Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151.257
Filtrar
1.
AAPS PharmSciTech ; 25(5): 131, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849687

RESUMO

Lipid-based vectors are becoming promising alternatives to traditional therapies over the last 2 decades specially for managing life-threatening diseases like cancer. Cationic lipids are the most prevalent non-viral vectors utilized in gene delivery. The increasing number of clinical trials about lipoplex-based gene therapy demonstrates their potential as well-established technology that can provide robust gene transfection. In this regard, this review will summarize this important point. These vectors however have a modest transfection efficiency. This limitation can be partly addressed by using functional lipids that provide a plethora of options for investigating nucleic acid-lipid interactions as well as in vitro and in vivo nucleic acid delivery for biomedical applications. Despite their lower gene transfer efficiency, lipid-based vectors such as lipoplexes have several advantages over viral ones: they are less toxic and immunogenic, can be targeted, and are simple to produce on a large scale. Researchers are actively investigating the parameters that are essential for an effective lipoplex delivery method. These include factors that influence the structure, stability, internalization, and transfection of the lipoplex. Thorough understanding of the design principles will enable synthesis of customized lipoplex formulations for life-saving therapy.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Lipídeos , Lipossomos , Humanos , Lipídeos/química , Terapia Genética/métodos , Lipossomos/química , Animais , Transfecção/métodos , Vetores Genéticos/química , Ácidos Nucleicos/química , Ácidos Nucleicos/administração & dosagem
2.
Methods Mol Biol ; 2822: 367-386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907929

RESUMO

Transfection with mRNA has been considered superior to that with plasmids since the mRNA can be translated to a protein in the cytosol without entering the nucleus. One disadvantage of using mRNA is its susceptibility to enzymatic biodegradability, and consequently, significant research has occurred to determine nonviral carriers that will sufficiently stabilize this nucleic acid for cellular transport. Histidine-lysine peptides (HK) are one such class of mRNA carriers, which we think serves as a model for other peptides and polymeric carrier systems. When the HK peptide and mRNA are mixed and interact through ionic and nonionic bonds, mRNA polyplexes are formed, which can transfect cells. In contrast to linear HK peptides, branched HK peptides protected and efficiently transfected mRNA into cells. After describing the preparation and biophysical characterization of these polyplexes, we will provide protocols for in vitro and in vivo transfection for these mRNA polyplexes.


Assuntos
Histidina , Lisina , Peptídeos , RNA Mensageiro , Transfecção , Histidina/química , Histidina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lisina/química , Lisina/metabolismo , Transfecção/métodos , Peptídeos/química , Humanos , Animais
3.
Methods Mol Biol ; 2822: 353-365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907928

RESUMO

Polymeric delivery systems could enable the fast- and low-side-effect transport of various RNA classes. Previously, we demonstrated that polyvinylamine (PVAm), a cationic polymer, transfects many kinds of RNAs with high efficiency and low toxicity both in vitro and in vivo. The modification of poly lactic-co-glycolic acid (PLGA) with cartilage-targeting peptide (CAP) enhances its stiffness and tissue-specific delivery of RNA to overcome the avascular nature of articular cartilage. Here we describe the protocol to use PVAm as an RNA carrier, and further, by modifying PVAm with PLGA and CAP, the corresponding co-polymer could be applied for functional RNA delivery for osteoarthritis treatment.


Assuntos
Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polivinil , Polivinil/química , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Humanos , Ácido Láctico/química , Transfecção/métodos , Técnicas de Transferência de Genes , Ácido Poliglicólico/química , Portadores de Fármacos/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Osteoartrite/tratamento farmacológico
4.
Parasit Vectors ; 17(1): 255, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863029

RESUMO

BACKGROUND: RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS: We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS: The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS: C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.


