Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.851
Filtrar
1.
J Gene Med ; 26(7): e3716, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961849

RESUMO

BACKGROUND: Differentiation of pluripotent stem cells into desired lineages is the key aspect of regenerative medicine and cell-based therapy. Although RNA interference (RNAi) technology is exploited extensively for this, methods for long term silencing of the target genes leading to differentiation remain a challenge. Sustained knockdown of the target gene by RNAi is often inefficient as a result of low delivery efficiencies, protocol induced toxicity and safety concerns related to viral vectors. Earlier, we established octa-arginine functionalized hydroxyapatite nano vehicles (R8HNPs) for delivery of small interfering RNA (siRNA) against a pluripotency marker gene in mouse embryonic stem cells. Although we demonstrated excellent knockdown efficiency of the target gene, sustained gene silencing leading to differentiation was yet to be achieved. METHODS: To establish a sustained non-viral gene silencing protocol using R8HNP, we investigated various methods of siRNA delivery: double delivery of adherent cells (Adh-D), suspension delivery followed by adherent delivery (Susp + Adh), single delivery in suspension (Susp-S) and multiple deliveries in suspension (Susp-R). Sustained knockdown of a pluripotent marker gene followed by differentiation was analysed by reverse transcriptase-PCR, fluoresence-activated cell sorting and immunofluorescence techniques. Impact on cell viability as a result of repeated exposure of the R8HNP was also tested. RESULTS: Amongst the protocols tested, the most efficient knockdown of the target gene for a prolonged period of time was obtained by repeated suspension delivery of the R8HNP-siRNA conjugate. The long-term silencing of a pluripotency marker gene resulted in differentiation of R1 ESCs predominantly towards the extra embryonic and ectodermal lineages. Cells displayed excellent tolerance to repeated exposures of R8HNPs. CONCLUSIONS: The results demonstrate that R8HNPs are promising, biocompatible, non-viral alternatives for prolonged gene silencing and obtaining differentiated cells for therapeutics.


Assuntos
Diferenciação Celular , Durapatita , Células-Tronco Embrionárias Murinas , RNA Interferente Pequeno , Animais , Camundongos , Durapatita/química , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , RNA Interferente Pequeno/genética , Inativação Gênica , Materiais Biocompatíveis/química , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Nanopartículas/química , Transdução Genética , Interferência de RNA , Técnicas de Silenciamento de Genes
2.
J Gene Med ; 26(7): e3717, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967915

RESUMO

BACKGROUND: Synaptic Ras GTPase activating protein 1 (SYNGAP1)-related non-specific intellectual disability is a neurodevelopmental disorder caused by an insufficient level of SynGAP1 resulting in a dysfunction of neuronal synapses and presenting with a wide array of clinical phenotypes. Hematopoietic stem cell gene therapy has the potential to deliver therapeutic levels of functional SynGAP1 to affected neurons upon transduction of hematopoietic stem and progenitor cells with a lentiviral vector. METHODS: As a novel approach toward the treatment of SYNGAP1, we have generated a lentiviral vector expressing a modified form of SynGAP1 for transduction of human CD34+ hematopoietic stem and progenitor cells. The gene-modified cells were then transplanted into adult immunodeficient SYNGAP1+/- heterozygous mice and evaluated for improvement of SYNGAP1-related clinical phenotypes. Expression of SynGAP1 was also evaluated in the brain tissue of transplanted mice. RESULTS: In our proof-of-concept study, we have demonstrated significant improvement of SYNGAP1-related phenotypes including an improvement in motor abilities observed in mice transplanted with the vector transduced cells because they displayed decreased hyperactivity in an open field assay and an increased latency to fall in a rotarod assay. An increased level of SynGAP1 was also detected in the brains of these mice. CONCLUSIONS: These early-stage results highlight the potential of this stem cell gene therapy approach as a treatment strategy for SYNGAP1.


