Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Arch Virol ; 169(5): 95, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594485

RESUMO

The first detection of a human infection with avian influenza A/H6N1 virus in Taiwan in 2013 has raised concerns about this virus. During our routine surveillance of avian influenza viruses (AIVs) in live-bird markets in Egypt, an H6N1 virus was isolated from a garganey duck and was characterized. Phylogenetic analysis indicated that the Egyptian H6N1 strain A/Garganey/Egypt/20869C/2022(H6N1) has a unique genomic constellation, with gene segments inherited from different subtypes (H5N1, H3N8, H7N3, H6N1, and H10N1) that have been detected previously in AIVs from Egypt and some Eurasian countries. We examined the replication of kinetics of this virus in different mammalian cell lines (A549, MDCK, and Vero cells) and compared its pathogenicity to that of the ancestral H6N1 virus A/Quail/HK/421/2002(H6N1). The Egyptian H6N1 virus replicated efficiently in C57BL/6 mice without prior adaptation and grew faster and reached higher titers than in A549 cells than the ancestral strain. These results show that reassortant H6 AIVs might pose a potential threat to human health and highlight the need to continue surveillance of H6 AIVs circulating in nature.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Camundongos , Chlorocebus aethiops , Humanos , Influenza Aviária/epidemiologia , Egito/epidemiologia , Filogenia , Células Vero , Vírus da Influenza A Subtipo H7N3 , Camundongos Endogâmicos C57BL , Animais Selvagens , Patos , Mamíferos
2.
Zoonoses Public Health ; 71(3): 314-323, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362732

RESUMO

AIMS: Outbreaks of avian influenza in poultry farms are currently increasing in frequency, with devastating consequences for animal welfare, farmers and supply chains. Some studies have documented the direct spread of the avian influenza virus between farms. Prevention of spread between farms relies on biosecurity surveillance and control measures. However, the evolution of an outbreak on a farm might vary depending on the virus strain and poultry species involved; this would have important implications for surveillance systems, epidemiological investigations and control measures. METHODS AND RESULTS: In this study, we utilized existing parameter estimates from the literature to evaluate the predicted course of an epidemic in a standard poultry flock with 10,000 birds. We used a stochastic SEIR simulation model to simulate outbreaks in different species and with different virus subtypes. The simulations predicted large differences in the duration and severity of outbreaks, depending on the virus subtypes. For both turkeys and chickens, outbreaks with HPAI were of shorter duration than outbreaks with LPAI. In outbreaks involving the infection of chickens with different virus subtypes, the shortest epidemic involved H7N7 and HPAIV H5N1 (median duration of 9 and 17 days, respectively) and the longest involved H5N2 (median duration of 68 days). The most severe outbreaks (number of chickens infected) were predicted for H5N1, H7N1 and H7N3 virus subtypes, and the least severe for H5N2 and H7N7, in which outbreaks for the latter subtype were predicted to develop most slowly. CONCLUSIONS: These simulation results suggest that surveillance of certain subtypes of avian influenza virus, in chicken flocks in particular, needs to be sensitive and timely if infection is to be detected with sufficient time to implement control measures. The variability in the predictions highlights that avian influenza outbreaks are different in severity, speed and duration, so surveillance and disease response need to be nuanced and fit the specific context of poultry species and virus subtypes.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A Subtipo H7N1 , Vírus da Influenza A Subtipo H7N7 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Aves Domésticas , Vírus da Influenza A Subtipo H7N3 , Galinhas , Surtos de Doenças/veterinária , Doenças das Aves Domésticas/epidemiologia
3.
Anal Chim Acta ; 1279: 341773, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827673

