Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.187
Filtrar
1.
J Vis Exp ; (208)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38975789

RESUMO

Lens epithelial cells (LECs) play multiple important roles in maintaining the homeostasis and normal function of the lens. LECs determine lens growth, development, size, and transparency. Conversely, dysfunctional LECs can lead to cataract formation and posterior capsule opacification (PCO). Consequently, establishing a robust primary LEC culture system is important to researchers engaged in lens development, biochemistry, cataract therapeutics, and PCO prevention. However, cultivating primary LECs has long presented challenges due to their limited availability, slow proliferation rate, and delicate nature. This study addresses these hurdles by presenting a comprehensive protocol for primary LEC culture. The protocol encompasses essential steps such as the formulation of an optimized culture medium, precise isolation of lens capsules, trypsinization techniques, subculture procedures, harvest protocols, and guidelines for storage and shipment. Throughout the culture process, cell morphology was monitored using phase-contrast microscopy. To confirm the authenticity of the cultured LECs, immunofluorescence assays were conducted to detect the presence and subcellular distribution of critical lens proteins, namely αA- and γ-crystallins. This detailed protocol equips researchers with a valuable resource for cultivating and characterizing primary LECs, enabling advancements in our comprehension of lens biology and the development of therapeutic strategies for lens-related disorders.


Assuntos
Células Epiteliais , Cristalino , Tripsina , Células Epiteliais/citologia , Cristalino/citologia , Animais , Camundongos , Tripsina/química , Tripsina/metabolismo , Técnicas de Cultura de Células/métodos , Cultura Primária de Células/métodos
2.
PLoS One ; 19(7): e0303706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042609

RESUMO

Serine proteases (SPs) are distributed among all living cells accounting for almost one-third of all proteases. Dysregulation of SPs during inflammation and/or infection can result in devastating consequences, such as skin and lung inflammation, neuroinflammation, arthritis, as well as metastasis of cancerous cells. Such activities are tightly regulated by various inhibitors known as serine protease inhibitors (SERPIN). The thermodynamic investigations previously revealed that L-ascorbic acid binds to trypsin more firmly than pepsin and the binding force of L-ascorbic acid is driven by hydrogen bonds and van der Waals forces. However, the physiochemical effects of such interaction on trypsin and/or pepsin have not yet been reported. Ascorbic acid, also known as vitamin C, is one of the essential nutrients and most common food supplements, fortificants, and preservatives. The aim of this study was to explore the inhibitory effects of ascorbic acid on serine proteases at various concentrations on the in-vitro digestion and/or hydrolysis of intercellular matrix of cell monolayer and human serum albumin (HSA). The inhibitory effects of ascorbic on trypsin are investigated by qualitative and quantitative analysis using SDS-PAGE imaging and NIH densitometric software. Upon the addition of ascorbic acid in both indicator systems, the detachment and/or dissociation of cell monolayer and the digestion of HSA were inhibited in the presence of EDTA-Trypsin. The inhibitory effect of ascorbic acid on the digestion of intercellular matrix and/or hydrolysis of HSA showed a dose-dependent trend until it reached the maximum extent of inhibition. At an equal concentration (2.5mg/mL) ascorbic acid and EDTA-Trypsin exhibited the most potent inhibitory effect on the in vitro digestion of protein either in the form of intercellular matrix in cell monolayer and/or HSA respectively. Overall, our results based on two indicator systems strongly indicate that ascorbic acid may function as a serine protease inhibitor (SERPIN) beyond other important functions.


Assuntos
Ácido Ascórbico , Inibidores de Serina Proteinase , Humanos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/química , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Tripsina/metabolismo , Tripsina/química , Linhagem Celular Tumoral , Células A549
3.
Sci Rep ; 14(1): 15667, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977741