Assuntos
Terapia Genética , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Deficiência Intelectual , Lentivirus , Proteínas Ativadoras de ras GTPase , Animais , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Terapia Genética/métodos , Humanos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Deficiência Intelectual/terapia , Deficiência Intelectual/genética , Vetores Genéticos/genética , Lentivirus/genética , Transdução Genética , Modelos Animais de Doenças , Encéfalo/metabolismo
3.
Allergol Immunopathol (Madr) ; 52(4): 53-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970265

RESUMO

BACKGROUND: Pulmonary fibrosis is a pathological hallmark of lung injury. It is an aggressive disease that replaces normal lung parenchyma by fibrotic tissue. The transforming growth factor-beta-mothers against decapentaplegic homolog 3 (TGF-ß1-Smad3) signaling pathway plays a key role in regulating lung fibrosis. Decorin (DCN), a small leucine-rich proteoglycan, has a modulatory effect on the immune system by reversibly binding with TGF-ß and reducing its bioavailability. Mesenchymal stem cell (MSC) therapy is a new strategy that has an immune-modulatory capacity. OBJECTIVE: The aim of this study was to introduce a new therapeutic approach to harness remodeling in injured lung. MATERIAL AND METHODS: Bone marrow MSCs were isolated and transduced by decorin gene. Lung injury was induced by bleomycin and mice were treated with MSCs, MSCs-decorin, and decorin. Then, oxidative stress biomarkers, remodeling biomarkers, bronchoalveolar lavage cells, and histopathology study were conducted. RESULTS: Reduced catalase and superoxide dismutase increased due to treatments. Elevated malondialdehyde, hydroxyproline, TGF-ß levels, and polymorphonuclear cells count decreased in the treated groups. Additionally, the histopathology of lung tissues showed controlled inflammation and fibrosis. CONCLUSION: Transfected decorin gene to MSCs and used cell therapy could control remodeling and bleomycin-induced lung injury.


Assuntos
Bleomicina , Decorina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fibrose Pulmonar , Decorina/genética , Decorina/metabolismo , Animais , Camundongos , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/terapia , Lesão Pulmonar/imunologia , Lesão Pulmonar/genética , Transdução Genética , Estresse Oxidativo , Células Cultivadas , Modelos Animais de Doenças , Masculino , Humanos
4.
Cells ; 13(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38920667

RESUMO

Hematopoietic stem cell (HSC) transduction has undergone remarkable advancements in recent years, revolutionizing the landscape of gene therapy specifically for inherited hematologic disorders. The evolution of viral vector-based transduction technologies, including retroviral and lentiviral vectors, has significantly enhanced the efficiency and specificity of gene delivery to HSCs. Additionally, the emergence of small molecules acting as transduction enhancers has addressed critical barriers in HSC transduction, unlocking new possibilities for therapeutic intervention. Furthermore, the advent of gene editing technologies, notably CRISPR-Cas9, has empowered precise genome modification in HSCs, paving the way for targeted gene correction. These striking progresses have led to the clinical approval of medicinal products based on engineered HSCs with impressive therapeutic benefits for patients. This review provides a comprehensive overview of the collective progress in HSC transduction via viral vectors for gene therapy with a specific focus on transduction enhancers, highlighting the latest key developments, challenges, and future directions towards personalized and curative treatments.


Assuntos
Terapia Genética , Vetores Genéticos , Células-Tronco Hematopoéticas , Transdução Genética , Humanos , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Animais , Transplante de Células-Tronco Hematopoéticas , Edição de Genes/métodos
5.
Viruses ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38932120

RESUMO

A gene delivery system utilizing lentiviral vectors (LVs) requires high transduction efficiency for successful application in human gene therapy. Pseudotyping allows viral tropism to be expanded, widening the usage of LVs. While vesicular stomatitis virus G (VSV-G) single-pseudotyped LVs are commonly used, dual-pseudotyping is less frequently employed because of its increased complexity. In this study, we examined the potential of phenotypically mixed heterologous dual-pseudotyped LVs with VSV-G and Sendai virus hemagglutinin-neuraminidase (SeV-HN) glycoproteins, termed V/HN-LV. Our findings demonstrated the significantly improved transduction efficiency of V/HN-LV in various cell lines of mice, cynomolgus monkeys, and humans compared with LV pseudotyped with VSV-G alone. Notably, V/HN-LV showed higher transduction efficiency in human cells, including hematopoietic stem cells. The efficient incorporation of wild-type SeV-HN into V/HN-LV depended on VSV-G. SeV-HN removed sialic acid from VSV-G, and the desialylation of VSV-G increased V/HN-LV infectivity. Furthermore, V/HN-LV acquired the ability to recognize sialic acid, particularly N-acetylneuraminic acid on the host cell, enhancing LV infectivity. Overall, VSV-G and SeV-HN synergistically improve LV transduction efficiency and broaden its tropism, indicating their potential use in gene delivery.


Assuntos
Vetores Genéticos , Proteína HN , Lentivirus , Vírus Sendai , Transdução Genética , Proteínas do Envelope Viral , Animais , Humanos , Vetores Genéticos/genética , Lentivirus/genética , Vírus Sendai/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Camundongos , Proteína HN/genética , Proteína HN/metabolismo , Linhagem Celular , Macaca fascicularis , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Tropismo Viral , Células HEK293 , Técnicas de Transferência de Genes , Terapia Genética/métodos
6.
PLoS Pathog ; 20(6): e1012301, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913753

RESUMO

Salmonella enterica Serovar Typhimurium (Salmonella) and its bacteriophage P22 are a model system for the study of horizontal gene transfer by generalized transduction. Typically, the P22 DNA packaging machinery initiates packaging when a short sequence of DNA, known as the pac site, is recognized on the P22 genome. However, sequences similar to the pac site in the host genome, called pseudo-pac sites, lead to erroneous packaging and subsequent generalized transduction of Salmonella DNA. While the general genomic locations of the Salmonella pseudo-pac sites are known, the sequences themselves have not been determined. We used visualization of P22 sequencing reads mapped to host Salmonella genomes to define regions of generalized transduction initiation and the likely locations of pseudo-pac sites. We searched each genome region for the sequence with the highest similarity to the P22 pac site and aligned the resulting sequences. We built a regular expression (sequence match pattern) from the alignment and used it to search the genomes of two P22-susceptible Salmonella strains-LT2 and 14028S-for sequence matches. The final regular expression successfully identified pseudo-pac sites in both LT2 and 14028S that correspond with generalized transduction initiation sites in mapped read coverages. The pseudo-pac site sequences identified in this study can be used to predict locations of generalized transduction in other P22-susceptible hosts or to initiate generalized transduction at specific locations in P22-susceptible hosts with genetic engineering. Furthermore, the bioinformatics approach used to identify the Salmonella pseudo-pac sites in this study could be applied to other phage-host systems.


Assuntos
Bacteriófago P22 , Salmonella typhimurium , Bacteriófago P22/genética , Salmonella typhimurium/virologia , Salmonella typhimurium/genética , Transdução Genética , Transferência Genética Horizontal , Genoma Bacteriano , Empacotamento do DNA
7.
Nat Commun ; 15(1): 4924, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858354

RESUMO

Targeted gene delivery to the brain is a critical tool for neuroscience research and has significant potential to treat human disease. However, the site-specific delivery of common gene vectors such as adeno-associated viruses (AAVs) is typically performed via invasive injections, which limit its applicable scope of research and clinical applications. Alternatively, focused ultrasound blood-brain-barrier opening (FUS-BBBO), performed noninvasively, enables the site-specific entry of AAVs into the brain from systemic circulation. However, when used in conjunction with natural AAV serotypes, this approach has limited transduction efficiency and results in substantial undesirable transduction of peripheral organs. Here, we use high throughput in vivo selection to engineer new AAV vectors specifically designed for local neuronal transduction at the site of FUS-BBBO. The resulting vectors substantially enhance ultrasound-targeted gene delivery and neuronal tropism while reducing peripheral transduction, providing a more than ten-fold improvement in targeting specificity in two tested mouse strains. In addition to enhancing the only known approach to noninvasively target gene delivery to specific brain regions, these results establish the ability of AAV vectors to be evolved for specific physical delivery mechanisms.


Assuntos
Barreira Hematoencefálica , Encéfalo , Dependovirus , Técnicas de Transferência de Genes , Vetores Genéticos , Animais , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Dependovirus/genética , Camundongos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo , Transdução Genética/métodos , Camundongos Endogâmicos C57BL , Engenharia Genética/métodos , Feminino , Masculino , Células HEK293
8.
Zool Res ; 45(4): 781-790, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894521

RESUMO

Precise targeting of specific regions within the central nervous system (CNS) is crucial for both scientific research and gene therapy in the context of brain diseases. Adeno-associated virus 13 (AAV13) is known for its restricted diffusion range within the CNS, making it an ideal choice for precise labeling and administration within small brain regions. However, AAV13 mediates relatively low expression of target genes. Here, we introduced specifically engineered modifications to the AAV13 capsid protein to enhance its transduction efficiency. We first constructed AAV13-YF by mutating tyrosine to phenylalanine on the surface of the AAV13 capsid. We then inserted the 7m8 peptide, known to enhance cell transduction, into positions 587/588 and 585/586 of the AAV13 capsid, resulting in two distinct variants named AAV13-587-7m8 and AAV13-585-7m8, respectively. We found that AAV13-YF exhibited superior in vitro infectivity in HEK293T cells compared to AAV13, while AAV13-587-7m8 and AAV13-585-7m8 showed enhanced CNS infection capabilities in C57BL/6 mice, with AAV13-587-7m8 infection retaining a limited spread range. These modified AAV13 variants hold promising potential for applications in gene therapy and neuroscience research.


Assuntos
Dependovirus , Camundongos Endogâmicos C57BL , Dependovirus/genética , Animais , Humanos , Camundongos , Células HEK293 , Transdução Genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo
9.
Methods Mol Biol ; 2810: 29-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926271

RESUMO

Baculovirus-mediated gene expression in mammalian cells, BacMam, is a useful alternative to transient transfection for recombinant protein production in various types of mammalian cell lines. We decided to establish BacMam in our lab in order to streamline our workflows for gene expression in insect and mammalian cells, as it is straightforward to parallelize the baculovirus generation for both types of eukaryotic cells. This chapter provides a step-by-step description of the protocols we use for the generation of the recombinant BacMam viruses, the transduction of mammalian cell cultures, and optimization of the protein production conditions through small-scale expression and purification tests.


Assuntos
Baculoviridae , Expressão Gênica , Proteínas Recombinantes , Baculoviridae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Animais , Humanos , Vetores Genéticos/genética , Linhagem Celular , Células Sf9 , Transdução Genética/métodos , Transfecção/métodos , Técnicas de Cultura de Células/métodos
10.
Methods Mol Biol ; 2810: 147-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38926278

RESUMO

Lentiviral gene transfer represents a versatile and powerful method for genetic transduction of many cell lines and primary cells including "hard-to-transfect" cells. As a consequence of the integration of the recombinant lentiviral vector into the cellular genome, the transgene is stably maintained, and long-term producing cells are established. Here, we describe the current state of the art and give details for lab-scale production of lentiviral vectors as well as for infection and titration of the viral vectors.


