Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
1.
Sci Rep ; 14(1): 13940, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886463

RESUMO

Perilla frutescens (L.) Britton, a member of the Lamiaceae family, stands out as a versatile plant highly valued for its unique aroma and medicinal properties. Additionally, P. frutescens seeds are rich in Îs-linolenic acid, holding substantial economic importance. While the nuclear and chloroplast genomes of P. frutescens have already been documented, the complete mitochondrial genome sequence remains unreported. To this end, the sequencing, annotation, and assembly of the entire Mitochondrial genome of P. frutescens were hereby conducted using a combination of Illumina and PacBio data. The assembled P. frutescens mitochondrial genome spanned 299,551 bp and exhibited a typical circular structure, involving a GC content of 45.23%. Within the genome, a total of 59 unique genes were identified, encompassing 37 protein-coding genes, 20 tRNA genes, and 2 rRNA genes. Additionally, 18 introns were observed in 8 protein-coding genes. Notably, the codons of the P. frutescens mitochondrial genome displayed a notable A/T bias. The analysis also revealed 293 dispersed repeat sequences, 77 simple sequence repeats (SSRs), and 6 tandem repeat sequences. Moreover, RNA editing sites preferentially produced leucine at amino acid editing sites. Furthermore, 70 sequence fragments (12,680 bp) having been transferred from the chloroplast to the mitochondrial genome were identified, accounting for 4.23% of the entire mitochondrial genome. Phylogenetic analysis indicated that among Lamiaceae plants, P. frutescens is most closely related to Salvia miltiorrhiza and Platostoma chinense. Meanwhile, inter-species Ka/Ks results suggested that Ka/Ks < 1 for 28 PCGs, indicating that these genes were evolving under purifying selection. Overall, this study enriches the mitochondrial genome data for P. frutescens and forges a theoretical foundation for future molecular breeding research.


Assuntos
Uso do Códon , Genoma Mitocondrial , Perilla frutescens , Edição de RNA , Edição de RNA/genética , Perilla frutescens/genética , Filogenia , Repetições de Microssatélites/genética , RNA de Transferência/genética , Composição de Bases , Anotação de Sequência Molecular
2.
Sci Rep ; 14(1): 13820, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879694

RESUMO

The Pama Croaker, Otolithoides pama, is an economically important fish species in Bangladesh. Intra-family similarities in morphology and typical barcode sequences of cox1 create ambiguities in its identification. Therefore, morphology and the complete mitochondrial genome of O. pama, and comparative mitogenomics within the family Sciaenidae have been studied. Extracted genomic DNA was subjected to Illumina-based short read sequencing for De-Novo mitogenome assembly. The complete mitogenome of O. pama (Accession: OQ784575.1) was 16,513 bp, with strong AC biasness and strand asymmetry. Relative synonymous codon usage (RSCU) among 13 protein-coding genes (PCGs) of O. pama was also analyzed. The studied mitogenomes including O. pama exhibited consistent sizes and gene orders, except for the genus Johnius which possessed notably longer mitogenomes with unique gene rearrangements. Different genetic distance metrics across 30 species of Sciaenidae family demonstrated 12S rRNA and the control region (CR) as the most conserved and variable regions, respectively, while most of the PCGs undergone a purifying selection. Different phylogenetic trees were congruent with one another, where O. pama was distinctly placed. This study would contribute to distinguishing closely related fish species of Sciaenidae family and can be instrumental in conserving the genetic diversity of O. pama.


Assuntos
Genoma Mitocondrial , Perciformes , Filogenia , Animais , Genoma Mitocondrial/genética , Perciformes/genética , Perciformes/classificação , Uso do Códon , Ordem dos Genes
3.
Artigo em Inglês | MEDLINE | ID: mdl-38862422

RESUMO

The monkeypox virus (mpox virus, MPXV) epidemic in 2022 has posed a significant public health risk. Yet, the evolutionary principles of MPXV remain largely unknown. Here, we examined the evolutionary patterns of protein sequences and codon usage in MPXV. We first demonstrated the signal of positive selection in OPG027, specifically in the Clade I lineage of MPXV. Subsequently, we discovered accelerated protein sequence evolution over time in the variants responsible for the 2022 outbreak. Furthermore, we showed strong epistasis between amino acid substitutions located in different genes. The codon adaptation index (CAI) analysis revealed that MPXV genes tended to use more non-preferred codons compared to human genes, and the CAI decreased over time and diverged between clades, with Clade I > IIa and IIb-A > IIb-B. While the decrease in fatality rate among the three groups aligned with the CAI pattern, it remains unclear whether this correlation was coincidental or if the deoptimization of codon usage in MPXV led to a reduction in fatality rates. This study sheds new light on the mechanisms that govern the evolution of MPXV in human populations.


Assuntos
Uso do Códon , Evolução Molecular , Monkeypox virus , Humanos , Monkeypox virus/genética , Proteínas Virais/genética , Filogenia , Seleção Genética , Códon/genética , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Mpox/virologia , Mpox/genética
4.
PLoS One ; 19(6): e0302371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857223

RESUMO

Formica is a large genus in the family Formicidae with high diversity in its distribution, morphology, and physiology. To better understand evolutionary characteristics of Formica, the complete mitochondrial genomes (mitogenomes) of two Formica species were determined and a comparative mitogenomic analysis for this genus was performed. The two newly sequenced Formica mitogenomes each included 37 typical mitochondrial genes and a large non-coding region (putative control region), as observed in other Formica mitogenomes. Base composition, gene order, codon usage, and tRNA secondary structure were well conserved among Formica species, whereas diversity in sequence size and structural characteristics was observed in control regions. We also observed several conserved motifs in the intergenic spacer regions. These conserved genomic features may be related to mitochondrial function and their highly conserved physiological constraints, while the diversity of the control regions may be associated with adaptive evolution among heterogenous habitats. A negative AT-skew value on the majority chain was presented in each of Formica mitogenomes, indicating a reversal of strand asymmetry in base composition. Strong codon usage bias was observed in Formica mitogenomes, which was predominantly determined by nucleotide composition. All 13 mitochondrial protein-coding genes of Formica species exhibited molecular signatures of purifying selection, as indicated by the ratio of non-synonymous substitutions to synonymous substitutions being less than 1 for each protein-coding gene. Phylogenetic analyses based on mitogenomic data obtained fairly consistent phylogenetic relationships, except for two Formica species that had unstable phylogenetic positions, indicating mitogenomic data are useful for constructing phylogenies of ants. Beyond characterizing two additional Formica mitogenomes, this study also provided some key evolutionary insights into Formica.


Assuntos
Formigas , Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Formigas/genética , Uso do Códon , RNA de Transferência/genética , Composição de Bases
5.
BMC Genomics ; 25(1): 561, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840044

RESUMO

BACKGROUND: Artemisia selengensis, classified within the genus Artemisia of the Asteraceae family, is a perennial herb recognized for its dual utility in culinary and medicinal domains. There are few studies on the chloroplast genome of A. selengensis, and the phylogeographic classification is vague, which makes phylogenetic analysis and evolutionary studies very difficult. RESULTS: The chloroplast genomes of 10 A. selengensis in this study were highly conserved in terms of gene content, gene order, and gene intron number. The genome lengths ranged from 151,148 to 151,257 bp and were typical of a quadripartite structure with a total GC content of approximately 37.5%. The chloroplast genomes of all species encode 133 genes, including 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Due to the contraction and expansion of the inverted repeats (IR), the overlap of ycf1 and ndhF genes occurred at the inverted repeats B (IRB) and short single copy sequence (SSC) boundaries. According to a codon use study, the frequent base in the chloroplast genome of A. selengensis' third codon position was A/T. The number of SSR repeats was 42-44, most of which were single nucleotide A/T repeats. Sequence alignment analysis of the chloroplast genome showed that variable regions were mainly distributed in single copy regions, nucleotide diversity values of 0 to 0.009 were calculated by sliding window analysis, 8 mutation hotspot regions were detected, and coding regions were more conserved than non-coding regions. Analysis of non-synonymous substitution (Ka) and synonymous substitution (Ks) revealed that accD, rps12, petB, and atpF genes were affected by positive selection and no genes were affected by neutral selection. Based on the findings of the phylogenetic analysis, Artemisia selengensis was sister to the genus Artemisia Chrysanthemum and formed a monophyletic group with other Artemisia genera. CONCLUSIONS: In this research, the present study systematically compared the chloroplast genomic features of A. selengensis and provided important information for the study of the chloroplast genome of A. selengensis and the evolutionary relationships among Asteraceae species.


Assuntos
Artemisia , Genoma de Cloroplastos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Artemisia/genética , Artemisia/classificação , Composição de Bases , Repetições de Microssatélites , Evolução Molecular , Uso do Códon
6.
Gene ; 926: 148627, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823656

RESUMO

Random mutations increase genetic variety and natural selection enhances adaption over generations. Codon usage biases (CUB) provide clues about the genome adaptation mechanisms of native species and extremophile species. Significant numbers of gene (CDS) of nine classes of endangered, native species, including extremophiles and mesophiles were utilised to compute CUB. Codon usage patterns differ among the lineages of endangered and extremophiles with native species. Polymorphic usage of nucleotides with codon burial suggests parallelism of native species within relatively confined taxonomic groups. Utilizing the deviation pattern of CUB of endangered and native species, I present a calculation parameter to estimate the extinction risk of endangered species. Species diversity and extinction risk are both positively associated with the propensity of random mutation in CDS (Coding DNA sequence). Codon bias tenet profoundly selected and it governs to adaptive evolution of native species.


Assuntos
Uso do Códon , Evolução Molecular , Seleção Genética , Espécies em Perigo de Extinção , Mutação , Animais , Códon/genética , Adaptação Fisiológica/genética , Extremófilos/genética
7.
Infect Genet Evol ; 122: 105612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824981

RESUMO

African swine fever (ASF) is a serious animal disease, and has spread to Africa, Europe and Asia, causing massive economic losses. African swine fever virus (ASFV) is transmitted from a reservoir host (warthog) to domestic pigs via a sylvatic cycle (transmission between warthogs and soft ticks) and a domestic cycle (transmission between domestic pigs) and survives by expressing a variety of genes related to virus-host interactions. We evaluated differences in codon usage patterns among ASFV genotypes and clades and explored the common and specific evolutionary and genetic characteristics of ASFV sequences. We analysed the evolutionary relationships, nucleotide compositions, codon usage patterns, selection pressures (mutational pressure and natural selection) and viral adaptation to host codon usage based on the coding sequences (CDS) of key functional genes of ASFV. AT bias was detected in the six genes analysed, irrespective of clade. The AT bias of genes (A224L, A179L, EP153R) encoding proteins involved in interaction with host cells after infection was high; among them, the AT bias of EP153R was the greatest at 78.3%. A large number of overrepresented codons were identified in EP153R, whereas there were no overrepresented codons with a relative synonymous codon usage (RSCU) value of ≥3 in B646L. In most genes, the pattern of selection pressure was similar for each clade, but in EP153R, diverse patterns of selection pressure were captured within the same clade and genotype. As a result of evaluating host adaptation based on the codon adaptation index (CAI), for B646L, E183L, CP204L and A179L, the codon usage patterns in all sequences were more similar to tick than domestic pig or wild boar. However, EP153R showed the lowest average CAI value of 0.52 when selecting tick as a reference set. The genes analysed in this study showed different magnitudes of selection pressure at the clade and genotype levels, which is likely to be related to the function of the encoded proteins and may determine key evolutionary traits of viruses, such as the level of genetic variation and host range. The diversity of codon adaptations at the genetic level in ASFV may account for differences in translational selection in ASFV hosts and provides insight into viral host adaptation and co-evolution.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Uso do Códon , Evolução Molecular , Seleção Genética , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/classificação , Animais , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/genética , Filogenia , Genótipo
8.
Sci Rep ; 14(1): 14078, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890502

RESUMO

Ipomoea species have diverse uses as ornamentals, food, and medicine. However, their genomic information is limited; I. alba and I. obscura were sequenced and assembled. Their chloroplast genomes were 161,353 bp and 159,691 bp, respectively. Both genomes exhibited a quadripartite structure, consisting of a pair of inverted repeat (IR) regions, which are separated by the large single-copy (LSC) and small single-copy (SSC) regions. The overall GC content was 37.5% for both genomes. A total of 104 and 93 simple sequence repeats, 50 large repeats, and 30 and 22 short tandem repeats were identified in the two chloroplast genomes, respectively. G and T were more preferred than C and A at the third base position based on the Parity Rule 2 plot analysis, and the neutrality plot revealed correlation coefficients of 0.126 and 0.105, indicating the influence of natural selection in shaping the codon usage bias in most protein-coding genes (CDS). Genome comparative analyses using 31 selected Ipomoea taxa from Thailand showed that their chloroplast genomes are rather conserved, but the presence of expansion or contraction of the IR region was identified in some of these Ipomoea taxa. A total of five highly divergent regions were identified, including the CDS genes accD, ndhA, and ndhF, as well as the intergenic spacer regions psbI-atpA and rpl32-ccsA. Phylogenetic analysis based on both the complete chloroplast genome sequence and CDS datasets of 31 Ipomoea taxa showed that I. alba is resolved as a group member for series (ser.) Quamoclit, which contains seven other taxa, including I. hederacea, I. imperati, I. indica, I. nil, I. purpurea, I. quamoclit, and I. × sloteri, while I. obscura is grouped with I. tiliifolia, both of which are under ser. Obscura, and is closely related to I. biflora of ser. Pes-tigridis. Divergence time estimation using the complete chloroplast genome sequence dataset indicated that the mean age of the divergence for Ipomoeeae, Argyreiinae, and Astripomoeinae, was approximately 29.99 Mya, 19.81 Mya, and 13.40 Mya, respectively. The node indicating the divergence of I. alba from the other members of Ipomoea was around 10.06 Mya, and the split between I. obscura and I. tiliifolia is thought to have happened around 17.13 Mya. The split between the I. obscura accessions from Thailand and Taiwan is thought to have taken place around 0.86 Mya.


Assuntos
Composição de Bases , Genoma de Cloroplastos , Ipomoea , Filogenia , Ipomoea/genética , Ipomoea/classificação , Repetições de Microssatélites/genética , Análise de Sequência de DNA/métodos , Evolução Molecular , Uso do Códon
9.
Planta ; 260(1): 23, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850310

RESUMO

MAIN CONCLUSION: In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.


Assuntos
Genoma Mitocondrial , Setaria (Planta) , Setaria (Planta)/genética , Genoma Mitocondrial/genética , Filogenia , RNA de Transferência/genética , Genoma de Planta/genética , Uso do Códon , RNA Ribossômico/genética , Códon/genética
10.
Funct Integr Genomics ; 24(3): 109, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797780

RESUMO

For the study of species evolution, chloroplast gene expression, and transformation, the chloroplast genome is an invaluable resource. Codon usage bias (CUB) analysis is a tool that is utilized to improve gene expression and investigate evolutionary connections in genetic transformation. In this study, we analysed chloroplast genome differences, codon usage patterns and the sources of variation on CUB in 14 Annonaceae species using bioinformatics tools. The study showed that there was a significant variation in both gene sizes and numbers between the 14 species, but conservation was still maintained. It's worth noting that there were noticeable differences in the IR/SC sector boundary and the types of SSRs among the 14 species. The mono-nucleotide repeat type was the most common, with A/T repeats being more prevalent than G/C repeats. Among the different types of repeats, forward and palindromic repeats were the most abundant, followed by reverse repeats, and complement repeats were relatively rare. Codon composition analysis revealed that all 14 species had a frequency of GC lower than 50%. Additionally, it was observed that the proteins in-coding sequences of chloroplast genes tend to end with A/T at the third codon position. Among these species, 21 codons exhibited bias (RSCU > 1), and there were 8 high-frequency (HF) codons and 5 optimal codons that were identical across the species. According to the ENC-plot and Neutrality plot analysis, natural selection had less impact on the CUB of A. muricate and A. reticulata. Based on the PR2-plot, it was evident that base G had a higher frequency than C, and T had a higher frequency A. The correspondence analysis (COA) revealed that codon usage patterns different in Annonaceae.


Assuntos
Annonaceae , Uso do Códon , Genoma de Cloroplastos , Annonaceae/genética , Códon/genética , Evolução Molecular , Repetições de Microssatélites , Composição de Bases , Filogenia
11.
Mol Biol Rep ; 51(1): 659, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748061

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) has become a significant tool for exploring genetic diversity and delineating evolutionary links across diverse taxa. Within the group of cold-water fish species that are native to the Indian Himalayan region, Schizothorax esocinus holds particular importance due to its ecological significance and is potentially vulnerable to environmental changes. This research aims to clarify the phylogenetic relationships within the Schizothorax genus by utilizing mitochondrial protein-coding genes. METHODS: Standard protocols were followed for the isolation of DNA from S. esocinus. For the amplification of mtDNA, overlapping primers were used, and then subsequent sequencing was performed. The genetic features were investigated by the application of bioinformatic approaches. These approaches covered the evaluation of nucleotide composition, codon usage, selective pressure using nonsynonymous substitution /synonymous substitution (Ka/Ks) ratios, and phylogenetic analysis. RESULTS: The study specifically examined the 13 protein-coding genes of Schizothorax species which belongs to the Schizothoracinae subfamily. Nucleotide composition analysis showed a bias towards A + T content, consistent with other cyprinid fish species, suggesting evolutionary conservation. Relative Synonymous Codon Usage highlighted leucine as the most frequent (5.18%) and cysteine as the least frequent (0.78%) codon. The positive AT-skew and the predominantly negative GC-skew indicated the abundance of A and C. Comparative analysis revealed significant conservation of amino acids in multiple genes. The majority of amino acids were hydrophobic rather than polar. The purifying selection was revealed by the genetic distance and Ka/Ks ratios. Phylogenetic study revealed a significant genetic divergence between S. esocinus and other Schizothorax species with interspecific K2P distances ranging from 0.00 to 8.87%, with an average of 5.76%. CONCLUSION: The present study provides significant contributions to the understanding of mitochondrial genome diversity and genetic evolution mechanisms in Schizothoracinae, hence offering vital insights for the development of conservation initiatives aimed at protecting freshwater fish species.


Assuntos
Filogenia , Animais , Proteínas Mitocondriais/genética , Composição de Bases/genética , DNA Mitocondrial/genética , Uso do Códon/genética , Truta/genética , Truta/classificação , Códon/genética , Genoma Mitocondrial/genética , Evolução Molecular , Proteínas de Peixes/genética , Genômica/métodos , Variação Genética/genética , Cyprinidae/genética , Cyprinidae/classificação
12.
Genes (Basel) ; 15(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790176

RESUMO

Krascheninnikovia ewersmanniana is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on K. ewersmanniana is lacking. To resolve the genetic composition of K. ewersmanniana within Amaranthaceae and its systematic relationship with related genera, we used a second-generation Illumina sequencing system to detect the chloroplast genome of K. ewersmanniana and analyze its assembly, annotation, and phylogenetics. Total length of the chloroplast genome of K. ewersmanniana reached 152,287 bp, with 84 protein-coding genes, 36 tRNAs, and eight rRNAs. Codon usage analysis showed the majority of codons ending with base A/U. Mononucleotide repeats were the most common (85.42%) of the four identified simple sequence repeats. A comparison with chloroplast genomes of six other Amaranthaceae species indicated contraction and expansion of the inverted repeat boundary region in K. ewersmanniana, with some genes (rps19, ndhF, ycf1) differing in length and distribution. Among the seven species, the variation in non-coding regions was greater. Phylogenetic analysis revealed Krascheninnikovia ceratoides, Dysphania ambrosioides, Dysphania pumilio, and Dysphania botrys to have a close monophyletic relationship. By sequencing the K. ewersmanniana chloroplast genome, this research resolves the relatedness among 35 Amaranthaceae species, providing molecular insights for germplasm utilization, and theoretical support for studying evolutionary relationships.


Assuntos
Amaranthaceae , Genoma de Cloroplastos , Filogenia , Amaranthaceae/genética , Uso do Códon , Repetições de Microssatélites/genética , Evolução Molecular , Cloroplastos/genética , China , Anotação de Sequência Molecular
13.
Genes (Basel) ; 15(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790180

RESUMO

Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae family. However, few complete chloroplast genome sequences of this genus have been reported. Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The base composition analysis showed that the overall GC content was 36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency (RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight for understanding the polyploidization of Brassicaceae species.


Assuntos
Brassica , Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Brassica/genética , Repetições de Microssatélites/genética , Composição de Bases/genética , Uso do Códon , Cloroplastos/genética , Sequenciamento Completo do Genoma/métodos
14.
Genes (Basel) ; 15(5)2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38790191

RESUMO

Galium genus belongs to the Rubiaceae family, which consists of approximately 14,000 species. In comparison to its well-known relatives, the plastomes of the Galium genus have not been explored so far. The plastomes of this genus have a typical, quadripartite structure, but differ in gene content, since the infA gene is missing in Galium palustre and Galium trfidum. An evaluation of the effectiveness of using entire chloroplast genome sequences as superbarcodes for accurate plant species identification revealed the high potential of this method for molecular delimitation within the genus and tribe. The trnE-UUC-psbD region showed the biggest number of diagnostides (diagnostic nucleotides) which might be new potential barcodes, not only in Galium, but also in other closely related genera. Relative synonymous codon usage (RSCU) appeared to be connected with the phylogeny of the Rubiaceae family, showing that during evolution, plants started preferring specific codons over others.


Assuntos
Uso do Códon , Evolução Molecular , Genoma de Cloroplastos , Filogenia , Rubiaceae , Genoma de Cloroplastos/genética , Rubiaceae/genética , Códon/genética , Código de Barras de DNA Taxonômico/métodos
15.
Poult Sci ; 103(7): 103775, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713985

RESUMO

Goose circovirus (GoCV), a potential immunosuppressive virus possessing a circular single-stranded DNA genome, is widely distributed in both domesticated and wild geese. This virus infection causes significant economic losses in the waterfowl industry. The codon usage patterns of viruses reflect the evolutionary history and genetic architecture, allowing them to adapt quickly to changes in the external environment, particularly to their hosts. In this study, we retrieved the coding sequences (Rep and Cap) and the genome of GoCV from GenBank, conducting comprehensive research to explore the codon usage patterns in 144 GoCV strains. The overall codon usage of the GoCV strains was relatively similar and exhibited a slight bias. The effective number of codons (ENC) indicated a low overall extent of codon usage bias (CUB) in GoCV. Combined with the base composition and relative synonymous codon usage (RSCU) analysis, the results revealed a bias toward A- and G-ending codons in the overall codon usage. Analysis of the ENC-GC3s plot and neutrality plot suggested that natural selection plays an important role in shaping the codon usage pattern of GoCV, with mutation pressure having a minor influence. Furthermore, the correlations between ENC and relative indices, as well as correspondence analysis (COA), showed that hydrophobicity and geographical distribution also contribute to codon usage variation in GoCV, suggesting the possible involvement of natural selection. In conclusion, GoCV exhibits comparatively slight CUB, with natural selection being the major factor shaping the codon usage pattern of GoCV. Our research contributes to a deeper understanding of GoCV evolution and its host adaptation, providing valuable insights for future basic studies and vaccine design related to GoCV.


Assuntos
Circovirus , Uso do Códon , Gansos , Circovirus/genética , Animais , Gansos/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Seleção Genética , Adaptação ao Hospedeiro/genética , Adaptação Fisiológica/genética
16.
BMC Genomics ; 25(1): 456, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730418

RESUMO

In this study, we investigated the codon bias of twelve mitochondrial core protein coding genes (PCGs) in eight Pleurotus strains, two of which are from the same species. The results revealed that the codons of all Pleurotus strains had a preference for ending in A/T. Furthermore, the correlation between codon base compositions and codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) indices was also detected, implying the influence of base composition on codon bias. The two P. ostreatus species were found to have differences in various base bias indicators. The average effective number of codons (ENC) of mitochondrial core PCGs of Pleurotus was found to be less than 35, indicating strong codon preference of mitochondrial core PCGs of Pleurotus. The neutrality plot analysis and PR2-Bias plot analysis further suggested that natural selection plays an important role in Pleurotus codon bias. Additionally, six to ten optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified in eight Pleurotus strains, with UGU and ACU being the most widely used optimal codons in Pleurotus. Finally, based on the combined mitochondrial sequence and RSCU value, the genetic relationship between different Pleurotus strains was deduced, showing large variations between them. This research has improved our understanding of synonymous codon usage characteristics and evolution of this important fungal group.


Assuntos
Uso do Códon , Genoma Mitocondrial , Pleurotus , Pleurotus/genética , Códon/genética , Composição de Bases , Especificidade da Espécie , Seleção Genética , Evolução Molecular , Variação Genética
17.
BMC Plant Biol ; 24(1): 424, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764045

RESUMO

Rutaceae family comprises economically important plants due to their extensive applications in spices, food, oil, medicine, etc. The Rutaceae plants is able to better utilization through biotechnology. Modern biotechnological approaches primarily rely on the heterologous expression of functional proteins in different vectors. However, several proteins are difficult to express outside their native environment. The expression potential of functional genes in heterologous systems can be maximized by replacing the rare synonymous codons in the vector with preferred optimal codons of functional genes. Codon usage bias plays a critical role in biogenetic engineering-based research and development. In the current study, 727 coding sequences (CDSs) obtained from the chloroplast genomes of ten Rutaceae plant family members were analyzed for codon usage bias. The nucleotide composition analysis of codons showed that these codons were rich in A/T(U) bases and preferred A/T(U) endings. Analyses of neutrality plots, effective number of codons (ENC) plots, and correlations between ENC and codon adaptation index (CAI) were conducted, which revealed that natural selection is a major driving force for the Rutaceae plant family's codon usage bias, followed by base mutation. In the ENC vs. CAI plot, codon usage bias in the Rutaceae family had a negligible relationship with gene expression level. For each sample, we screened 12 codons as preferred and high-frequency codons simultaneously, of which GCU encoding Ala, UUA encoding Leu, and AGA encoding Arg were the most preferred codons. Taken together, our study unraveled the synonymous codon usage pattern in the Rutaceae family, providing valuable information for the genetic engineering of Rutaceae plant species in the future.


Assuntos
Uso do Códon , Genoma de Cloroplastos , Plantas Medicinais , Rutaceae , Plantas Medicinais/genética , Rutaceae/genética , Códon/genética
18.
J Alzheimers Dis ; 99(3): 927-939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728191

RESUMO

Background: Autophagy and apoptosis are cellular processes that maintain cellular homeostasis and remove damaged or aged organelles or aggregated and misfolded proteins. Stress factors initiate the signaling pathways common to autophagy and apoptosis. An imbalance in the autophagy and apoptosis, led by cascade of molecular mechanism prior to both processes culminate into neurodegeneration. Objective: In present study, we urge to investigate the codon usage pattern of genes which are common before initiating autophagy and apoptosis. Methods: In the present study, we took up eleven genes (DAPK1, BECN1, PIK3C3 (VPS34), BCL2, MAPK8, BNIP3 L (NIX), PMAIP1, BAD, BID, BBC3, MCL1) that are part of molecular signaling mechanism prior to autophagy and apoptosis. We analyzed dinucleotide odds ratio, codon bias, usage, context, and rare codon analysis. Results: CpC and GpG dinucleotides were abundant, with the dominance of G/C ending codons as preferred codons. Clustering analysis revealed that MAPK8 had a distinct codon usage pattern compared to other envisaged genes. Both positive and negative contexts were observed, and GAG-GAG followed by CTG-GCC was the most abundant codon pair. Of the six synonymous arginine codons, two codons CGT and CGA were the rarest. Conclusions: The information presented in the study may be used to manipulate the process of autophagy and apoptosis and to check the pathophysiology associated with their dysregulation.


Assuntos
Apoptose , Autofagia , Doenças Neurodegenerativas , Autofagia/genética , Humanos , Apoptose/genética , Doenças Neurodegenerativas/genética , Uso do Códon/genética , Simulação por Computador , Códon/genética
19.
Genome Biol Evol ; 16(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38608148

RESUMO

Nucleotide diversity at a site is influenced by the relative strengths of neutral and selective population genetic processes. Therefore, attempts to estimate Effective population size based on the diversity of synonymous sites demand a better understanding of their selective constraints. The nucleotide diversity of a gene was previously found to correlate with its length. In this work, I measure nucleotide diversity at synonymous sites and uncover a pattern of low diversity towards the translation initiation site of a gene. The degree of reduction in diversity at the translation initiation site and the length of this region of reduced diversity can be quantified as "Effect Size" and "Effect Length" respectively, using parameters of an asymptotic regression model. Estimates of Effect Length across bacteria covaried with recombination rates as well as with a multitude of translation-associated traits such as the avoidance of mRNA secondary structure around translation initiation site, the number of rRNAs, and relative codon usage of ribosomal genes. Evolutionary simulations under purifying selection reproduce the observed patterns and diversity-length correlation and highlight that selective constraints on the 5'-region of a gene may be more extensive than previously believed. These results have implications for the estimation of effective population size, and relative mutation rates, and for genome scans of genes under positive selection based on "silent-site" diversity.


Assuntos
Evolução Molecular , Variação Genética , Seleção Genética , Modelos Genéticos , Nucleotídeos/genética , Uso do Códon , Iniciação Traducional da Cadeia Peptídica
20.
Genome Biol Evol ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38619010

RESUMO

Rosenberg AA, Marx A, Bronstein AM (Codon-specific Ramachandran plots show amino acid backbone conformation depends on identity of the translated codon. Nat Commun. 2022:13:2815) recently found a surprising correlation between synonymous codon usage and the dihedral bond angles of the resulting amino acid. However, their analysis did not account for the strongest known correlate of codon usage: gene expression. We re-examined the relationship between bond angles and codon usage by applying the approach of Rosenberg et al. to simulated protein-coding sequences that (i) have random codon usage, (ii) codon usage determined by mutation biases, and (iii) maintain the general relationship between codon usage and gene expression via the assumption of selection-mutation-drift equilibrium. We observed correlations between dihedral bond angle and codon usage when codon usage is entirely random, indicating possible conflation of noise with differences in bond angle distributions between synonymous codons. More relevant to the general analysis of codon usage patterns, we found surprisingly good agreement between the analysis of the real sequences and the analysis of sequences simulated assuming selection-mutation-drift equilibrium, with 91% of significant synonymous codon pairs detected in the former were also detected in the latter. We believe the correlation between codon usage and dihedral bond angles resulted from the variation in codon usage across genes due to the interplay between mutation bias, natural selection for translation efficiency, and gene expression, further underscoring these factors must be controlled for when looking for novel patterns related to codon usage.


Assuntos
Uso do Códon , Escherichia coli , Escherichia coli/genética , Seleção Genética , Proteínas de Escherichia coli/genética , Códon , Mutação Silenciosa , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...