RESUMO

The microreactor with two types of immobilized enzymes, exhibiting excellent orthogonal performance, represents an effective approach to counteract the reduced digestion efficiency resulting from the absence of a single enzyme cleavage site, thereby impacting protein identification. In this study, we developed a hydrophilic dual-enzyme microreactor characterized by rapid mass transfer and superior enzymatic activity. Initially, we selected KIT-6 molecular sieve as the carrier for the dual-IMER due to its three-dimensional network pore structure. Modification involved co-deposition of polyethyleneimine (PEI) and acrylamide (AM) as amine donors, along with dopamine to enhance material hydrophilicity. Remaining amino and double bond functional groups facilitated stepwise immobilization of trypsin and Glu-C. Digestion times for bovine serum albumin (BSA) and bovine hemoglobin (BHb) on the dual-IMER were significantly reduced compared to solution-based digestion (1 min vs. 36 h), resulting in improved sequence coverage (91.30% vs. 82.7% for BSA; 90.24% vs. 89.20% for BHb). Additionally, the dual-IMER demonstrated excellent durability, retaining 96.08% relative activity after 29 reuse cycles. Enhanced protein digestion efficiency can be attributed to several factors: (1) KIT-6's large specific surface area, enabling higher enzyme loading capacity; (2) Its three-dimensional network pore structure, facilitating faster mass transfer and substance diffusion; (3) Orthogonality of trypsin and Glu-C enzyme cleavage sites; (4) The spatial effect introduced by the chain structure of PEI and glutaraldehyde's spacing arm, reducing spatial hindrance and enhancing enzyme-substrate interactions; (5) Mild and stable enzyme immobilization. The KIT-6-based dual-IMER offers a promising technical tool for protein digestion, while the PDA/PEI/AM-KIT-6 platform holds potential for immobilizing other proteins or active substances.


Assuntos
Acrilamida , Dopamina , Enzimas Imobilizadas , Polietilenoimina , Soroalbumina Bovina , Tripsina , Polietilenoimina/química , Dopamina/química , Dopamina/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Acrilamida/química , Tripsina/química , Tripsina/metabolismo , Animais , Bovinos , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Porosidade , Interações Hidrofóbicas e Hidrofílicas , Hemoglobinas/química , Hemoglobinas/metabolismo , Proteólise
4.
ACS Appl Mater Interfaces ; 16(28): 37248-37254, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957146

RESUMO

Gas cluster ion beam (GCIB)-assisted deposition is used to build multilayered protein-based structures. In this process, Ar3000-5000+ clusters bombard and sputter molecules from a reservoir (target) to a collector, an operation that can be sequentially repeated with multiple targets. The process occurs under a vacuum, making it adequate for further sample conservation in the dry state, since many proteins do not have long-term storage stability in the aqueous state. First of all, the stability in time and versatility in terms of molecule selection are demonstrated with the fabrication of peptide multilayers featuring a clear separation. Then, lysozyme and trypsin are used as protein models to show that the activity remaining on the collector after deposition is linearly proportional to the argon ion dose. The energy per atom (E/n) of the Ar clusters is a parameter that was also changed for lysozyme deposition, and its increase negatively affects activity. The intact detection of larger protein molecules by SDS-PAGE gel electrophoresis and a bioassay (trypsin at ≈25 kDa and glucose oxidase (GOx) at ≈80 kDa) is demonstrated. Finally, GOx and horseradish peroxidase, two proteins involved in the same enzymatic cascade, are successively deposited on ß-d-glucose to build an on-demand release material in which the enzymes and the substrate (ß-d-glucose) are combined in a dry trilayer, and the reaction occurs only upon reintroduction in aqueous medium.


Assuntos
Glucose Oxidase , Peroxidase do Rábano Silvestre , Muramidase , Tripsina , Muramidase/química , Muramidase/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Tripsina/química , Tripsina/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peptídeos/química , Animais , Glucose/química
5.
ACS Nano ; 18(29): 19283-19302, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990194

RESUMO

Developing strategies to target injured pancreatic acinar cells (PACs) in conjunction with primary pathophysiology-specific pharmacological therapy presents a challenge in the management of acute pancreatitis (AP). We designed and synthesized a trypsin-cleavable organosilica precursor bridged by arginine-based amide bonds, leveraging trypsin's ability to selectively identify guanidino groups on arginine via Asp189 at the active S1 pocket and cleave the carboxy-terminal (C-terminal) amide bond via catalytic triads. The precursors were incorporated into the framework of mesoporous silica nanoparticles (MSNs) for encapsulating the membrane-permeable Ca2+ chelator BAPTA-AM with a high loading content (∼43.9%). Mesenchymal stem cell membrane coating and surface modification with PAC-targeting ligands endow MSNs with inflammation recruitment and precise PAC-targeting abilities, resulting in the highest distribution at 3 h in the pancreas with 4.7-fold more accumulation than that of naked MSNs. The outcomes transpired as follows: After bioinspired MSNs' skeleton biodegradation by prematurely and massively activated trypsin, BAPTA-AM was on-demand released in injured PACs, thereby effectively eliminating intracellular calcium overload (reduced Ca2+ level by 81.3%), restoring cellular redox status, blocking inflammatory cascades, and inhibiting cell necrosis by impeding the IκBα/NF-κB/TNF-α/IL-6 and CaMK-II/p-RIP3/p-MLKL/caspase-8,9 signaling pathways. In AP mice, a single dose of the formulation significantly restored pancreatic function (lipase and amylase reduced more by 60%) and improved the survival rate from 50 to 91.6%. The formulation offers a potentially effective strategy for clinical translation in AP treatment.