Assuntos
Vetores Genéticos , Lentivirus , Transdução Genética , Transdução Genética/métodos , Lentivirus/genética , Vetores Genéticos/genética , Humanos , Transgenes , Expressão Gênica , Linhagem Celular , Células HEK293 , Transfecção/métodos
11.
Exp Mol Pathol ; 137: 104898, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729059

RESUMO

INTRODUCTION: NK cells are an untapped resource for cancer therapy. Sarcomas transduced with lentiviruses to express human IL-12 are only cleared in mice bearing mature human NK cells. However, systemic inflammation limits IL-12 utilization. Fate control a.k.a. "suicide mechanisms" regulate unchecked systemic inflammation caused by cellular immunotherapies. Despite increasing utilization, there remains limited data on immune consequences or tumor-directed effects of fate control. OBJECTIVES: We sought to engage the mutant thymidylate kinase (mTMPK) metabolic fate control system to regulate systemic inflammation and assess the impact on NK cell effector functions. METHODS: Primary human sarcoma short-passage samples and cell lines were transduced with LV/hu-IL-12_mTMPK engineering expression of IL-12 and an AZT-associated fate control enzyme. We assessed transduced sarcoma responses to AZT engagement and subsequent modulation of NK cell functions as measured by inflammatory cytokine production and cytotoxicity. RESULTS: AZT administration to transduced (LV/hu-IL-12_mTMPK) short-passage primary human sarcomas and human Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma cell lines, abrogated the robust expression of human IL-12. Fate control activation elicited a specific dose-dependent cytotoxic effect measured by metabolic activity (WST-1) and cell death (Incucyte). NK effector functions of IFN-γ and cytotoxic granule release were significantly augmented despite IL-12 abrogation. This correlated with preferentially induced expression of NK cell activation ligands. CONCLUSIONS: mTMPK fate control engagement terminates transduced sarcoma IL-12 production and triggers cell death, but also augments an NK cell-mediated response coinciding with metabolic stress activating surface ligand induction. Fate control engagement could offer a novel immune activation method for NK cell-mediated cancer clearance.


Assuntos
Interleucina-12 , Células Matadoras Naturais , Lentivirus , Sarcoma , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Interleucina-12/genética , Interleucina-12/metabolismo , Lentivirus/genética , Sarcoma/imunologia , Sarcoma/genética , Sarcoma/patologia , Linhagem Celular Tumoral , Transdução Genética , Animais , Camundongos
12.
Blood Cancer Discov ; 5(4): 267-275, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747501

RESUMO

Somatic variants in DNA damage response genes such as ATM are widespread in hematologic malignancies. ATM protein is essential for double-strand DNA break repair. Germline ATM deficiencies underlie ataxia-telangiectasia (A-T), a disease manifested by radiosensitivity, immunodeficiency, and predisposition to lymphoid malignancies. Patients with A-T diagnosed with malignancies have poor tolerance to chemotherapy or radiation. In this study, we investigated chimeric antigen receptor (CAR) T cells using primary T cells from patients with A-T (ATM-/-), heterozygote donors (ATM+/-), and healthy donors. ATM-/- T cells proliferate and can be successfully transduced with CARs, though functional impairment of ATM-/- CAR T-cells was observed. Retroviral transduction of the CAR in ATM-/- T cells resulted in high rates of chromosomal lesions at CAR insertion sites, as confirmed by next-generation long-read sequencing. This work suggests that ATM is essential to preserve genome integrity of CAR T-cells during retroviral manufacturing, and its lack poses a risk of chromosomal translocations and potential leukemogenicity. Significance: CAR T-cells are clinically approved genetically modified cells, but the control of genome integrity remains largely uncharacterized. This study demonstrates that ATM deficiency marginally impairs CAR T-cell function and results in high rates of chromosomal aberrations after retroviral transduction, which may be of concern in patients with DNA repair deficiencies.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Receptores de Antígenos Quiméricos , Retroviridae , Linfócitos T , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Linfócitos T/imunologia , Retroviridae/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/imunologia , Transdução Genética , Dano ao DNA , Imunoterapia Adotiva/métodos
13.
Mol Ther ; 32(7): 2094-2112, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796704

RESUMO

Sialidosis (mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with widespread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart, muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the cerebrospinal fluids and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Mucolipidoses , Neuraminidase , Animais , Dependovirus/genética , Terapia Genética/métodos , Mucolipidoses/terapia , Mucolipidoses/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Humanos , Lisossomos/metabolismo , Camundongos Knockout , Transdução Genética , Expressão Gênica
14.
Mol Ther ; 32(7): 2080-2093, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38715362

RESUMO

Systemic dosing of adeno-associated viral (AAV) vectors poses potential risk of adverse side effects including complement activation triggered by anti-capsid immunity. Due to the multifactorial nature of toxicities observed in this setting, a wide spectrum of immune modulatory regimens are being investigated in the clinic. Here, we discover an IgM cleaving enzyme (IceM) that degrades human IgM, a key trigger in the anti-AAV immune cascade. We then engineer a fusion enzyme (IceMG) with dual proteolytic activity against human IgM and IgG. IceMG cleaves B cell surface antigen receptors and inactivates phospholipase gamma signaling in vitro. Importantly, IceMG is more effective at inhibiting complement activation compared with an IgG cleaving enzyme alone. Upon IV dosing, IceMG rapidly and reversibly clears circulating IgM and IgG in macaques. Antisera from these animals treated with IceMG shows decreased ability to neutralize AAV and activate complement. Consistently, pre-conditioning with IceMG restores AAV transduction in mice passively immunized with human antisera. Thus, IgM cleaving enzymes show promise in simultaneously addressing multiple aspects of anti-AAV immunity mediated by B cells, circulating antibodies and complement. These studies have implications for improving safety of AAV gene therapies and possibly broader applications including organ transplantation and autoimmune diseases.


Assuntos
Ativação do Complemento , Dependovirus , Vetores Genéticos , Imunoglobulina G , Imunoglobulina M , Dependovirus/genética , Dependovirus/imunologia , Animais , Imunoglobulina M/imunologia , Humanos , Imunoglobulina G/imunologia , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Anticorpos Neutralizantes/imunologia , Transdução Genética , Técnicas de Transferência de Genes , Anticorpos Antivirais/imunologia , Proteólise , Terapia Genética/métodos , Engenharia de Proteínas
15.
Mol Ther ; 32(7): 2064-2079, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38715361

RESUMO

We investigated long-term human coagulation factor IX (huFIX) expression of a novel variant when delivered into mice and rhesus macaques and compared transduction efficiencies using two different adeno-associated virus (AAV) capsids. In hemophilic mice injected with KP1-packaged recombinant AAV (rAAV) expressing the hyperactive FIX variant specific activity plasma levels were 10-fold or 2-fold enhanced when compared with wild-type or Padua huFIX injected mice, respectively. In rhesus macaques AAV-LK03 capsid outperformed AAV-KP1 in terms of antigen expression and liver transduction. Two animals from each group showed sustained low-level huFIX expression at 3 months after administration, while one animal from each group lost huFIX mRNA and protein expression over time, despite comparable vector copies. We investigated whether epigenetic differences in the vector episomes could explain this loss of transcription. Cut&Tag analysis revealed lower levels of activating histone marks in the two animals that lost expression. When comparing rAAV genome associated histone modifications in rhesus macaques with those in mice injected with the same vector, the activating histone marks were starkly decreased in macaque-derived episomes. Differential epigenetic marking of AAV genomes may explain different expression profiles in mice and rhesus macaques, as well as the wide dose response variation observed in primates in both preclinical and human clinical trials.


Assuntos
Dependovirus , Epigênese Genética , Fator IX , Vetores Genéticos , Macaca mulatta , Animais , Fator IX/genética , Fator IX/metabolismo , Dependovirus/genética , Camundongos , Humanos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Hemofilia B/genética , Hemofilia B/terapia , Transdução Genética , Terapia Genética/métodos
16.
Exp Eye Res ; 244: 109931, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763353

RESUMO

Gene therapy is one of the strategies that may reduce or reverse progressive neurodegeneration in retinal neurodegenerative diseases. However, efficiently delivering transgenes to retinal ganglion cells (RGCs) remains hard to achieve. In this study, we innovatively investigated transduction efficiency of adeno-associated virus (AAV)-PHP.eB in murine RGCs by retro-orbital venous sinus injection. Five doses of AAV-PHP.eB-EGFP were retro-orbitally injected in venous sinus in adult C57/BL6J mice. Two weeks after administration, RGCs transduction efficiency was quantified by retinal flat-mounts and frozen section co-labeling with RGCs marker Rbpms. In addition, safety of this method was evaluated by RGCs survival rate and retinal morphology. To conform efficacy of this new method, AAV-PHP.eB-CNTF was administrated into mature mice through single retro-orbital venous injection after optic nerve crush injury to evaluate axonal elongation. Results indicated that AAV- PHP.eB readily crossed the blood-retina barrier and was able to transduce more than 90% of RGCs when total dose of virus reached 5 × 1010 vector genomes (vg). Moreover, this technique did not affect RGCs survival rate and retinal morphology. Furthermore, retro-orbital venous delivery of AAV-PHP.eB-CNTF effectively transduced RGCs, robustly promoted axonal regeneration after optic nerve crush injury. Thus, novel AAV-PHP.eB retro-orbital injection provides a minimally invasive and efficient route for transgene delivery in treatment of retinal neurodegenerative diseases.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina , Transdução Genética , Animais , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Camundongos , Dependovirus/genética , Terapia Genética/métodos , Traumatismos do Nervo Óptico/terapia , Traumatismos do Nervo Óptico/metabolismo , Modelos Animais de Doenças , Sobrevivência Celular , Órbita/irrigação sanguínea
17.
Biomed Phys Eng Express ; 10(4)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38772344

RESUMO

Lentiviral transduction is widely used in research, has shown promise in clinical trials involving gene therapy and has been approved for CAR-T cell immunotherapy. However, most modifications are doneex vivoand rely on systemic administration of large numbers of transduced cells for clinical applications. A novel approach utilizingin situbiomaterial-based gene delivery can reduce off-target side effects while enhancing effectiveness of the manipulation process. In this study, poly(ethylene glycol) diacrylate (PEGDA)-based scaffolds were developed to enablein situlentivirus-mediated transduction. Compared to other widely popular biomaterials, PEGDA stands out due to its robustness and cost-effectiveness. These scaffolds, prepared via cryogelation, are capable of flowing through surgical needles in bothin vitroandin vivoconditions, and promptly regain their original shape. Modification with poly(L-lysine) (PLL) enables lentivirus immobilization while interconnected macroporous structure allows cell infiltration into these matrices, thereby facilitating cell-virus interaction over a large surface area for efficient transduction. Notably, these preformed injectable scaffolds demonstrate hemocompatibility, cell viability and minimally inflammatory response as shown by ourin vitroandin vivostudies involving histology and immunophenotyping of infiltrating cells. This study marks the first instance of using preformed injectable scaffolds for delivery of lentivectors, which offers a non-invasive and localized approach for delivery of factors enablingin situlentiviral transduction suitable for both tissue engineering and immunotherapeutic applications.


Assuntos
Criogéis , Técnicas de Transferência de Genes , Lentivirus , Polietilenoglicóis , Polietilenoglicóis/química , Criogéis/química , Humanos , Lentivirus/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Alicerces Teciduais/química , Transdução Genética , Camundongos , Materiais Biocompatíveis/química , Terapia Genética/métodos , Propriedades de Superfície , Injeções , Polilisina/química
18.
Nat Commun ; 15(1): 3780, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710714

RESUMO

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Assuntos
Neovascularização de Coroide , Dependovirus , Terapia Genética , Vetores Genéticos , Epitélio Pigmentado da Retina , Animais , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Terapia Genética/métodos , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/virologia , Neovascularização de Coroide/terapia , Neovascularização de Coroide/genética , Coelhos , Humanos , Técnicas de Transferência de Genes , Degeneração Macular/terapia , Degeneração Macular/genética , Degeneração Macular/patologia , Modelos Animais de Doenças , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retina/virologia , Masculino , Células HEK293
19.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38739683

RESUMO

Temperate phages can interact with bacterial hosts through lytic and lysogenic cycles via different mechanisms. Lysogeny has been identified as the major form of bacteria-phage interaction in the coral-associated microbiome. However, the lysogenic-to-lytic switch of temperate phages in ecologically important coral-associated bacteria and its ecological impact have not been extensively investigated. By studying the prophages in coral-associated Halomonas meridiana, we found that two prophages, Phm1 and Phm3, are inducible by the DNA-damaging agent mitomycin C and that Phm3 is spontaneously activated under normal cultivation conditions. Furthermore, Phm3 undergoes an atypical lytic pathway that can amplify and package adjacent host DNA, potentially resulting in lateral transduction. The induction of Phm3 triggered a process of cell lysis accompanied by the formation of outer membrane vesicles (OMVs) and Phm3 attached to OMVs. This unique cell-lysis process was controlled by a four-gene lytic module within Phm3. Further analysis of the Tara Ocean dataset revealed that Phm3 represents a new group of temperate phages that are widely distributed and transcriptionally active in the ocean. Therefore, the combination of lateral transduction mediated by temperate phages and OMV transmission offers a versatile strategy for host-phage coevolution in marine ecosystems.


Assuntos
Antozoários , Halomonas , Prófagos , Halomonas/virologia , Halomonas/genética , Antozoários/microbiologia , Antozoários/virologia , Prófagos/genética , Prófagos/fisiologia , Animais , Lisogenia , Transdução Genética , Mitomicina/farmacologia
20.
Methods Mol Biol ; 2807: 287-298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743236

RESUMO

The inability of people living with HIV (PLWH) to eradicate human immunodeficiency virus (HIV) infection is due in part to the inadequate HIV-specific cellular immune response. The antiviral function of cytotoxic CD8+ T cells, which are crucial for HIV control, is impaired during chronic viral infection because of viral escape mutations, immune exhaustion, HIV antigen downregulation, inflammation, and apoptosis. In addition, some HIV-infected cells either localize to tissue sanctuaries inaccessible to CD8+ T cells or are intrinsically resistant to CD8+ T cell killing. The novel design of synthetic chimeric antigen receptors (CARs) that enable T cells to target specific antigens has led to the development of potent and effective CAR-T cell therapies. While initial clinical trials using anti-HIV CAR-T cells performed over 20 years ago showed limited anti-HIV effects, the improved CAR-T cell design, which enabled its success in treating cancer, has reinstated CAR-T cell therapy as a strategy for HIV cure with notable progress being made in the recent decade.Effective CAR-T cell therapy against HIV infection requires the generation of anti-HIV CAR-T cells with potent in vivo activity against HIV-infected cells. Preclinical evaluation of anti-HIV efficacy of CAR-T cells and their safety is fundamental for supporting the initiation of subsequent clinical trials in PLWH. For these preclinical studies, we developed a novel humanized mouse model supporting in vivo HIV infection, the development of viremia, and the evaluation of novel HIV therapeutics. Preclinical assessment of anti-HIV CAR-T cells using this mouse model involves a multistep process including peripheral blood mononuclear cells (PBMCs) harvested from human donors, T cell purification, ex vivo T cell activation, transduction with lentiviral vectors encoding an anti-HIV CAR, CAR-T cell expansion and infusion in mice intrasplenically injected with autologous PBMCs followed by the determination of CAR-T cell capacity for HIV suppression. Each of the steps described in the following protocol were optimized in the lab to maximize the quantity and quality of the final anti-HIV CAR-T cell products.


Assuntos
Infecções por HIV , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Animais , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Infecções por HIV/imunologia , Infecções por HIV/terapia , Infecções por HIV/virologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...