Assuntos
Aedes , Interferência de RNA , RNA de Cadeia Dupla , Transfecção , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Animais , Linhagem Celular , Aedes/genética , Inativação Gênica , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/efeitos dos fármacos
5.
Biomed Pharmacother ; 176: 116893, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850653

RESUMO

Polymer-cationic mediated gene delivery is a well-stablished strategy of transient gene expression (TGE) in mammalian cell cultures. Nonetheless, its industrial implementation is hindered by the phenomenon known as cell density effect (CDE) that limits the cell density at which cultures can be efficiently transfected. The rise in personalized medicine and multiple cell and gene therapy approaches based on TGE, make more relevant to understand how to circumvent the CDE. A rational study upon DNA/PEI complex formation, stability and delivery during transfection of HEK293 cell cultures has been conducted, providing insights on the mechanisms for polyplexes uptake at low cell density and disruption at high cell density. DNA/PEI polyplexes were physiochemically characterized by coupling X-ray spectroscopy, confocal microscopy, cryo-transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR). Our results showed that the ionic strength of polyplexes significantly increased upon their addition to exhausted media. This was reverted by depleting extracellular vesicles (EVs) from the media. The increase in ionic strength led to polyplex aggregation and prevented efficient cell transfection which could be counterbalanced by implementing a simple media replacement (MR) step before transfection. Inhibiting and labeling specific cell-surface proteoglycans (PGs) species revealed different roles of PGs in polyplexes uptake. Importantly, the polyplexes uptake process seemed to be triggered by a coalescence phenomenon of HSPG like glypican-4 around polyplex entry points. Ultimately, this study provides new insights into PEI-based cell transfection methodologies, enabling to enhance transient transfection and mitigate the cell density effect (CDE).


Assuntos
DNA , Glipicanas , Transfecção , Humanos , Células HEK293 , Transfecção/métodos , Glipicanas/metabolismo , Glipicanas/genética , DNA/metabolismo , DNA/genética , Polietilenoimina/química , Proteoglicanas de Heparan Sulfato/metabolismo , Concentração Osmolar
6.
PLoS One ; 19(6): e0297817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833479

RESUMO

Lentiviral vectors derived from human immunodeficiency virus type I are widely used to deliver functional gene copies to mammalian cells for research and gene therapies. Post-transcriptional splicing of lentiviral vector transgene in transduced host and transfected producer cells presents barriers to widespread application of lentiviral vector-based therapies. The present study examined effects of indole derivative compound IDC16 on splicing of lentiviral vector transcripts in producer cells and corresponding yield of infectious lentiviral vectors. Indole IDC16 was shown previously to modify alternative splicing in human immunodeficiency virus type I. Human embryonic kidney 293T cells were transiently transfected by 3rd generation backbone and packaging plasmids using polyethyleneimine. Reverse transcription-quantitative polymerase chain reaction of the fraction of unspliced genomes in human embryonic kidney 293T cells increased up to 31% upon the indole's treatment at 2.5 uM. Corresponding yield of infectious lentiviral vectors decreased up to 4.5-fold in a cell transduction assay. Adjusting timing and duration of IDC16 treatment indicated that the indole's disruption of early stages of transfection and cell cycle had a greater effect on exponential time course of lentiviral vector production than its reduction of post-transcriptional splicing. Decrease in transfected human embryonic kidney 293T proliferation by IDC16 became significant at 10 uM. These findings indicated contributions by early-stage transfection, cell proliferation, and post-transcriptional splicing in transient transfection of human embryonic kidney 293T cells for lentiviral vector production.


Assuntos
Processamento Alternativo , Proliferação de Células , Vetores Genéticos , Indóis , Lentivirus , Transfecção , Humanos , Indóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Vetores Genéticos/genética , Lentivirus/genética , Transfecção/métodos , Células HEK293
7.
Sci Rep ; 14(1): 13179, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849388

RESUMO

Efficient, facile gene modification of cells has become an indispensable part of modern molecular biology. For the majority of cell lines and several primary populations, such modifications can be readily performed through a variety of methods. However, many primary cell lines such as stem cells frequently suffer from poor transfection efficiency. Though several physical approaches have been introduced to circumvent these issues, they often require expensive/specialized equipment and/or consumables, utilize substantial cell numbers and often still suffer from poor efficiency. Viral methods are capable of transducing difficult cellular populations, however such methods can be time consuming for large arrays of gene targets, present biohazard concerns, and result in expression of viral proteins; issues of concern for certain experimental approaches. We report here a widely applicable, low-cost (< $100 CAD) method of electroporation, applicable to small (1-10 µl) cell volumes and composed of equipment readily available to the average investigator. Using this system we observe a sixfold increase in transfection efficiency in embryonic stem cell lines compared to commercial devices. Due to efficiency gains and reductions in volume and applied voltage, this process improves the survival of sensitive stem cell populations while reducing reagent requirements for protocols such as Cas9/gRNAs transfections.


Assuntos
Eletroporação , Transfecção , Transfecção/métodos , Eletroporação/métodos , Animais , Camundongos , Linhagem Celular , Humanos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo
8.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891854

RESUMO

MicroRNAs (miRNAs) regulate approximately one-third of all human genes. The dysregulation of miRNAs has been implicated in the development of numerous human diseases, including cancers. In our investigation focusing on altering specific miRNA expression in human pancreatic cancer cells, we encountered an interesting finding. While two expression vector designs effectively enhanced miR-708 levels, they were unable to elevate mature forms of miR-29b, -1290, -2467, and -6831 in pancreatic cancer cell lines. This finding was also observed in a panel of other non-pancreatic cancer cell lines, suggesting that miRNA processing efficiency was cell line specific. Using a step-by-step approach in each step of miRNA processing, we ruled out alternative strand selection by the RISC complex and transcriptional interference at the primary miRNA (pri-miRNA) level. DROSHA processing and pri-miRNA export from the nucleus also appeared to be occurring normally. We observed precursor (pre-miRNA) accumulation only in cell lines where mature miRNA expression was not achieved, suggesting that the block was occurring at the pre-miRNA stage. To further confirm this, synthetic pre-miRNA mimics that bypass DICER processing were processed into mature miRNAs in all cases. This study has demonstrated the distinct behaviours of different miRNAs with the same vector in the same cell line, the same miRNA between the two vector designs, and with the same miRNA across different cell lines. We identified a stable vector pre-miRNA processing block. Our findings on the structural and sequence differences between successful and non-successful vector designs could help to inform future chimeric miRNA design strategies and act as a guide to other researchers on the intricate processing dynamics that can impact vector efficiency. Our research confirms the potential of miRNA mimics to surmount some of these complexities.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Processamento Pós-Transcricional do RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Processamento Pós-Transcricional do RNA/genética , Linhagem Celular Tumoral , Ribonuclease III/metabolismo , Ribonuclease III/genética , Regulação Neoplásica da Expressão Gênica , Transfecção , Precursores de RNA/genética , Precursores de RNA/metabolismo , Animais
9.
J Zhejiang Univ Sci B ; 25(6): 499-512, 2024 Jun 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38910495

RESUMO

Artificial vascular graft (AVG) fistula is widely used for hemodialysis treatment in patients with renal failure. However, it has poor elasticity and compliance, leading to stenosis and thrombosis. The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery, which is primarily maintained by collagen in the extracellular matrix (ECM) of arterial cells. Studies have revealed that in hepatitis B virus (HBV)-induced liver fibrosis, hepatic stellate cells (HSCs) become hyperactive and produce excessive ECM fibers. Furthermore, mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure. Based on the above factors, we transfected HSCs with the hepatitis B viral X (HBX) gene for simulating the process of HBV infection. Subsequently, these HBX-HSCs were implanted into a polycaprolactone-polyurethane (PCL-PU) bilayer scaffold in which the inner layer is dense and the outer layer consists of pores, which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold. We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization. Then, the vessel scaffold was implanted into a rabbit's neck arteriovenous fistula model. It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit's body. Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels, providing a novel approach for creating clinical vascular access for dialysis.


Assuntos
Células Estreladas do Fígado , Poliésteres , Diálise Renal , Coelhos , Animais , Poliésteres/química , Proteínas Virais Reguladoras e Acessórias , Alicerces Teciduais , Transfecção , Biônica , Poliuretanos , Prótese Vascular , Matriz Extracelular/metabolismo , Humanos , Vírus da Hepatite B/genética , Colágeno , Engenharia Tecidual/métodos , Transativadores
10.
Biotechnol J ; 19(5): e2400090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719592

RESUMO

The production of lentiviral vectors (LVs) pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G) is limited by the associated cytotoxicity of the envelope and by the production methods used, such as transient transfection of adherent cell lines. In this study, we established stable suspension producer cell lines for scalable and serum-free LV production derived from two stable, inducible packaging cell lines, named GPRG and GPRTG. The established polyclonal producer cell lines produce self-inactivating (SIN) LVs carrying a WAS-T2A-GFP construct at an average infectious titer of up to 4.64 × 107 TU mL-1 in a semi-perfusion process in a shake flask and can be generated in less than two months. The derived monoclonal cell lines are functionally stable in continuous culture and produce an average infectious titer of up to 9.38 × 107 TU mL-1 in a semi-perfusion shake flask process. The producer clones are able to maintain a productivity of >1 × 107 TU mL-1 day-1 for up to 29 consecutive days in a non-optimized 5 L stirred-tank bioreactor perfusion process, representing a major milestone in the field of LV manufacturing. As the producer cell lines are based on an inducible Tet-off expression system, the established process allows LV production in the absence of inducers such as antibiotics. The purified LVs efficiently transduce human CD34+ cells, reducing the LV quantities required for gene and cell therapy applications.


Assuntos
Reatores Biológicos , Vetores Genéticos , Lentivirus , Lentivirus/genética , Humanos , Vetores Genéticos/genética , Meios de Cultura Livres de Soro , Linhagem Celular , Técnicas de Cultura de Células/métodos , Cultura de Vírus/métodos , Células HEK293 , Transfecção/métodos
11.
Biotechnol J ; 19(5): e2300672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719621

RESUMO

The production of recombinant adeno-associated virus (rAAV) for gene therapy applications relies on the use of various host cell lines, with suspension-grown HEK293 cells being the preferred expression system due to their satisfactory rAAV yields in transient transfections. As the field of gene therapy continues to expand, there is a growing demand for efficient rAAV production, which has prompted efforts to optimize HEK293 cell line productivity through engineering. In contrast to other cell lines like CHO cells, the transcriptome of HEK293 cells during rAAV production has remained largely unexplored in terms of identifying molecular components that can enhance yields. In our previous research, we analyzed global regulatory pathways and mRNA expression patterns associated with increased rAAV production in HEK293 cells. Our data revealed substantial variations in the expression patterns between cell lines with low (LP) and high-production (HP) rates. Moving to a deeper layer for a more detailed analysis of inflammation-related transcriptome data, we detected an increased expression of interferon-related genes in low-producing cell lines. Following upon these results, we investigated the use of Ruxolitinib, an interferon pathway inhibitor, during the transient production of rAAV in HEK293 cells as potential media additive to boost rAAV titers. Indeed, we find a two-fold increase in rAAV titers compared to the control when the interferon pathways were inhibited. In essence, this work offers a rational design approach for optimization of HEK293 cell line productivity and potential engineering targets, ultimately paving the way for more cost-efficient and readily available gene therapies for patients.


Assuntos
Dependovirus , Interferons , Transdução de Sinais , Humanos , Células HEK293 , Dependovirus/genética , Interferons/metabolismo , Interferons/genética , Nitrilas/farmacologia , Pirimidinas/farmacologia , Transfecção , Pirazóis/farmacologia
12.
Oncotarget ; 15: 275-284, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709242

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19 infection has led to worsened outcomes for patients with cancer. SARS-CoV-2 spike protein mediates host cell infection and cell-cell fusion that causes stabilization of tumor suppressor p53 protein. In-silico analysis previously suggested that SARS-CoV-2 spike interacts with p53 directly but this putative interaction has not been demonstrated in cells. We examined the interaction between SARS-CoV-2 spike, p53 and MDM2 (E3 ligase, which mediates p53 degradation) in cancer cells using an immunoprecipitation assay. We observed that SARS-CoV-2 spike protein interrupts p53-MDM2 protein interaction but did not detect SARS-CoV-2 spike bound with p53 protein in the cancer cells. We further observed that SARS-CoV-2 spike suppresses p53 transcriptional activity in cancer cells including after nutlin exposure of wild-type p53-, spike-expressing tumor cells and inhibits chemotherapy-induced p53 gene activation of p21(WAF1), TRAIL Death Receptor DR5 and MDM2. The suppressive effect of SARS-CoV-2 spike on p53-dependent gene activation provides a potential molecular mechanism by which SARS-CoV-2 infection may impact tumorigenesis, tumor progression and chemotherapy sensitivity. In fact, cisplatin-treated tumor cells expressing spike were found to have increased cell viability as compared to control cells. Further observations on γ-H2AX expression in spike-expressing cells treated with cisplatin may indicate altered DNA damage sensing in the DNA damage response pathway. The preliminary observations reported here warrant further studies to unravel the impact of SARS-CoV-2 and its various encoded proteins including spike on pathways of tumorigenesis and response to cancer therapeutics. More efforts should be directed at studying the effects of the SARS-CoV-2 spike and other viral proteins on host DNA damage sensing, response and repair mechanisms. A goal would be to understand the structural basis for maximal anti-viral immunity while minimizing suppression of host defenses including the p53 DNA damage response and tumor suppression pathway. Such directions are relevant and important including not only in the context of viral infection and mRNA vaccines in general but also for patients with cancer who may be receiving cytotoxic or other cancer treatments.


Assuntos
Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21 , Proteínas Proto-Oncogênicas c-mdm2 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteína Supressora de Tumor p53 , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Sobrevivência Celular/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , SARS-CoV-2/fisiologia , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Transfecção , COVID-19/virologia , COVID-19/metabolismo
13.
Int J Nanomedicine ; 19: 4235-4251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766661

RESUMO

Purpose: In recent years, microfluidic technologies have become mainstream in producing gene therapy nanomedicines (NMeds) following the Covid-19 vaccine; however, extensive optimizations are needed for each NMed type and genetic material. This article strives to improve LNPs for pDNA loading, protection, and delivery, while minimizing toxicity. Methods: The microfluidic technique was optimized to form cationic or neutral LNPs to load pDNA. Classical "post-formulation" DNA addition vs "pre" addition in the aqueous phase were compared. All formulations were characterized (size, homogeneity, zeta potential, morphology, weight yield, and stability), then tested for loading efficiency, nuclease protection, toxicity, and cell uptake. Results: Optimized LNPs formulated with DPPC: Chol:DOTAP 1:1:0.1 molar ratio and 10 µg of DOPE-Rhod, had a size of 160 nm and good homogeneity. The chemico-physical characteristics of cationic LNPs worsened when adding 15 µg/mL of pDNA with the "post" method, while maintaining their characteristics up to 100 µg/mL of pDNA with the "pre" addition remaining stable for 30 days. Interestingly, neutral LNPs formulated with the same method loaded up to 50% of the DNA. Both particles could protect the DNA from nucleases even after one month of storage, and low cell toxicity was found up to 40 µg/mL LNPs. Cell uptake occurred within 2 hours for both formulations with the DNA intact in the cytoplasm, outside of the lysosomes. Conclusion: In this study, the upcoming microfluidic technique was applied to two strategies to generate pDNA-LNPs. Cationic LNPs could load 10x the amount of DNA as the classical approach, while neutral LNPs, which also loaded and protected DNA, showed lower toxicity and good DNA protection. This is a big step forward at minimizing doses and toxicity of LNP-based gene therapy.


Assuntos
Cátions , DNA , Plasmídeos , Plasmídeos/administração & dosagem , Plasmídeos/química , Humanos , Cátions/química , DNA/química , DNA/administração & dosagem , Terapia Genética/métodos , Microfluídica/métodos , Tamanho da Partícula , Nanomedicina , COVID-19/prevenção & controle , Lipossomos/química , Transfecção/métodos , Nanopartículas/química , SARS-CoV-2 , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Compostos de Amônio Quaternário/química , Ácidos Graxos Monoinsaturados
14.
Biotechnol J ; 19(5): e2300671, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38797725

RESUMO

Cell line development for production of vaccine antigens or therapeutic proteins typically involves transfection, selection, and enrichment for high-expressing cells. Enrichment methods include minipool enrichment, antibody-based enrichment, and enrichment based on co-expressed fluorescent biosensor proteins. However, these methods have limitations regarding labor and cost intensity, the generation of antibodies and assurance of their viral safety, and potential expression-interference or signal-saturation of the co-expressed fluorescent protein. To improve the method of fluorescent-protein co-expression, expression constructs were created that constitutively express a model vaccine antigen together with one of three fluorescent proteins having translation initiation controlled by a wildtype or mutant internal ribosome entry site (IRES), for a total of six constructs. The constructs were transfected into Chinese hamster ovary cells (CHO) cells, enriched for high fluorescence, cultured, and tested in a mini bioreactor to identify the most promising construct. The fluorescent protein, Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) with a mutant IRES performed best and was further tested with three additional vaccine antigens. Across the four vaccine antigens, the FUCCI fluorescent protein yielded productivity enhancements, without the need for generating an antibody and assuring its viral safety. Furthermore, FUCCI protein was present in negligible quantities in the cell supernatant, indicating a low risk for contaminating drug substances or vaccine antigen.


Assuntos
Cricetulus , Vacinas , Células CHO , Animais , Vacinas/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Antígenos/genética , Antígenos/metabolismo , Transfecção/métodos , Reatores Biológicos , Cricetinae
15.
ACS Appl Mater Interfaces ; 16(21): 27087-27101, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752799

RESUMO

An ideal vehicle with a high transfection efficiency is crucial for gene delivery. In this study, a type of cationic carbon dot (CCD) known as APCDs were first prepared with arginine (Arg) and pentaethylenehexamine (PEHA) as precursors and conjugated with oleic acid (OA) for gene delivery. By tuning the mass ratio of APCDs to OA, APCDs-OA conjugates, namely, APCDs-0.5OA, APCDs-1.0OA, and APCDs-1.5OA were synthesized. All three amphiphilic APCDs-OA conjugates show high affinity to DNA through electrostatic interactions. APCDs-0.5OA exhibit strong binding with small interfering RNA (siRNA). After being internalized by Human Embryonic Kidney (HEK 293) and osteosarcoma (U2OS) cells, they could distribute in both the cytoplasm and the nucleus. With APCDs-OA conjugates as gene delivery vehicles, plasmid DNA (pDNA) that encodes the gene for the green fluorescence protein (GFP) can be successfully delivered in both HEK 293 and U2OS cells. The GFP expression levels mediated by APCDs-0.5OA and APCDs-1.0OA are ten times greater than that of PEI in HEK 293 cells. Furthermore, APCDs-0.5OA show prominent siRNA transfection efficiency, which is proven by the significantly downregulated expression of FANCA and FANCD2 proteins upon delivery of FANCA siRNA and FANCD2 siRNA into U2OS cells. In conclusion, our work demonstrates that conjugation of CCDs with a lipid structure such as OA significantly improves the gene transfection efficiency, providing a new idea about the designation of nonviral carriers in gene delivery systems.


Assuntos
Carbono , RNA Interferente Pequeno , Transfecção , Humanos , Células HEK293 , Carbono/química , Transfecção/métodos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Lipídeos/química , Cátions/química , DNA/química , Pontos Quânticos/química , Técnicas de Transferência de Genes , Ácido Oleico/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Linhagem Celular Tumoral
16.
Viruses ; 16(5)2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793599

RESUMO

Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus's activity against this type of cancer remains controversial. HPV infection promotes remodeling of the host's immune response, resulting in an immunosuppressive profile. This study assessed the individual role of HPV oncogenes in the cell line MDA-MB-231 transfected with the E5, E6, and E7 oncogenes and co-cultured with peripheral blood mononuclear cells. Immunophenotyping was conducted to evaluate immune system modulation. There was an increase in CD4+ T cell numbers when compared with non-transfected and transfected MDA-MB-231, especially in the Treg profile. Pro-inflammatory intracellular cytokines, such as IFN-γ, TNF-α, and IL-17, were impaired by transfected cells, and a decrease in the cytolytic activity of the CD8+ and CD56+ lymphocytes was observed in the presence of HPV oncogenes, mainly with E6 and E7. The E6 and E7 oncogenes decrease monocyte expression, activating the expected M1 profile. In the monocytes found, a pro-inflammatory role was observed according to the cytokines released in the supernatant. In conclusion, the MDA-MB-231 cell lineage transfected with HPV oncogenes can downregulate the number and function of lymphocytes and monocytes.


Assuntos
Neoplasias da Mama , Citocinas , Humanos , Feminino , Citocinas/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/virologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Transfecção , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/genética , Papillomaviridae/imunologia , Papillomavirus Humano
17.
ACS Appl Mater Interfaces ; 16(20): 25698-25709, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717294

RESUMO

Much of current clinical interest has focused on mRNA therapeutics for the treatment of lung-associated diseases, such as infections, genetic disorders, and cancers. However, the safe and efficient delivery of mRNA therapeutics to the lungs, especially to different pulmonary cell types, is still a formidable challenge. In this paper, we proposed a cationic lipid pair (CLP) strategy, which utilized the liver-targeted ionizable lipid and its derived quaternary ammonium lipid as the CLP to improve liver-to-lung tropism of four-component lipid nanoparticles (LNPs) for in vivo mRNA delivery. Interestingly, the structure-activity investigation identified that using liver-targeted ionizable lipids with higher mRNA delivery performance and their derived lipid counterparts is the optimal CLP design for improving lung-targeted mRNA delivery. The CLP strategy was also verified to be universal and suitable for clinically available ionizable lipids such as SM-102 and ALC-0315 to develop lung-targeted LNP delivery systems. Moreover, we demonstrated that CLP-based LNPs were safe and exhibited potent mRNA transfection in pulmonary endothelial and epithelial cells. As a result, we provided a powerful CLP strategy for shifting the mRNA delivery preference of LNPs from the liver to the lungs, exhibiting great potential for broadening the application scenario of mRNA-based therapy.


Assuntos
Cátions , Lipídeos , Fígado , Pulmão , Nanopartículas , RNA Mensageiro , Nanopartículas/química , Pulmão/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Lipídeos/química , Animais , Fígado/metabolismo , Humanos , Cátions/química , Camundongos , Técnicas de Transferência de Genes , Transfecção/métodos , Lipossomos
18.
Langmuir ; 40(20): 10486-10491, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728233

RESUMO

In view of the excellent prospects of gene therapy and the potential safety and immunogenicity issues challenged by viral vectors, it is of great significance to develop a nonviral vector with low toxicity and low cost. In this work, we report a chitosan nanoparticle (CSNP) to be used as a gene vector prepared through a facile solvent-exchange strategy. Chitosan is first dissolved in ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIM Ac), and then, the solvent is exchanged with water/phosphate-buffered saline (PBS) to remove ionic liquid, forming a final CSNP dispersion after ultrasonication. The prepared CSNP shows a positive surface charge and can condense green fluorescent protein-encoding plasmid (pGFP) at weight ratios (CSNP/pGFP) of 5/1 or higher. Dynamic light scattering size and ζ-potential characterization and gel retardation results confirm the formation of CSNP/pGFP complexes. Compared with plain pGFP, efficient cellular internalization and significantly enhanced green fluorescent protein (GFP) expression are observed by using CSNP as a plasmid vector. Benefitting from the intrinsic biocompatibility, low cost, low immunogenicity, and abundant sources of chitosan, as well as the facile preparation and the efficient gene transfection capacity of CSNP, it is believed that this CSNP could be used as a nonviral gene vector with great clinical translational potentials.


Assuntos
Quitosana , Proteínas de Fluorescência Verde , Nanopartículas , Plasmídeos , Solventes , Quitosana/química , Nanopartículas/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Solventes/química , Plasmídeos/química , Plasmídeos/genética , Técnicas de Transferência de Genes , Transfecção/métodos , Tamanho da Partícula , Células HeLa
19.
Front Biosci (Landmark Ed) ; 29(5): 187, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38812327

RESUMO

BACKGROUND: Eucommia ulmoides Oliver is a unique high-quality natural rubber tree species and rare medicinal tree species in China. The rapid characterization of E. ulmoides gene function has been severely hampered by the limitations of genetic transformation methods and breeding cycles. The polyethylene glycol (PEG)-mediated protoplast transformation system is a multifunctional and rapid tool for the analysis of functional genes in vivo, but it has not been established in E. ulmoides. METHODS: In this study, a large number of highly active protoplasts were isolated from the stems of E. ulmoides seedlings by enzymatic digestion, and green fluorescent protein expression was facilitated using a PEG-mediated method. RESULTS: Optimal enzymatic digestion occurred when the enzyme was digested for 10 h in an enzymatic solution containing 2.5% Cellulase R-10 (w/v), 0.6% Macerozyme R-10 (w/v), 2.5% pectinase (w/v), 0.5% hemicellulase (w/v), and 0.6 mol/L mannitol. The active protoplast yield under this condition was 1.13 × 106 protoplasts/g fresh weight, and the protoplast activity was as high as 94.84%. CONCLUSIONS: This study established the first protoplasm isolation and transient transformation system in hard rubber wood, which lays the foundation for subsequent functional studies of E. ulmoides genes to achieve high-throughput analysis, and provides a reference for future gene function studies of medicinal and woody plants.


Assuntos
Eucommiaceae , Protoplastos , Transfecção , Protoplastos/metabolismo , Eucommiaceae/genética , Eucommiaceae/metabolismo , Transfecção/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Polietilenoglicóis
20.
Nat Commun ; 15(1): 4523, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806464

RESUMO

Interest in gene therapy medicines is intensifying as the first wave of gene-correcting drugs is now reaching patient populations. However, efficacy and safety concerns, laborious manufacturing protocols, and the high cost of the therapeutics are still significant barriers in gene therapy. Here we describe liquid foam as a vehicle for gene delivery. We demonstrate that embedding gene therapy vectors (nonviral or viral) in a methylcellulose/xanthan gum-based foam formulation substantially boosts gene transfection efficiencies in situ, compared to liquid-based gene delivery. We further establish that our gene therapy foam is nontoxic and retained at the intended target tissue, thus minimizing both systemic exposure and targeting of irrelevant cell types. The foam can be applied locally or injected to fill body cavities so the vector is uniformly dispersed over a large surface area. Our technology may provide a safe, facile and broadly applicable option in a variety of clinical settings.


Assuntos
Terapia Genética , Vetores Genéticos , Terapia Genética/métodos , Vetores Genéticos/genética , Animais , Humanos , Camundongos , Técnicas de Transferência de Genes , Metilcelulose/química , Transfecção/métodos , Feminino , Polissacarídeos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...