Assuntos
Pancreatite , Tripsina , Animais , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Pancreatite/metabolismo , Tripsina/metabolismo , Tripsina/química , Camundongos , Porosidade , Nanomedicina , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Nanopartículas/química , Dióxido de Silício/química , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Masculino , Humanos , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Camundongos Endogâmicos C57BL
6.
Langmuir ; 40(26): 13505-13514, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38896798

RESUMO

Development of an energy-driven self-assembly process is a matter of interest for understanding and mimicking diverse ranges of biological and environmental patterns in a synthetic system. In this article, first we demonstrate transient and temporally controlled self-assembly of a DNA-histone condensate where trypsin (already present in the system) hydrolyzes histone, resulting in disassembly. Upon performing this dynamic self-assembly process in a gel matrix under an electric field, we observe diverse kinds of DNA patterning across the gel matrix depending on the amount of trypsin, incubation time of the reaction mixture, and gel porosity. Notably, here, the micrometer-sized DNA-histone condensate does not move through the gel and only free DNA can pass; therefore, transport and accumulation of DNA at different zones depend on the release rate of DNA by trypsin. Furthermore, we show that the viscoelasticity of the native gel increases in the presence of DNA and a pattern over gel viscoelasticity at different zones can be achieved by tuning the amount of enzyme, i.e., the dissociation rate of the DNA-histone condensate. We believe enabling spatiotemporally controlled DNA patterning by applying an electric field will be potentially important in designing different kinds of spatiotemporally distinct dynamic materials.


Assuntos
DNA , Elasticidade , Histonas , Hidrogéis , Tripsina , DNA/química , Histonas/química , Histonas/metabolismo , Tripsina/química , Tripsina/metabolismo , Hidrogéis/química , Viscosidade , Eletroforese
7.
Methods Mol Biol ; 2832: 233-239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869800

RESUMO

The regulation of proteolytic enzymes by protease inhibitors is crucial for maintaining the balance between protein synthesis and degradation, preventing uncontrolled proteolysis and fine-tuning cellular processes essential for optimal function and survival of the plants. It is known that the plant protease inhibitors activities are induced in defense of biotic as well as abiotic stresses. Thus, beyond their fundamental physiological functions, their involvement in stress responses, such as drought, cold, and salinity, is of equally significant. The X-ray film contact print method is an effective method for assessing various protease inhibitors exposed to stress conditions. In this approach, initially plant protease inhibitors will be separated using electrophoresis, and then the gel is treated with trypsin, which inhibits protease inhibitors. This gel when placed on X-ray film, the trypsin will digest the gelatin layer present on the film and the gelatinolytic activity stalled at the premises of protease inhibitors. This will provide the impression of the differentially expressed protease inhibitors in stress-treated plants.


Assuntos
Inibidores de Proteases , Estresse Fisiológico , Inibidores de Proteases/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas/metabolismo , Raios X , Tripsina/metabolismo
8.
J Proteomics ; 303: 105215, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843981

RESUMO

Automated methods for enzyme immobilization via 4-triethoxysilylbutyraldehyde (TESB) derived silicone-based coupling agents were developed. TESB and its oxidized derivative, 4-triethoxysilylbutanoic acid (TESBA), were determined to be the most effective. The resulting immobilized enzyme particles (IEPs) displayed robustness, rapid digestion, and immobilization efficiency of 51 ± 8%. Furthermore, we automated the IEP procedure, allowing for multiple enzymes, and/or coupling agents to be fabricated at once, in a fraction of the time via an Agilent Bravo. The automated trypsin TESB and TESBA IEPs were shown to rival a classical in-gel digestion method. Moreover, pepsin IEPs favored cleavage at leucine (>50%) over aromatic and methionine residues. The IEP method was then adapted for an in-situ immobilized enzyme microreactor (IMER) fabrication. We determined that TESBA could functionalize the silica capillary's inner wall while simultaneously acting as an enzyme coupler. The IMER digestion of bovine serum albumin (BSA), mirroring IEP digestion conditions, yielded a 33-40% primary sequence coverage per LC-MS/MS analysis in as little as 15 min. Overall, our findings underscore the potential of both IEP and IMER methods, paving the way for automated analysis and a reduction in enzyme waste through reuse, thereby contributing to a more cost-effective and timely study of the proteome. SIGNIFICANCE: This research introduces 4-triethoxysilylbutyraldehyde (TESB) and its derivatives as silicon-based enzyme coupling agents and an automated liquid handling method for bottom-up proteomics (BUP) while streamlining sample preparation for high-throughput processing. Additionally, immobilized enzyme particle (IEP) fabrication and digestion within the 96-well plate allows for flexibility in protocol where different enzyme-coupler combinations can be employed simultaneously. By enabling the digestion of entire microplates and reducing manual labor, the proposed method enhances reproducibility and offers a more efficient alternative to classical in-gel techniques. Furthermore, pepsin IEPs were noted to favor cleavage at leucine residues which represents an interesting finding when compared to the literature that warrants further study. The capability of immobilized enzyme microreactors (IMER) for rapid digestion (in as little as 15 min) demonstrated the system's efficiency and potential for rapid proteomic analysis. This advancement in BUP not only improves efficiency, but also opens avenues for a fully automated, mass spectrometry-integrated proteomics workflow, promising to expedite research and discoveries in complex biological studies.


Assuntos
Enzimas Imobilizadas , Proteômica , Proteômica/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Silício/química , Soroalbumina Bovina/química , Soroalbumina Bovina/análise , Soroalbumina Bovina/metabolismo , Fluxo de Trabalho , Animais , Tripsina/química , Tripsina/metabolismo , Bovinos
9.
J Chem Inf Model ; 64(13): 5194-5206, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870039

RESUMO

The serine protease trypsin forms a tightly bound inhibitor complex with the bovine pancreatic trypsin inhibitor (BPTI). The complex is stabilized by the P1 residue Lys15, which interacts with negatively charged amino acids at the bottom of the S1 pocket. Truncating the P1 residue of wildtype BPTI to α-aminobutyric acid (Abu) leaves a complex with moderate inhibitor strength, which is held in place by additional hydrogen bonds at the protein-protein interface. Fluorination of the Abu residue partially restores the inhibitor strength. The mechanism with which fluorination can restore the inhibitor strength is unknown, and accurate computational investigation requires knowledge of the binding and unbinding pathways. The preferred unbinding pathway is likely to be complex, as encounter states have been described before, and unrestrained umbrella sampling simulations of these complexes suggest additional energetic minima. Here, we use random acceleration molecular dynamics to find a new metastable state in the unbinding pathway of Abu-BPTI variants and wildtype BPTI from trypsin, which we call the prebound state. The prebound state and the fully bound state differ by a substantial shift in the position, a slight shift in the orientation of the BPTI variants, and changes in the interaction pattern. Particularly important is the breaking of three hydrogen bonds around Arg17. Fluorination of the P1 residue lowers the energy barrier of the transition between the fully bound state and prebound state and also lowers the energy minimum of the prebound state. While the effect of fluorination is in general difficult to quantify, here, it is in part caused by favorable stabilization of a hydrogen bond between Gln194 and Cys14. The interaction pattern of the prebound state offers insights into the inhibitory mechanism of BPTI and might add valuable information for the design of serine protease inhibitors.


Assuntos
Aprotinina , Simulação de Dinâmica Molecular , Ligação Proteica , Tripsina , Tripsina/metabolismo , Tripsina/química , Aprotinina/química , Aprotinina/metabolismo , Animais , Bovinos , Halogenação , Ligação de Hidrogênio , Conformação Proteica , Inibidores da Tripsina/química , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/farmacologia
10.
Analyst ; 149(14): 3783-3792, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38845587

RESUMO

Abrin toxin, highly dangerous with an estimated human lethal dose of 0.1-1 µg per kg body weight, has attracted much attention regarding criminal and terroristic misuse over the past decade. Therefore, developing a rapid detection method for abrin toxin is of great significance in the field of biosecurity. In this study, based on the specific dissociation method of an immobilized enzyme reactor, the trypsin immobilized reactor Fe3O4@CTS-GA-Try was prepared to replace free trypsin, and the immobilized enzyme digestion process was systematically investigated and optimized by using bovine serum albumin as the simulant of abrin. After 5 min one-step denaturation and reduction, a satisfactory peptide number and coverage were yielded with only 15 s assisted by an ultrasound probe to identify model proteins. Subsequently, abrin was rapidly digested using the established method, resulting in a stable and highly reproducible characteristic peptide number of 39, which can be analyzed by nanoelectrospray ionization coupled with high-resolution mass spectrometry. With the acquisition mode of full MS scan coupled with PRM, not only MS spectroscopy of total abrin peptides but also the corresponding MS/MS spectroscopy of specific abrin peptides can achieve the characteristic detection of abrin toxin and its different isoforms in less than 10 minutes, with high repeatability. This assay provides a universal platform and has great potential for the development of on-site detection and rapid mass spectrometric analysis techniques for macromolecular protein toxins and can further be applied to the integrated detection of chemical and biological agents.


Assuntos
Abrina , Enzimas Imobilizadas , Soroalbumina Bovina , Tripsina , Abrina/análise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Tripsina/metabolismo , Tripsina/química , Soroalbumina Bovina/química , Animais , Bovinos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Proteólise
11.
Cell Rep Methods ; 4(6): 100795, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38861989

RESUMO

The polyclonal repertoire of circulating antibodies potentially holds valuable information about an individual's humoral immune state. While bottom-up proteomics is well suited for serum proteomics, the vast number of antibodies and dynamic range of serum challenge this analysis. To acquire the serum proteome more comprehensively, we incorporated high-field asymmetric waveform ion-mobility spectrometry (FAIMS) or two-dimensional chromatography into standard trypsin-based bottom-up proteomics. Thereby, the number of variable region (VR)-related spectra increased 1.7-fold with FAIMS and 10-fold with chromatography fractionation. To match antibody VRs to spectra, we combined de novo searching and BLAST alignment. Validation of this approach showed that, as peptide length increased, the de novo accuracy decreased and BLAST performance increased. Through in silico calculations on antibody repository sequences, we determined the uniqueness of tryptic VR peptides and their suitability as antibody surrogate. Approximately one-third of these peptides were unique, and about one-third of all antibodies contained at least one unique peptide.


Assuntos
Peptídeos , Tripsina , Humanos , Tripsina/química , Tripsina/metabolismo , Peptídeos/imunologia , Peptídeos/química , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Proteômica/métodos , Espectrometria de Mobilidade Iônica/métodos
12.
J Proteome Res ; 23(7): 2386-2396, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38900499

RESUMO

Tyrosine sulfation, an understudied but crucial post-translational modification, cannot be directly detected in conventional nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) due to the extreme sulfate lability. Here, we report the detection of sulfate-retaining fragments from LC-electron capture dissociation (ECD) and nanoLC-electron transfer higher energy collision dissociation (EThcD). Sulfopeptide candidates were identified by Proteome Discoverer and MSFragger analysis of nanoLC-HCD MS/MS data and added to inclusion lists for LC-ECD or nanoLC-EThcD MS/MS. When this approach failed, targeted LC-ECD with fixed m/z isolation windows was performed. For the plasma protein fibrinogen, the known pyroglutamylated sulfopeptide QFPTDYDEGQDDRPK from the beta chain N-terminus was identified despite a complete lack of sulfate-containing fragment ions. The peptide QVGVEHHVEIEYD from the gamma-B chain C-terminus was also identified as sulfated or phosphorylated. This sulfopeptide is not annotated in Uniprot but was previously reported. MSFragger further identified a cysteine-containing peptide from the middle of the gamma chain as sulfated and deamidated. NanoLC-EThcD and LC-ECD MS/MS confirmed the two former sulfopeptides via sulfate-retaining fragment ions, whereas an unexpected fragmentation pattern was observed for the third sulfopeptide candidate. Manual interpretation of the LC-ECD spectrum revealed two additional isobaric identifications: a trisulfide-linked cysteinyl-glycine or a carbamidomethyl-dithiothreiotol covalent adduct. Synthesis of such adducts confirmed the latter identity.


Assuntos
Fibrinogênio , Espectrometria de Massas em Tandem , Tirosina , Tirosina/química , Tirosina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Fibrinogênio/química , Fibrinogênio/metabolismo , Cromatografia Líquida/métodos , Humanos , Processamento de Proteína Pós-Traducional , Tripsina/química , Tripsina/metabolismo , Sulfatos/química , Sequência de Aminoácidos , Peptídeos/química , Peptídeos/análise , Elétrons
13.
Talanta ; 277: 126392, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38865959

RESUMO

Heparin is a highly negatively charged sulfated linear polymer glycosaminoglycan that has been widely used as an anticoagulant in medicine. Protamine is a cationic protein rich in arginine that is used to treat the blood-brain barrier during excess heparin surgery. Trypsin is the most important digestive enzyme-encoding generated by the pancreas and can specifically cleave the carboxyl ends of arginine and lysine residues. Heparin, protamine, and trypsin interact and constrain each other, and their fluctuations reflect the body's dysfunction. Therefore, it is necessary to develop a fast, sensitive, and highly selective assay for regularly monitoring the levels of heparin, protamine, and trypsin in serum. Herein, a fluorescent and colorimetric dual-mode upconversion nanoparticle (UCNP) biosensor was used for the determination of heparin, protamine, and trypsin based on the oxidase-mimicking activity of Ce4+ and electrostatic control. The biosensor exhibited sensitive detection of heparin, protamine, and trypsin with low limits of detection (LODs) of 16 ng/mL, 87 ng/mL and 31 ng/mL, respectively. Furthermore, the designed biosensor could eliminate autofluorescence, which not only effectively increased the accuracy of the sensor but also provided a new sensing pathway for the detection of differently charged biotargets.


Assuntos
Técnicas Biossensoriais , Heparina , Protaminas , Eletricidade Estática , Tripsina , Protaminas/química , Protaminas/metabolismo , Técnicas Biossensoriais/métodos , Heparina/química , Heparina/metabolismo , Heparina/análise , Tripsina/metabolismo , Tripsina/química , Nanopartículas/química , Humanos , Limite de Detecção , Oxirredutases/química , Oxirredutases/metabolismo , Colorimetria/métodos , Espectrometria de Fluorescência/métodos
14.
Talanta ; 277: 126386, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876027

RESUMO

The detection of trypsin and its inhibitors is important for both clinical diagnosis and disease treatment. Abnormal trypsin activity affects pancreatic function and leads to corresponding pathological changes in the body. Therefore, the study presented a riboflavin-induced photo-ATRP electrochemical assay of trypsin activity and its inhibitor, including detection of trypsin activity in real urine samples. Experiments were performed on indium tin oxide (ITO) electrodes modified with sulfhydryl groups of 3-mercaptopropionic acid, and target trypsin-specific cleavage of BSA-Au nanocluster (BSA-Au NCs) was followed by the modification of Au NCs to the electrodes using Au-S. The Au NCs immobilized monodeoxy-monomercapto-ß-cyclodextrin@adamantan-2-amine (SH-ß-CD@2-NH2-Ada) host-guest inclusion complexes to the electrode surfaces via Au-S. In a two-component photo-initiator system consisting of riboflavin as an initiator and ascorbic acid (AA) as a mild reducing agent under mild blue light radiation, a large number of electroactive substances were grafted onto the electrode surface to generate electrochemical signals. In addition, we have successfully realized the detection of clinical drug inhibitors of trypsin. The detection limit of the system is as low as 0.0024 ng/mL, which much littler than the average standard of trypsin in the patient's urine or serum. It's worth noting that this work will provide researchers with a different route to design electrochemical sensors based on non-covalent recognition strategies.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Ouro , Riboflavina , Tripsina , Riboflavina/química , Riboflavina/urina , Tripsina/metabolismo , Tripsina/química , Humanos , Ouro/química , Biomarcadores/urina , Biomarcadores/sangue , Nanopartículas Metálicas/química , Processos Fotoquímicos , Limite de Detecção , Soroalbumina Bovina/química , Compostos de Estanho/química , Inibidores da Tripsina/química , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/urina
15.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891766

RESUMO

Despite the high quality of soybean protein, raw soybeans and soybean meal cannot be directly included in animal feed mixtures due to the presence of Kunitz (KTi) and Bowman-Birk protease inhibitors (BBis), which reduces animal productivity. Heat treatment can substantially inactivate trypsin and chymotrypsin inhibitors (BBis), but such treatment is energy-intensive, adds expense, and negatively impacts the quality of seed proteins. As an alternative approach, we have employed CRISPR/Cas9 gene editing to create mutations in BBi genes to drastically lower the protease inhibitor content in soybean seed. Agrobacterium-mediated transformation was used to generate several stable transgenic soybean events. These independent CRISPR/Cas9 events were examined in comparison to wild-type plants using Sanger sequencing, proteomic analysis, trypsin/chymotrypsin inhibitor activity assays, and qRT-PCR. Collectively, our results demonstrate the creation of an allelic series of loss-of-function mutations affecting the major BBi gene in soybean. Mutations in two of the highly expressed seed-specific BBi genes lead to substantial reductions in both trypsin and chymotrypsin inhibitor activities.


Assuntos
Edição de Genes , Glycine max , Inibidor da Tripsina de Soja de Bowman-Birk , Quimotripsina/metabolismo , Quimotripsina/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Glycine max/genética , Glycine max/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sementes/genética , Sementes/metabolismo , Tripsina/metabolismo , Tripsina/genética , Tripsina/química , Inibidor da Tripsina de Soja de Bowman-Birk/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/genética , Inibidores da Tripsina/metabolismo
16.
Anal Chem ; 96(24): 9859-9865, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38830623

RESUMO

In drug discovery, ligands are sought that modulate the (mal-)function of medicinally relevant target proteins. In order to develop new drugs, typically a multitude of potential ligands are initially screened for binding and subsequently characterized for their affinity. Nuclear magnetic resonance (NMR) is a well-established and highly sensitive technology for characterizing such interactions. However, it has limited throughput, because only one sample can be measured at a time. In contrast, magnetic resonance imaging (MRI) is inherently parallel and MR parameters can conveniently be encoded in its images, potentially offering increased sample throughput. We explore this application using a custom-built 9-fold sample holder and a 19F-MRI coil. With this setup, we show that ligand binding can be detected by T2-weighted 19F-MRI using 4-(trifluoromethyl)benzamidine (TFBA) and trypsin as the reporter ligand and target protein, respectively. Furthermore, we demonstrate that the affinity of nonfluorinated ligands can be determined in a competition format by monitoring the dose-dependent displacement of TFBA. By comparing 19F-T2-weighted MR images of TFBA in the presence of different benzamidine (BA) concentrations-all recorded in parallel-the affinity of BA could be derived. Therefore, this approach promises parallel characterization of protein-ligand interactions and increased throughput of biochemical assays, with potential for increased sensitivity when combined with hyperpolarization techniques.


Assuntos
Benzamidinas , Ligantes , Benzamidinas/química , Ligação Proteica , Tripsina/metabolismo , Tripsina/química , Imageamento por Ressonância Magnética/métodos , Proteínas/química , Proteínas/metabolismo
17.
Am J Vet Res ; 85(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729202

RESUMO

OBJECTIVE: Assess markers for pancreatic function and gastrointestinal malabsorption in African painted dogs (Lycaon pictus), including canine trypsin-like immunoreactivity (cTLI), canine pancreatic lipase immunoreactivity (cPLI), cobalamin, and folate at one North American facility. ANIMALS: 15 healthy African painted dogs held at one institution were sampled during routine health examinations. METHODS: Blood was collected at routine health examinations, and serum was separated and stored until testing. Serum was analyzed for cTLI, cPLI, cobalamin, and folate. The results were evaluated for correlation to sex, age, and storage time of samples. RESULTS: All individuals had cTLI and folate levels below normal reference ranges for domestic dogs (< 5.0 µg/L and < 7.7 µg/L, respectively). Cobalamin values were within or above reported domestic dog ranges, and cPLI values were within range as well. No analytes were significantly influenced by sex or time in storage, while cTLI was positively correlated with age. CLINICAL RELEVANCE: cTLI and folate did not fall within normal domestic canid reference ranges in this population of healthy African painted dogs. Clinical interpretation of these values based on domestic canid recommendations would indicate clinical disease, which was not apparent in this population. Analytes for pancreatic function and malabsorption or gastrointestinal indicators, including cTLI, cPLI, and folate, in African painted dogs should be interpreted with caution when using domestic dog references ranges.


Assuntos
Animais de Zoológico , Ácido Fólico , Lipase , Vitamina B 12 , Animais , Masculino , Lipase/sangue , Lipase/metabolismo , Feminino , Vitamina B 12/sangue , Ácido Fólico/sangue , Canidae , Valores de Referência , Tripsina/metabolismo , Tripsina/sangue , Pâncreas/enzimologia
18.
Sci Rep ; 14(1): 12383, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811772

RESUMO

Mesotrypsin, encoded by the PRSS3 gene, is a distinctive trypsin isoform renowned for its exceptional resistance to traditional trypsin inhibitors and unique substrate specificity. Within the skin epidermis, this protein primarily expresses in the upper layers of the stratified epidermis and plays a crucial role in processing pro-filaggrin (Pro-FLG). Although prior studies have partially elucidated its functions using primary cultured keratinocytes, challenges persist due to these cells' differentiation-activated cell death program. In the present study, HaCaT keratinocytes, characterized by minimal endogenous mesotrypsin expression and sustained proliferation in differentiated states, were utilized to further scrutinize the function of mesotrypsin. Despite the ready degradation of the intact form of active mesotrypsin in these cells, fusion with Venus, flanked by a peptide linker, enables evasion from the protein elimination machinery, thus facilitating activation of the Pro-FLG processing system. Inducing Venus-mesotrypsin expression in the cells resulted in a flattened phenotype and reduced proliferative capacity. Moreover, these cells displayed altered F-actin assembly, enhanced E-cadherin adhesive activity, and facilitated tight junction formation without overtly influencing epidermal differentiation. These findings underscore mesotrypsin's potentially pivotal role in shaping the characteristic cellular morphology of upper epidermal layers.


Assuntos
Caderinas , Diferenciação Celular , Proliferação de Células , Proteínas Filagrinas , Queratinócitos , Tripsina , Queratinócitos/metabolismo , Humanos , Tripsina/metabolismo , Proteínas Filagrinas/metabolismo , Caderinas/metabolismo , Epiderme/metabolismo , Actinas/metabolismo , Células HaCaT , Junções Íntimas/metabolismo , Adesão Celular , Linhagem Celular , Células Epidérmicas/metabolismo
19.
Int J Biol Macromol ; 269(Pt 1): 132072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705339

RESUMO

Chitosan (CTS) and chitosan oligosaccharides (COS) have been widely applied in food industry due to their bioactivities and functions. However, CTS and COS with positive charges could interact with proteins, such as whey protein isolate (WPI), influencing their digestion. Interaction among CTS/COS, FUC, and WPI/enzymes was studied by spectroscopy, chromatography, and chemical methods in order to reveal the role of FUC in relieving the inhibition of protein digestibility by CTS/COS and demonstrate the action mechanisms. As shown by the results, the addition of FUC increased degree of hydrolysis (DH) and free protein in the mixture of CTS and WPI to 3.1-fold and 1.8-fold, respectively, while raise DH value and free protein in the mixture of COS and WPI to 6.7-fold and 1.2-fold, respectively. The interaction between amino, carboxyl, sulfate, and hydroxyl groups from carbohydrates and protein could be observed, and notably, FUC could interact with CTS/COS preferentially to prevent CTS/COS from combining with WPI. In addition, the addition of FUC could also relieve the combination of CTS to trypsin, increasing the fluorescence intensity and concentration of trypsin by 83.3 % and 4.8 %, respectively. Thus, the present study demonstrated that FUC could alleviate the inhibitory effect of CTS/COS on protein digestion.


Assuntos
Quitosana , Oligossacarídeos , Polissacarídeos , Quitosana/química , Quitosana/farmacologia , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/metabolismo , Hidrólise , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/metabolismo , Tripsina/metabolismo , Tripsina/química , Proteólise/efeitos dos fármacos
20.
J Agric Food Chem ; 72(20): 11782-11793, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717295

RESUMO

Soybeans are the number one source of plant proteins for food and feed, but the natural presence of protein protease inhibitors (PIs), namely, the Kunitz trypsin inhibitor (KTI) and the Bowman-Birk inhibitor (BBI), exerts antinutritional effects. This communication describes a new methodology for simultaneously quantitating all parameters of PIs in soybeans. It consists of seven steps and featured enzymatically measuring trypsin and chymotrypsin inhibitory activities, respectively, and subsequently determining the contents of reactive KTI and BBI and the contributions of each toward total PI mass and total trypsin or chymotrypsin inhibition by solving a proposed system of linear equations with two variables (C = dB + eK and T = xB + yK). This enzymatic and algebraic (EA) methodology was based on differential inhibitions of KTI and BBI toward trypsin and chymotrypsin and validated by applications to a series of mixtures of purified KTI and BBI, two KTI-null and two conventional soybeans, and by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The EA methodology allowed calculations of PI composition and the contributions of individual inhibitors toward total inhibition with ease. It was first found that although BBI constituted only about 30% of the total PI mass in conventional raw soybeans, it contributed about 80% toward total chymotrypsin inhibitor activity and about 45% toward trypsin inhibitor activity. Therefore, BBI caused more total protease inhibitions than those of KTI. Furthermore, the so-called KTI-null soybean mutants still contained measurable KTI content and thus should be named KTI-low soybeans.


Assuntos
Quimotripsina , Glycine max , Inibidor da Tripsina de Soja de Bowman-Birk , Inibidor da Tripsina de Soja de Kunitz , Tripsina , Quimotripsina/antagonistas & inibidores , Quimotripsina/metabolismo , Quimotripsina/química , Inibidor da Tripsina de Soja de Bowman-Birk/química , Glycine max/química , Glycine max/enzimologia , Tripsina/química , Tripsina/metabolismo , Inibidor da Tripsina de Soja de Kunitz/química , Inibidores da Tripsina/química , Inibidores da Tripsina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA