum of endocrine-disrupting chemicals (EDCs) act as agonists or antagonists of AHR, leading to the dysregulation of pivotal cellular and molecular processes and endocrine system disruption. Accumulating evidence suggests a correlation between EDC exposure and the onset of diverse pancreatic diseases, including diabetes, pancreatitis, and pancreatic cancer. Despite this association, the mechanistic role of AHR as a linchpin molecule in EDC exposure-related pathogenesis of pancreatic diseases and cancer remains unexplored. This review comprehensively examines the involvement of AHR in EDC exposure-mediated regulation of pancreatic pathogenesis, emphasizing AHR as a potential therapeutic target for the pathogenesis of pancreatic diseases and cancer.


Assuntos
Pancreatopatias , Neoplasias Pancreáticas , Pancreatite , Humanos , Receptores de Hidrocarboneto Arílico/genética , Pancreatopatias/etiologia , Neoplasias Pancreáticas/etiologia , Pancreatite/induzido quimicamente , Sistema Endócrino
16.
Environ Toxicol Pharmacol ; 107: 104435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588759

RESUMO

This study investigated the impact of neonatal exposure to endocrine-active compounds (EACs): flutamide (antiandrogen), 4-tert-octylphenol (an estrogenic compound), and methoxychlor (an organochlorine insecticide exhibiting estrogenic, antiestrogenic and antiandrogenic activities) on androgen production within porcine adrenal glands. The expression of genes related to androgen synthesis and the level of androgen production were analyzed (i) in the adrenal glands of piglets exposed to EACs during the first 10 days of life (in vivo study), and (ii) in adrenal explants from sow-fed or formula-fed 10-day-old piglets incubated with EACs (ex vivo study). EACs affected the expression of genes linked to adrenal androgen biosynthesis. The prominent effect of methoxychlor on downregulation of StAR, CYP11A1 and HSD3B and upregulation of CYP17A1 and SULT2A1 were demonstrated. Furthermore, our study revealed divergent response to EACs between sow-fed and formula-fed piglets, suggesting that natural feeding may provide protection against adverse EACs effects, particularly those interfering with estrogens action.


Assuntos
Androgênios , Metoxicloro , Animais , Feminino , Suínos , Metoxicloro/metabolismo , Sistema Endócrino , Estrogênios , Antagonistas de Androgênios/toxicidade
17.
World J Gastroenterol ; 30(9): 1073-1095, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577191

RESUMO

Hepatocrinology explores the intricate relationship between liver function and the endocrine system. Chronic liver diseases such as liver cirrhosis can cause endocrine disorders due to toxin accumulation and protein synthesis disruption. Despite its importance, assessing endocrine issues in cirrhotic patients is frequently neglected. This article provides a comprehensive review of the epidemiology, pathophysiology, diagnosis, and treatment of endocrine disturbances in liver cirrhosis. The review was conducted using the PubMed/Medline, EMBASE, and Scielo databases, encompassing 172 articles. Liver cirrhosis is associated with endocrine disturbances, including diabetes, hypoglycemia, sarcopenia, thyroid dysfunction, hypogonadotropic hypogonadism, bone disease, adrenal insufficiency, growth hormone dysfunction, and secondary hyperaldosteronism. The optimal tools for diagnosing diabetes and detecting hypoglycemia are the oral glucose tolerance test and continuous glucose monitoring system, respectively. Sarcopenia can be assessed through imaging and functional tests, while other endocrine disorders are evaluated using hormonal assays and imaging studies. Treatment options include metformin, glucagon-like peptide-1 analogs, sodium-glucose co-transporter-2 inhibitors, and insulin, which are effective and safe for diabetes control. Established standards are followed for managing hypoglycemia, and hormone replacement therapy is often necessary for other endocrine dysfunctions. Liver transplantation can address some of these problems.


Assuntos
Diabetes Mellitus , Hipoglicemia , Sarcopenia , Humanos , Automonitorização da Glicemia , Sarcopenia/diagnóstico , Sarcopenia/etiologia , Sarcopenia/terapia , Glicemia/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Cirrose Hepática/terapia , Sistema Endócrino/metabolismo , Diabetes Mellitus/epidemiologia , Insulina/uso terapêutico , Hipoglicemia/complicações
18.
Nat Rev Endocrinol ; 20(7): 414-425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38514815

RESUMO

The acid-labile subunit (ALS) of the insulin-like growth factor (IGF) binding protein (IGFBP) complex, encoded in humans by IGFALS, has a vital role in regulating the endocrine transport and bioavailability of IGF-1 and IGF-2. Accordingly, ALS has a considerable influence on postnatal growth and metabolism. ALS is a leucine-rich glycoprotein that forms high-affinity ternary complexes with IGFBP-3 or IGFBP-5 when they are occupied by either IGF-1 or IGF-2. These complexes constitute a stable reservoir of circulating IGFs, blocking the potentially hypoglycaemic activity of unbound IGFs. ALS is primarily synthesized by hepatocytes and its expression is lower in non-hepatic tissues. ALS synthesis is strongly induced by growth hormone and suppressed by IL-1ß, thus potentially serving as a marker of growth hormone secretion and/or activity and of inflammation. IGFALS mutations in humans and Igfals deletion in mice cause modest growth retardation and pubertal delay, accompanied by decreased osteogenesis and enhanced adipogenesis. In hepatocellular carcinoma, IGFALS is described as a tumour suppressor; however, its contribution to other cancers is not well delineated. This Review addresses the endocrine physiology and pathology of ALS, discusses the latest cell and proteomic studies that suggest emerging cellular roles for ALS and outlines its involvement in other disease states.


Assuntos
Glicoproteínas , Humanos , Animais , Glicoproteínas/metabolismo , Proteínas de Transporte/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/fisiologia , Fator de Crescimento Insulin-Like II/metabolismo , Sistema Endócrino/metabolismo , Peptídeos Semelhantes à Insulina
19.
Horm Behav ; 161: 105529, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492501

RESUMO

Central to the navigation of an ever-changing environment is the ability to form positive associations with places and conspecifics. The functions of location and social conditioned preferences are often studied independently, limiting our understanding of their interplay. Furthermore, a de-emphasis on natural functions of conditioned preferences has led to neurobiological interpretations separated from ecological context. By adopting a naturalistic and ethological perspective, we uncover complexities underlying the expression of conditioned preferences. Development of conditioned preferences is a combination of motivation, reward, associative learning, and context, including for social and spatial environments. Both social- and location-dependent reward-responsive behaviors and their conditioning rely on internal state-gating mechanisms that include neuroendocrine and hormone systems such as opioids, dopamine, testosterone, estradiol, and oxytocin. Such reinforced behavior emerges from mechanisms integrating past experience and current social and environmental conditions. Moreover, social context, environmental stimuli, and internal state gate and modulate motivation and learning via associative reward, shaping the conditioning process. We highlight research incorporating these concepts, focusing on the integration of social neuroendocrine mechanisms and behavioral conditioning. We explore three paradigms: 1) conditioned place preference, 2) conditioned social preference, and 3) social conditioned place preference. We highlight nonclassical species to emphasize the naturalistic applications of these conditioned preferences. To fully appreciate the complex integration of spatial and social information, future research must identify neural networks where endocrine systems exert influence on such behaviors. Such research promises to provide valuable insights into conditioned preferences within a broader naturalistic context.


Assuntos
Recompensa , Animais , Motivação/fisiologia , Humanos , Sistema Endócrino/fisiologia , Comportamento Social , Condicionamento Psicológico/fisiologia , Aprendizagem por Associação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA