Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.761
Filtrar
1.
BMC Anesthesiol ; 24(1): 172, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720250

RESUMO

BACKGROUND: Low immune function after laparoscopic total gastrectomy puts patients at risk of infection-related complications. Low-dose naloxone (LDN) can improve the prognosis of patients suffering from chronic inflammatory diseases or autoimmune diseases. The use of LDN during perioperative procedures may reduce perioperative complications. The purpose of this study was to examine the effects of LDN on endogenous immune function in gastric cancer patients and its specific mechanisms through a randomized controlled trial. METHODS: Fifty-five patients who underwent laparoscopic-assisted total gastrectomy were randomly assigned to either a naloxone group (n = 23) or a nonnaloxone group (n = 22). Patients in the naloxone group received 0.05 µg/kg-1.h- 1naloxone from 3 days before surgery to 5 days after surgery via a patient-controlled intravenous injection (PCIA) pump, and patients in the nonnaloxone group did not receive special treatment. The primary outcomes were the rates of postoperative complications and immune function assessed by NK cell, CD3+ T cell, CD4+ T cell, CD8+ T cell, WBC count, neutrophil percentage, and IL-6 and calcitonin levels. The secondary outcomes were the expression levels of TLR4 (Toll-like receptor), IL-6 and TNF-α in gastric cancer tissue. RESULTS: Compared with the nonnaloxone group, the naloxone group exhibited a lower incidence of infection (in the incision, abdomen, and lungs) (P < 0.05). The numbers of NK cells and CD8+ T cells in the naloxone group were significantly greater than those in the nonnaloxone group at 24 h after surgery (P < 0.05) and at 96 h after surgery (P < 0.05). Compared with those in the nonnaloxone group, the CD3 + T-cell (P < 0.05) and CD4 + T-cell (P < 0.01) counts were significantly lower in the naloxone group 24 h after surgery. At 24 h and 96 h after surgery, the WBC count (P < 0.05) and neutrophil percentage (P < 0.05) were significantly greater in the nonnaloxone group. The levels of IL-6 (P < 0.05) and calcitonin in the nonnaloxone group were significantly greater at 24 h after surgery. At 24 h following surgery, the nonnaloxone group had significantly greater levels of IL-6 (P < 0.05) and calcitonin than did the naloxone group. Compared with those in the naloxone group, the expression levels of TLR4 (P < 0.05) in gastric cancer tissue in the naloxone group were greater; however, the expression levels of IL-6 (P < 0.01) and TNF-α (P < 0.01) in the naloxone group were greater than those in the nonnaloxone group. CONCLUSION: Laparoscopic total gastrectomy patients can benefit from 0.05 ug/kg- 1. h- 1 naloxone by reducing their risk of infection. It is possible that LDN alters the number of cells in lymphocyte subpopulations, such as NK cells, CD3 + T cells, and CD4 + T cells, and the CD4+/CD8 + T-cell ratio or alters TLR4 receptor expression in immune cells, thereby altering immune cell activity. TRIAL REGISTRATION: The trial was registered at the Chinese Clinical Trial Registry on 24/11/2023 (ChiCTR2300077948).


Assuntos
Gastrectomia , Laparoscopia , Naloxona , Complicações Pós-Operatórias , Neoplasias Gástricas , Humanos , Naloxona/administração & dosagem , Gastrectomia/métodos , Masculino , Feminino , Laparoscopia/métodos , Pessoa de Meia-Idade , Neoplasias Gástricas/cirurgia , Complicações Pós-Operatórias/prevenção & controle , Idoso , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/farmacologia , Assistência Perioperatória/métodos , Interleucina-6 , Receptor 4 Toll-Like
2.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725852

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Assuntos
Lipopolissacarídeos , Células-Tronco Neoplásicas , Fatores de Transcrição SOX9 , Humanos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Feminino , Lipopolissacarídeos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Transdução de Sinais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Regulação Neoplásica da Expressão Gênica
3.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 354-362, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38733191

RESUMO

Objective: To observe the therapeutic effect of Shengsan Jiedu Huayu decoction in alleviating inflammatory liver injury in rats with acute-on-chronic liver failure (ACLF) and its effect on the activation intensity for the NLRP3 signaling pathway. Methods: 63 SD rats were randomly divided into a blank group, a model group, and low-, medium-, and high-dose groups of Shengsan Jiedu Huayu decoction (7.29 g/kg/d, 14.58 g/kg/d, and 29.16 g/kg/d). The ACLF rat model was replicated using carbon tetrachloride combined with d-galactosamine and lipopolysaccharide. Different dose gradients of the Shengsan Jiedu Huayu decoction were used for a five-day intervention treatment, and then rat serum and tissue samples were collected. A biochemical analyzer was used to detect the serum levels of ALT, AST, and TBIL in rats. ELISA was used to detect serum IL-18 and IL-1ß content. HE staining was used to observe histomorphological changes in liver tissue. Immunohistochemistry was used to detect GSDMD expression in liver tissue. Western blot and PCR were used to detect NLRP3, Caspase1, ASC, TLR4, IL-1ß, IL-18 protein, and mRNA expression levels.The groups were compared using analysis of variance and the rank-sum test. Results: Compared with the blank group, the model group's rat liver tissue was severely injured. Serum levels of ALT, AST, and TBIL, inflammatory factors IL-1ß and IL-18, and the GSDMD protein expression level, NLRP3 expression level, TLR4, caspase 1, ASC, IL-1ß, IL-18 protein, and mRNA (P<0.01) were all significantly increased in the model than the blank group (P<0.01). Additionally, compared with the model group, the low-, medium-, and high-dose groups of Shengsan Jiedu Huayu decoction had improved liver tissue injury in ACLF rats, while the serum levels of ALT, AST, TBIL, IL-1ß, IL-18, liver tissue GSDMD protein, NLRP3, TLR4, caspase 1, and ASC expressions were all lower in the different dose gradients of the Shengsan Jiedu Huayu decoction than the model group, with the most evident reduction in the high-dose group (P<0.01). Conclusion: Shengsan Jiedu Huayu decoction can weaken the activation intensity of the NLRP3 signaling pathway, alleviate liver tissue pathological injury, reduce inflammatory factor release, and alleviate inflammatory liver injury in ACLF rats.


Assuntos
Insuficiência Hepática Crônica Agudizada , Medicamentos de Ervas Chinesas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Insuficiência Hepática Crônica Agudizada/tratamento farmacológico , Insuficiência Hepática Crônica Agudizada/etiologia , Medicamentos de Ervas Chinesas/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Masculino , Interleucina-18/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Interleucina-1beta/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas de Transporte/metabolismo
4.
Mol Biol Rep ; 51(1): 650, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734811

RESUMO

BACKGROUND: Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS: PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.


Assuntos
Apoptose , Capsaicina , Proliferação de Células , Proteínas de Choque Térmico HSP70 , Melanócitos , Mitocôndrias , Transdução de Sinais , Serina-Treonina Quinases TOR , Receptor 4 Toll-Like , Vitiligo , Receptor 4 Toll-Like/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Serina-Treonina Quinases TOR/metabolismo , Vitiligo/metabolismo , Vitiligo/tratamento farmacológico , Capsaicina/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/efeitos dos fármacos , Linhagem Celular , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Autofagia/efeitos dos fármacos
5.
Gut Microbes ; 16(1): 2351532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727248

RESUMO

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Assuntos
Microbioma Gastrointestinal , Lipopolissacarídeos , NF-kappa B , Prevotella , Insuficiência Renal Crônica , Transdução de Sinais , Receptor 4 Toll-Like , Calcificação Vascular , Animais , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , NF-kappa B/metabolismo , Lipopolissacarídeos/metabolismo , Ratos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Humanos , Masculino , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Prevotella/metabolismo , Ratos Sprague-Dawley , Miócitos de Músculo Liso/metabolismo , Osteogênese/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fezes/microbiologia , Inflamassomos/metabolismo
6.
Zhen Ci Yan Jiu ; 49(5): 456-462, 2024 May 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38764116

RESUMO

OBJECTIVES: To observe effects of acupuncture at "Die E acupoint" on the protein expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear transcription factor κB (NF-κB), transcription factor T-bet (T-bet), and GATA-binding protein-3 (GATA-3) in the nasal mucosa and the serum contents of related inflammatory cytokines in rats with allergic rhinitis, so as to explore the mechanism of acupuncture in treating allergic rhinitis. METHODS: Twenty-four healthy SD rats were randomly divided into blank, model, acupuncture, and sham acupuncture groups, with 6 rats in each group. The rat model of allergic rhinitis was established by using ovalbumin induction. The rats in the acupuncture group received bilateral acupuncture at the "Die E acupoint" with a depth of 15-20 mm, while the rats in the sham acupuncture group received only sham acupuncture (light and shallow acupunture of the skin at the "Die E acupoint" ). Both interventions were performed once daily for a total of 6 days. Behavioral scores of rats in each group were recorded. Pathological changes of nasal mucosa were observed by H.E. staining. Serum contents of IgE, ovalbumin-specific IgE (OVA-sIgE), interferon(IFN)-γ, interleukin(IL)-4, IL-10 and IL-17 were measured by ELISA and the protein expression levels of T-bet, GATA-3, TLR4, MyD88 and NF-κB p65 in the nasal mucosa were detected by Western blot. RESULTS: After modeling, compared with the blank group, rats in the model group showed increased behavioral scores, serum IgE, OVA-sIgE, IL-4, and IL-17 contents, and nasal mucosal GATA-3, TLR4, MyD88, and NF-κB p65 protein expression levels (P<0.05), whereas the contents of serum IFN-γ, IL-10 and the protein expression level of T-bet in the nasal mucosa were decreased (P<0.05). Comparison between the EA and model groups showed that acupuncture intervention can decrease the behavioral scores of rats with allergic rhinitis, the contents of serum IgE, OVA-sIgE, IL-4, IL-17, and the protein expression levels of GATA-3, TLR4, MyD88, and NF-κB p65 in the nasal mucosa (P<0.05), and up-regulate the contents of serum IFN-γ, IL-10, and the nasal mucosal T-bet protein expression level. Sham acupuncture did not have a significant modulating effect on the above indicators. Inflammatory infiltration of nasal mucosa was seen in the model group and sham acupuncture, and the inflammatory reaction was milder in the acupuncture group. CONCLUSIONS: Acupuncture at "Die E acupoint" can alleviate the symptoms of allergic rhinitis and suppress the inflammation of nasal mucosa in rats, which may be related to inhibiting the TLR4/MyD88/NF-κB signaling and balancing the levels of cytokines of Th1/Th2 and Treg/Th17, and T-bet/GATA-3.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Fator 88 de Diferenciação Mieloide , NF-kappa B , Ratos Sprague-Dawley , Rinite Alérgica , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Ratos , Rinite Alérgica/terapia , Rinite Alérgica/imunologia , Rinite Alérgica/metabolismo , Rinite Alérgica/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , NF-kappa B/metabolismo , NF-kappa B/genética , NF-kappa B/imunologia , Masculino , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Feminino , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo
7.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732552

RESUMO

Ulcerative colitis (UC) is a chronic intestinal ailment which cannot be completely cured. The occurrence of UC has been on the rise in recent years, which is highly detrimental to patients. The effectiveness of conventional drug treatment is limited. The long-term usage of these agents can lead to substantial adverse effects. Therefore, the development of a safe and efficient dietary supplement is important for the prevention of UC. Echinacea purpurea polysaccharide (EPP) is one of the main bioactive substances in Echinacea purpurea. EPP has many favorable effects, such as antioxidative, anti-inflammatory, and antitumor effects. However, whether EPP can prevent or alleviate UC is still unclear. This study aims to analyze the effect and mechanism of EPP on UC in mice using a 3% dextran sulfate sodium (DSS)-induced UC model. The results showed that dietary supplementation with 200 mg/kg EPP significantly alleviated the shortening of colon length, weight loss, and histopathological damage in DSS-induced colitis mice. Mechanistically, EPP significantly inhibits the activation of the TLR4/NF-κB pathway and preserves the intestinal mechanical barrier integrity by enhancing the expression of claudin-1, ZO-1, and occludin and reducing the loss of goblet cells. Additionally, 16S rRNA sequencing revealed that EPP intervention reduced the abundance of Bacteroides, Escherichia-Shigella, and Klebsiella; the abundance of Lactobacillus increased. The results of nontargeted metabonomics showed that EPP reshaped metabolism. In this study, we clarified the effect of EPP on UC, revealed the potential function of EPP, and supported the use of polysaccharide dietary supplements for UC prevention.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Echinacea , Microbioma Gastrointestinal , NF-kappa B , Polissacarídeos , Receptor 4 Toll-Like , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Polissacarídeos/farmacologia , Echinacea/química , Camundongos , Masculino , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Suplementos Nutricionais , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731953

RESUMO

Cardiac disorders in cancer patients pose significant challenges to disease prognosis. While it has been established that these disorders are linked to cancer cells, the precise underlying mechanisms remain elusive. In this study, we investigated the impact of cancerous ascites from the rat colonic carcinoma cell line RCN9 on H9c2 cardiomyoblast cells. We found that the ascites reduced mitochondrial volume, increased oxidative stress, and decreased membrane potential in the cardiomyoblast cells, leading to apoptosis and autophagy. Although the ascites fluid contained a substantial amount of high-mobility group box-1 (HMGB1), we observed that neutralizing HMGB1 with a specific antibody mitigated the damage inflicted on myocardial cells. Our mechanistic investigations revealed that HMGB1 activated both nuclear factor κB and phosphoinositide 3-kinases-AKT signals through HMGB1 receptors, namely the receptor for advanced glycation end products and toll-like receptor-4, thereby promoting apoptosis and autophagy. In contrast, treatment with berberine (BBR) induced the expression of miR-181c-5p and miR-340-5p while suppressing HMGB1 expression in RCN9 cells. Furthermore, BBR reduced HMGB1 receptor expression in cardiomyocytes, consequently mitigating HMGB1-induced damage. We validated the myocardial protective effects of BBR in a cachectic rat model. These findings underscore the strong association between HMGB1 and cancer cachexia, highlighting BBR as a promising therapeutic agent for myocardial protection through HMGB1 suppression and modulation of the signaling system.


Assuntos
Apoptose , Berberina , Caquexia , Proteína HMGB1 , Animais , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Berberina/farmacologia , Ratos , Caquexia/metabolismo , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Masculino , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ratos Sprague-Dawley , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
BMJ Open Ophthalmol ; 9(1)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702178

RESUMO

BACKGROUND: Dry eye disease is the most commonplace multifractional ocular complication, which has already affected millions of people in the world. It is identified by the excessive buildup of reactive oxygen species, leading to substantial corneal epithelial cell demise and ocular surface inflammation attributed to TLR4. In this study, we aimed to identify potential compounds to treat of dry eye syndrome by exploring in silico methods. METHODS: In this research, molecular docking and dynamics simulation tests were used to examine the effects of selected compounds on TLR4 receptor. Compounds were extracted from different databases and were prepared and docked against TLR4 receptor via Autodock Vina. Celastrol, lumacaftor and nilotinib were selected for further molecular dynamics studies for a deeper understanding of molecular systems consisting of protein and ligands by using the Desmond module of the Schrodinger Suite. RESULTS: The docking results revealed that the compounds are having binding affinity in the range of -5.1 to -8.78 based on the binding affinity and three-dimensional interactions celastrol, lumacaftor and nilotinib were further studied for their activity by molecular dynamics. Among the three compounds, celastrol was the most stable based on molecular dynamics trajectory analysis from 100 ns in the catalytic pockets of 2Z63.pdb.pdb. Root mean square deviation of celastrol/2Z63 was in the range of 1.8-4.8 Å. CONCLUSION: In particular, Glu376 of TLR4 receptor is crucial for the identification and binding of lipopolysaccharides (LPS), which are part of Gram-negative bacteria's outer membrane. In our investigation, celastrol binds to Glu376, suggesting that celastrol may prevent the dry eye syndrome by inhibiting LPS's binding to TLR4.


Assuntos
Síndromes do Olho Seco , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Triterpenos Pentacíclicos , Pirimidinas , Receptor 4 Toll-Like , Síndromes do Olho Seco/tratamento farmacológico , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/química , Humanos , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/química , Simulação por Computador , Ligantes , Aminopiridinas/farmacologia , Aminopiridinas/química , Aminopiridinas/uso terapêutico
10.
Cell Biochem Funct ; 42(4): e4059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773900

RESUMO

Cerebral ischemic stroke remains a leading cause of mortality and morbidity worldwide. Toll-like receptor 4 (TLR4) has been implicated in neuroinflammatory responses poststroke, particularly in the infiltration of immune cells and polarization of macrophages. This study aimed to elucidate the impact of TLR4 deficiency on neutrophil infiltration and subsequent macrophage polarization after middle cerebral artery occlusion (MCAO), exploring its role in stroke prognosis. The objective was to investigate how TLR4 deficiency influences neutrophil behavior poststroke, its role in macrophage polarization, and its impact on stroke prognosis using murine models. Wild-type and TLR4-deficient adult male mice underwent MCAO induction, followed by various analyses, including flow cytometry to assess immune cell populations, bone marrow transplantation experiments to evaluate TLR4-deficient neutrophil behaviors, and enzyme-linked immunosorbent assay and Western blot analysis for cytokine and protein expression profiling. Neurobehavioral tests and infarct volume analysis were performed to assess the functional and anatomical prognosis poststroke. TLR4-deficient mice exhibited reduced infarct volumes, increased neutrophil infiltration, and reduced M1-type macrophage polarization post-MCAO compared to wild-type mice. Moreover, the depletion of neutrophils reversed the neuroprotective effects observed in TLR4-deficient mice, suggesting the involvement of neutrophils in mediating TLR4's protective role. Additionally, N1-type neutrophils were found to promote M1 macrophage polarization via neutrophil gelatinase-associated lipocalin (NGAL) secretion, a process blocked by TLR4 deficiency. The study underscores the protective role of TLR4 deficiency in ischemic stroke, delineating its association with increased N2-type neutrophil infiltration, diminished M1 macrophage polarization, and reduced neuroinflammatory responses. Understanding the interplay between TLR4, neutrophils, and macrophages sheds light on potential therapeutic targets for stroke management, highlighting TLR4 as a promising avenue for intervention in stroke-associated neuroinflammation and tissue damage.


Assuntos
Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/deficiência , Camundongos , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Prognóstico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Neutrófilos/metabolismo , Neutrófilos/imunologia
11.
Med Sci Monit ; 30: e945188, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775003

RESUMO

This publication has been retracted by the Editor due to the identification of non-original figure images and manuscript content that raise concerns regarding the credibility and originality of the study and the manuscript. Reference: Ying-Jun Zhang, He Huang, Yu Liu, Bin Kong, Guangji Wang. MD-1 Deficiency Accelerates Myocardial Inflammation and Apoptosis in Doxorubicin-Induced Cardiotoxicity by Activating the TLR4/MAPKs/Nuclear Factor kappa B (NF-kappaB) Signaling Pathway. Med Sci Monit, 2019; 25: 7898-7907. DOI: 10.12659/MSM.919861.


Assuntos
Apoptose , Cardiotoxicidade , Doxorrubicina , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/deficiência , NF-kappa B/metabolismo , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Apoptose/efeitos dos fármacos , Animais , Cardiotoxicidade/metabolismo , Cardiotoxicidade/etiologia , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Camundongos , Antígeno 96 de Linfócito/metabolismo , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo
12.
Cell Mol Life Sci ; 81(1): 203, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698289

RESUMO

Nitrogen metabolism of M. tuberculosis is critical for its survival in infected host cells. M. tuberculosis has evolved sophisticated strategies to switch between de novo synthesis and uptake of various amino acids from host cells for metabolic demands. Pyridoxal phosphate-dependent histidinol phosphate aminotransferase-HspAT enzyme is critically required for histidine biosynthesis. HspAT is involved in metabolic synthesis of histidine, phenylalanine, tyrosine, tryptophan, and novobiocin. We showed that M. tuberculosis Rv2231c is a conserved enzyme with HspAT activity. Rv2231c is a monomeric globular protein that contains α-helices and ß-sheets. It is a secretory and cell wall-localized protein that regulates critical pathogenic attributes. Rv2231c enhances the survival and virulence of recombinant M. smegmatis in infected RAW264.7 macrophage cells. Rv2231c is recognized by the TLR4 innate immune receptor and modulates the host immune response by suppressing the secretion of the antibacterial pro-inflammatory cytokines TNF, IL-12, and IL-6. It also inhibits the expression of co-stimulatory molecules CD80 and CD86 along with antigen presenting molecule MHC-I on macrophage and suppresses reactive nitrogen species formation, thereby promoting M2 macrophage polarization. Recombinant M. smegmatis expressing Rv2231c inhibited apoptosis in macrophages, promoting efficient bacterial survival and proliferation, thereby increasing virulence. Our results indicate that Rv2231c is a moonlighting protein that regulates multiple functions of M. tuberculosis pathophysiology to increase its virulence. These mechanistic insights can be used to better understand the pathogenesis of M. tuberculosis and to design strategies for tuberculosis mitigation.


Assuntos
Macrófagos , Mycobacterium tuberculosis , Transaminases , Camundongos , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Animais , Células RAW 264.7 , Virulência , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transaminases/metabolismo , Transaminases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mycobacterium smegmatis/patogenicidade , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/enzimologia , Citocinas/metabolismo , Receptor 4 Toll-Like/metabolismo , Humanos , Imunidade Inata , Interações Hospedeiro-Patógeno/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
13.
Sci Total Environ ; 931: 172910, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701926

RESUMO

Significant impairment of pulmonary function has been demonstrated through long-term exposure to neonicotinoid insecticides, such as imidacloprid (IMI). However, the underlying mechanisms of lung injury induced by IMI remain unclear. In this study, a mouse model of IMI-induced pulmonary injury was established, and the toxicity and lung damage were assessed through mouse body weight, organ index, hematological parameters, and histopathological analysis of lung tissues. Furthermore, metabolomics and transcriptomics techniques were employed to explore the mechanistic aspects. Results from the toxicity assessments indicated that mouse body weight was significantly reduced by IMI, organ index was disturbed, and hematological parameters were disrupted, resulting in pulmonary injury. The mechanistic experimental results indicate that the differences in metabolites and gene expression in mouse lungs could be altered by IMI. Validation of the results through combined analysis of metabolomics and transcriptomics revealed that the mechanism by which IMI induces lung injury in mice might be associated with the activation of the TLR4 receptor, thereby activating the PI3K/AKT/NF-κB signaling pathway to induce inflammation in mouse lungs. This study provided valuable insights into the mechanisms underlying IMI-induced pulmonary damage, potentially contributing to the development of safer pest control strategies. The knowledge gained served as a robust scientific foundation for the prevention and treatment of IMI-related pulmonary injuries.


Assuntos
Inseticidas , Lesão Pulmonar , NF-kappa B , Neonicotinoides , Nitrocompostos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Camundongos , Lesão Pulmonar/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inseticidas/toxicidade , Receptor 4 Toll-Like/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia
14.
Front Immunol ; 15: 1286270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715610

RESUMO

Immunotherapy is renowned for its capacity to elicit anti-infective and anti-cancer effects by harnessing immune responses to microbial components and bolstering innate healing mechanisms through a cascade of immunological reactions. Specifically, mammalian Toll-like receptors (TLRs) have been identified as key receptors responsible for detecting microbial components. The discovery of these mammalian Toll-like receptors has clarified antigen recognition by the innate immune system. It has furnished a molecular foundation for comprehending the interplay between innate immunity and its anti-tumor or anti-infective capabilities. Moreover, accumulating evidence highlights the crucial role of TLRs in maintaining tissue homeostasis. It has also become evident that TLR-expressing macrophages play a central role in immunity by participating in the clearance of foreign substances, tissue repair, and the establishment of new tissue. This macrophage network, centered on macrophages, significantly contributes to innate healing. This review will primarily delve into innate immunity, specifically focusing on substances targeting TLR4.


Assuntos
Homeostase , Imunidade Inata , Macrófagos , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Humanos , Animais , Ligantes , Macrófagos/imunologia , Macrófagos/metabolismo , Transdução de Sinais
15.
Eur J Med Res ; 29(1): 285, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745325

RESUMO

INTRODUCTION: Hydrogen (H2) is regarded as a novel therapeutic agent against several diseases owing to its inherent biosafety. Bronchopulmonary dysplasia (BPD) has been widely considered among adverse pregnancy outcomes, without effective treatment. Placenta plays a role in defense, synthesis, and immunity, which provides a new perspective for the treatment of BPD. This study aimed to investigate if H2 reduced the placental inflammation to protect the neonatal rat against BPD damage and potential mechanisms. METHODS: We induced neonatal BPD model by injecting lipopolysaccharide (LPS, 1 µg) into the amniotic fluid at embryonic day 16.5 as LPS group. LPS + H2 group inhaled 42% H2 gas (4 h/day) until the samples were collected. We primarily analyzed the neonatal outcomes and then compared inflammatory levels from the control group (CON), LPS group and LPS + H2 group. HE staining was performed to evaluate inflammatory levels. RNA sequencing revealed dominant differentially expressed genes. Bioinformatics analysis (GO and KEGG) of RNA-seq was applied to mine the signaling pathways involved in protective effect of H2 on the development of LPS-induced BPD. We further used qRT-PCR, Western blot and ELISA methods to verify differential expression of mRNA and proteins. Moreover, we verified the correlation between the upstream signaling pathways and the downstream targets in LPS-induced BPD model. RESULTS: Upon administration of H2, the inflammatory infiltration degree of the LPS-induced placenta was reduced, and infiltration significantly narrowed. Hydrogen normalized LPS-induced perturbed lung development and reduced the death ratio of the fetus and neonate. RNA-seq results revealed the importance of inflammatory response biological processes and Toll-like receptor signaling pathway in protective effect of hydrogen on BPD. The over-activated upstream signals [Toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), Caspase1 (Casp1) and NLR family pyrin domain containing 3 (NLRP3) inflammasome] in LPS placenta were attenuated by H2 inhalation. The downstream targets, inflammatory cytokines/chemokines [interleukin (IL)-6, IL-18, IL-1ß, C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1)], were decreased both in mRNA and protein levels by H2 inhalation in LPS-induced placentas to rescue them from BPD. Correlation analysis displayed a positive association of TLR4-mediated signaling pathway both proinflammatory cytokines and chemokines in placenta. CONCLUSION: H2 inhalation ameliorates LPS-induced BPD by inhibiting excessive inflammatory cytokines and chemokines via the TLR4-NFκB-IL6/NLRP3 signaling pathway in placenta and may be a potential therapeutic strategy for BPD.


Assuntos
Displasia Broncopulmonar , Hidrogênio , Inflamação , Lipopolissacarídeos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placenta , Transdução de Sinais , Receptor 4 Toll-Like , Feminino , Gravidez , Lipopolissacarídeos/toxicidade , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Animais , Placenta/metabolismo , Placenta/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Transdução de Sinais/efeitos dos fármacos , Ratos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Administração por Inalação , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/induzido quimicamente , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/prevenção & controle , Interleucina-6/metabolismo , Interleucina-6/genética , Ratos Sprague-Dawley , Modelos Animais de Doenças
16.
PLoS One ; 19(5): e0303740, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748639

RESUMO

Acute kidney injury (AKI) is a sudden loss of renal function with a high mortality rate and inflammation is thought to be the underlying cause. The phenylpropanoid components acteoside (ACT) and isoacteoside (ISO), which were isolated from Cistanche deserticola Y.C.Ma, have been reported to have preventive effects against kidney disorders. This study aimed to investigate the anti-inflammatory properties and protective mechanisms of ACT and ISO. In this investigation, kidney function was assessed using a semi-automatic biochemical analyzer, histopathology was examined using Hematoxylin-Eosin staining and immunohistochemistry, and the concentration of inflammatory cytokines was assessed using an enzyme-linked immunosorbent assay (ELISA) test. In addition, using Western blot and q-PCR, the expression of proteins and genes connected to the NF-κB signaling pathway in mice with lipopolysaccharide (LPS)-induced AKI was found. The findings showed that under AKI intervention in LPS group, ACT group and ISO group, the expression of Rela (Rela gene is responsible for the expression of NFκB p65 protein) and Tlr4 mRNA was considerably elevated (P<0.01), which led to a significant improvement in the expression of MyD88, TLR4, Iκ-Bɑ and NF-κB p65 protein (P<0.001). The levels of Alb, Crea and BUN (P<0.001) increased along with the release of downstream inflammatory factors such as IL-1ß, IL-6, Cys-C, SOD1 and TNF-α (P<0.001). More importantly, the study showed that ISO had a more favorable impact on LPS-induced AKI mice than ACT. In conclusion, by inhibiting NF-κB signaling pathway, ACT and ISO could relieve renal failure and inflammation in AKI, offering a fresh possibility for the therapeutic management of the condition.


Assuntos
Injúria Renal Aguda , Glucosídeos , Inflamação , Lipopolissacarídeos , NF-kappa B , Fenóis , Transdução de Sinais , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Transdução de Sinais/efeitos dos fármacos , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Camundongos , NF-kappa B/metabolismo , Masculino , Fenóis/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Citocinas/metabolismo , Fator de Transcrição RelA/metabolismo
17.
Sci Rep ; 14(1): 11162, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750095

RESUMO

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis. Yet, how lipid loading modulates Mφ inflammatory responses remains unclear. We endeavored to gain mechanistic insights into how pre-loading with free cholesterol modulates Mφ metabolism upon LPS-induced TLR4 signaling. We found that activities of prolyl hydroxylases (PHDs) and factor inhibiting HIF (FIH) are higher in cholesterol loaded Mφs post-LPS stimulation, resulting in impaired HIF-1α stability, transactivation capacity and glycolysis. In RAW264.7 cells expressing mutated HIF-1α proteins resistant to PHDs and FIH activities, cholesterol loading failed to suppress HIF-1α function. Cholesterol accumulation induced oxidative stress that enhanced NRF2 protein stability and triggered a NRF2-mediated antioxidative response prior to and in conjunction with LPS stimulation. LPS stimulation increased NRF2 mRNA and protein expression, but it did not enhance NRF2 protein stability further. NRF2 deficiency in Mφs alleviated the inhibitory effects of cholesterol loading on HIF-1α function. Mutated KEAP1 proteins defective in redox sensing expressed in RAW264.7 cells partially reversed the effects of cholesterol loading on NRF2 activation. Collectively, we showed that cholesterol accumulation in Mφs induces oxidative stress and NRF2 stabilization, which when combined with LPS-induced NRF2 expression leads to enhanced NRF2-mediated transcription that ultimately impairs HIF-1α-dependent glycolytic and inflammatory responses.


Assuntos
Colesterol , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lipopolissacarídeos , Macrófagos , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Colesterol/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Regulação para Cima/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
18.
Neurosci Lett ; 832: 137800, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38697601

RESUMO

Lipopolysaccharide (LPS) is an important neurotoxin that can cause inflammatory activation of microglia. ZC3H12D is a novel immunomodulator, which plays a remarkable role in neurological pathologies. It has not been characterized whether ZC3H12D is involved in the regulation of microglial activation. The aim of this study was to investigate the role of ZC3H12D in LPS-induced pro-inflammatory microglial activation and its potential mechanism. To elucidate this, we established animal models of inflammatory injury by intraperitoneal injection of LPS (10 mg/kg). The results of the open-field test showed that LPS caused impaired motor function in mice. Meanwhile, LPS caused pro-inflammatory activation of microglia in the mice cerebral cortex and inhibited the expression of ZC3H12D. We also constructed in vitro inflammatory injury models by treating BV-2 microglia with LPS (0.5 µg/mL). The results showed that down-regulated ZC3H12D expression was associated with LPS-induced pro-inflammatory microglial activation, and further intervention of ZC3H12D expression could inhibited LPS-induced pro-inflammatory activation of microglia. In addition, LPS activated the TLR4-NF-κB signaling pathway, and this process can also be reversed by promoting ZC3H12D expression. At the same time, the addition of resveratrol, a nutrient previously proven to inhibit pro-inflammatory microglial activation, can also reverse this process by increasing the expression of ZC3H12D. Summarized, our data elucidated that ZC3H12D in LPS-induced pro-inflammatory activation of brain microglia via restraining the TLR4-NF-κB pathway. This study may provide a valuable clue for potential therapeutic targets for neuroinflammation-related injuries.


Assuntos
Lipopolissacarídeos , Microglia , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Inflamação/metabolismo , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL
19.
Aging (Albany NY) ; 16(9): 7961-7978, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709282

RESUMO

BACKGROUND: This study combined bioinformatics and experimental verification in a mouse model of intestinal ischemia-reperfusion injury (IRI) to explore the protection mechanism exerted by butyrate against IRI. METHODS: GeneCards, Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine and GSE190581 were used to explore the relationship between butyrate and IRI and aging. Protein-protein interaction networks involving butyrate and IRI were constructed via the STRING database, with hub gene analysis performed through Cytoscape. Functional enrichment analysis was conducted on intersection genes. A mouse model of IRI was established, followed by direct arterial injection of butyrate. The experiment comprised five groups: normal, sham, model, vehicle, low-dose butyrate, and high-dose butyrate. Intestinal tissue observation was done via transmission electron microscopy (TEM), histological examination via hematoxylin and eosin (H&E) staining, tight junction proteins detection via immunohistochemistry, and Western blot analysis of hub genes. Drug-target interactions were evaluated through molecular docking. RESULTS: Butyrate protected against IRI by targeting 458 genes, including HMGB1 and TLR4. Toll-like receptor pathway was implicated. Butyrate improved intestinal IRI by reducing mucosal damage, increasing tight junction proteins, and lowering levels of HMGB1, TLR4, and MyD88. Molecular docking showed strong binding energies between butyrate and HMGB1 (-3.7 kcal/mol) and TLR4 (-3.8 kcal/mol). CONCLUSIONS: According to bioinformatics predictions, butyrate mitigates IRI via multiple-target and multiple-channel mechanisms. The extent of IRI can be reduced by butyrate through the inhibition of the HMGB1-TLR4-MyD88 signaling pathway, which is related to senescence.


Assuntos
Butiratos , Proteína HMGB1 , Fator 88 de Diferenciação Mieloide , Traumatismo por Reperfusão , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Butiratos/farmacologia , Masculino , Simulação de Acoplamento Molecular , Intestinos/efeitos dos fármacos , Intestinos/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas
20.
Carbohydr Polym ; 337: 122139, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710550

RESUMO

A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked ß-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.


Assuntos
Proteína HMGB1 , NF-kappa B , Hepatopatia Gordurosa não Alcoólica , Pectinas , Rosa , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Rosa/química , Receptor 4 Toll-Like/metabolismo , Proteína HMGB1/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Pectinas/farmacologia , Pectinas/química , Pectinas/isolamento & purificação , Masculino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...