RESUMO

Influenza virus, existing many subtypes, causes a huge risk of people health and life. Different subtypes bring a huge challenge for detection and treatment, thus simultaneous detection of multiple influenza virus subtypes plays a key role in fight against this disease. In this work, three kinds of influenza virus subtypes are one-step detection based on microbead-encoded microfluidic chip. HIN1, H3N2 and H7N3 were simultaneously captured only by microbeads of different magnetism and sizes, and they were further treated by magnetic separation and enriched through the magnetism and size-dependent microfluidic structure. Different subtypes of influenza virus could be linearly encoded in different detection zones of microfluidic chip according to microbeads of magnetism and size differences. With the high-brightness quantum dots (QDs) as label, the enriched fluorescence detection signals were further read online from linearly encoded strips, obtaining high sensitivity with detection limit of HIN1, H3N2, H7N3 about 2.2 ng/mL, 3.4 ng/mL and 2.9 ng/mL. Moreover, a visual operation interface, microcontroller unit and two-way syringe pump were consisted of a miniaturized detection device, improving the detection process automation. And this assay showed strong specificity. This method improves a new way of multiple pathogens detection using microbead-encoded technologies in the microfluidic chip.


Assuntos
Técnicas Analíticas Microfluídicas , Pontos Quânticos , Humanos , Microfluídica , Microesferas , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A Subtipo H7N3 , Pontos Quânticos/química
4.
Arch Virol ; 168(3): 82, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757481

RESUMO

Active surveillance and studying the virological features of avian-origin influenza viruses are essential for early warning and preparedness for the next potential pandemic. During our active surveillance of avian influenza viruses in wild birds in Egypt in the period 2014-2017, multiple reassortant low-pathogenic avian influenza H7N3 viruses were isolated. In this study, we investigated and compared the infectivity, pathogenicity, and transmission of four different constellation forms of Egyptian H7N3 viruses in chickens and mice and assessed the sensitivity of these viruses to different commercial antiviral drugs in vitro. Considerable variation in virus pathogenicity was observed in mice infected with different H7N3 viruses. The mortality rate ranged from 20 to 100% in infected mice. Infected chickens showed only ocular clinical signs at three days postinfection as well as systemic viral infection in different organs. Efficient virus replication and transmission in chickens was observed within each group, indicating that these subtypes can spread easily from wild birds to poultry without prior adaptation. Mutations in the viral proteins associated with antiviral drug resistance were not detected, and all strains were sensitive to the antiviral drugs tested. In conclusion, all of the viruses studied had the ability to infect mice and chickens. H7N3 viruses circulating among wild birds in Egypt could threaten poultry production and public health.


Assuntos
Vírus da Influenza A Subtipo H7N3 , Influenza Aviária , Animais , Camundongos , Vírus da Influenza A Subtipo H7N3/genética , Galinhas , Egito/epidemiologia , Antivirais/farmacologia , Animais Selvagens , Aves Domésticas , Vírus Reordenados/genética , Filogenia
5.
Virus Genes ; 59(2): 240-243, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36735176

RESUMO

In 2021, an H7N3 avian influenza virus (AIV) was isolated from a mallard in Tianhewan Yellow River National Wetland Park, Ningxia Hui Autonomous Region, China. Sequences analysis showed that this strain received its genes from H7, H6, H5, H3, and H1 AIVs of domestic poultry and wild birds in Asia and Europe. It was mild pathogenicity in mice. These results suggest the importance of continued surveillance of the H7N3 virus to better understand the ecology and evolution of the AIVs in poultry and wild birds and the potential threat to humans.


Assuntos
Influenza Aviária , Humanos , Animais , Camundongos , Vírus da Influenza A Subtipo H7N3/genética , Filogenia , Animais Selvagens/genética , Aves , Aves Domésticas , Análise de Sequência
6.
Virology ; 579: 9-28, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587605

RESUMO

The low pathogenic avian influenza H9N2 virus is a significant zoonotic agent and contributes genes to highly pathogenic avian influenza (HPAI) viruses. H9N2 viruses are prevalent in India with a reported human case. We elucidate the spatio-temporal origins of the H9N2 viruses from India. A total of 30H9N2 viruses were isolated from poultry and environmental specimens (years 2015-2020). Genome sequences of H9N2 viruses (2003-2020) from India were analyzed, revealing several substitutions. We found five reassortant genotypes. The HA, NA and PB2 genes belonged to the Middle-Eastern B sublineage; NP and M to the classical G1 lineage; PB1, PA and NS showed resemblance to genes from either HPAI-H7N3/H5N1 viruses. Molecular clock and phylogeography revealed that the introduction of all the genes to India took place around the year 2000. This is the first report of the genesis and evolution of the H9N2 viruses from India, and highlights the need for surveillance.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Influenza Aviária/epidemiologia , Vírus da Influenza A Subtipo H9N2/genética , Filogeografia , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H7N3 , Galinhas , Filogenia , Índia/epidemiologia , Vírus Reordenados/genética
7.
J Med Virol ; 95(2): e28476, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36609855

RESUMO

The H10 subtypes of avian influenza viruses pose a continual threat to the poultry industry and human health. The sporadic spillover of H10 subtypes viruses from poultry to humans is represented by the H10N8 human cases in 2013 and the recent H10N3 human infection in 2021. However, the genesis and characteristics of the recent reassortment H10N3 viruses have not been systemically investigated. In this study, we characterized 20 H10N3 viruses isolated in live poultry markets during routine nationwide surveillance in China from 2014 to 2021. The viruses in the recent reassortant genotype acquired their hemagglutinin (HA) and neuraminidase (NA) genes from the duck H10 viruses and H7N3 viruses, respectively, whereas the internal genes were derived from chicken H9N2 viruses as early as 2019. Receptor-binding analysis indicated that two of the tested H10N3 viruses had a higher affinity for human-type receptors than for avian-type receptors, highlighting the potential risk of avian-to-human transmission. Animal studies showed that only viruses belonging to the recent reassortant genotype were pathogenic in mice; two tested viruses transmitted via direct contact and one virus transmitted by respiratory droplets in guinea pigs, though with limited efficiency. These findings emphasize the need for enhanced surveillance of H10N3 viruses.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Humanos , Animais , Cobaias , Camundongos , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H7N3 , Aves Domésticas , Galinhas , China/epidemiologia , Filogenia , Vírus Reordenados/genética
8.
J Proteome Res ; 22(1): 62-77, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36480915

RESUMO

N-Linked glycosylation in hemagglutinin and neuraminidase glycoproteins of influenza viruses affects antigenic and receptor binding properties, and precise analyses of site-specific glycoforms in these proteins are critical in understanding the antigenic and immunogenic properties of influenza viruses. In this study, we developed a glycoproteomic approach by using a timsTOF Pro mass spectrometer (MS) to determine the abundance and heterogeneity of site-specific glycosylation for influenza glycoproteins. Compared with a Q Exactive HF MS, the timsTOF Pro MS method without the hydrophilic interaction liquid chromatography column enrichment achieved similar glycopeptide coverage and quantities but was more effective in identifying low-abundance glycopeptides. We quantified the distributions of intact site-specific glycopeptides in hemagglutinin of A/chicken/Wuxi/0405005/2013 (H7N9) and A/mute swan/Rhode Island/A00325125/2008 (H7N3). Results showed that hemagglutinin for both viruses had complex N-glycans at N22, N38, N240, and N483 but only high-mannose glycans at N411 and, however, that the type and quantities of glycans were distinct between these viruses. Collisional cross section (CCS) provided by the ion mobility spectrometry from the timsTOF Pro MS data differentiated sialylation linkages of the glycopeptides. In summary, timsTOF Pro MS method can quantify intact site-specific glycans for influenza glycoproteins without enrichment and thus facilitate influenza vaccine development and production.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Humanos , Hemaglutininas , Vírus da Influenza A Subtipo H7N3/metabolismo , Glicoproteínas/análise , Glicopeptídeos/análise , Polissacarídeos/metabolismo
9.
Pharm Biol ; 60(1): 2355-2366, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36444944

RESUMO

CONTEXT: Xiaoer lianhuaqinqgan (XELH), developed based on Lianhua Qingwen (LHQW) prescription, contains 13 traditional Chinese medicines. It has completed the investigational new drug application to treat respiratory viral infections in children in China. OBJECTIVE: This study demonstrates the pharmacological effects of XELH against viral pneumonia. MATERIALS AND METHODS: The antiviral and anti-inflammatory effects of XELH were investigated in vitro using H3N2-infected A549 and LPS-stimulated RAW264.7 cells and in vivo using BALB/c mice models of influenza A virus (H3N2) and respiratory syncytial virus (RSV)-infection. Mice were divided into 7 groups (n = 20): Control, Model, LHQW (0.5 g/kg), XELH-low (2 g/kg), XELH-medium (4 g/kg), XELH-high (8 g/kg), and positive drug (20 mg/kg oseltamivir or 60 mg/kg ribavirin) groups. The anti-inflammatory effects of XELH were tested in a rat model of LPS-induced fever and a mouse model of xylene-induced ear edoema. RESULTS: In vitro, XELH inhibited the pro-inflammatory cytokines and replication of H1N1, H3N2, H1N1, FluB, H9N2, H6N2, H7N3, RSV, and HCoV-229E viruses, with (IC50 47.4, 114, 79, 250, 99.2, 170, 79, 62.5, and 93 µg/mL, respectively). In vivo, XELH reduced weight loss and lung index, inhibited viral replication and macrophage M1 polarization, ameliorated lung damage, decreased inflammatory cell infiltration and pro-inflammatory cytokines expression in lung tissues, and increased the CD4+/CD8+ ratio. XELH inhibited LPS-induced fever in rats and xylene-induced ear edoema in mice. CONCLUSION: XELH efficacy partially depends on integrated immunoregulatory effects. XELH is a promising therapeutic option against childhood respiratory viral infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Pneumonia Viral , Camundongos , Ratos , Animais , Humanos , Vírus Sinciciais Respiratórios , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A Subtipo H7N3 , Lipopolissacarídeos , Xilenos , Camundongos Endogâmicos BALB C , Citocinas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
10.
Transbound Emerg Dis ; 69(6): 3238-3246, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35959696

RESUMO

Avian influenza poses an increasing problem in Europe and around the world. Simulation models are a useful tool to predict the spatiotemporal risk of avian influenza spread and evaluate appropriate control actions. To develop realistic simulation models, valid transmission parameters are critical. Here, we reviewed published estimates of the basic reproduction number (R0 ), the latent period and the infectious period by virus type, pathogenicity, species, study type and poultry flock unit. We found a large variation in the parameter estimates, with highest R0 estimates for H5N1 and H7N3 compared with other types; for low pathogenic avian influenza compared with high pathogenic avian influenza types; for ducks compared with other species; for estimates from field studies compared with experimental studies; and for within-flock estimates compared with between-flock estimates. Simulation models should reflect this observed variation so as to produce more reliable outputs and support decision-making. How to incorporate this information into simulation models remains a challenge.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Vírus da Influenza A Subtipo H7N3 , Galinhas , Patos
11.
Sci Transl Med ; 14(653): eabo2167, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857640

RESUMO

Influenza A viruses (IAVs) present major public health threats from annual seasonal epidemics and pandemics and from viruses adapted to a variety of animals including poultry, pigs, and horses. Vaccines that broadly protect against all such IAVs, so-called "universal" influenza vaccines, do not currently exist but are urgently needed. Here, we demonstrated that an inactivated, multivalent whole-virus vaccine, delivered intramuscularly or intranasally, was broadly protective against challenges with multiple IAV hemagglutinin and neuraminidase subtypes in both mice and ferrets. The vaccine is composed of four ß-propiolactone-inactivated low-pathogenicity avian IAV subtypes of H1N9, H3N8, H5N1, and H7N3. Vaccinated mice and ferrets demonstrated substantial protection against a variety of IAVs, including the 1918 H1N1 strain, the highly pathogenic avian H5N8 strain, and H7N9. We also observed protection against challenge with antigenically variable and heterosubtypic avian, swine, and human viruses. Compared to control animals, vaccinated mice and ferrets demonstrated marked reductions in viral titers, lung pathology, and host inflammatory responses. This vaccine approach indicates the feasibility of eliciting broad, heterosubtypic IAV protection and identifies a promising candidate for influenza vaccine clinical development.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Furões , Cavalos , Humanos , Vírus da Influenza A Subtipo H7N3 , Camundongos , Suínos
12.
Virus Genes ; 58(5): 473-477, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35616824

RESUMO

In this study, a novel multiple-gene reassortant H1N3 subtype avian influenza virus (AIV) (A/chicken/Zhejiang/81213/2017, CK81213) was isolated in Eastern China, whose genes were derived from H1 (H1N3), H7 (H7N3 and H7N9), and H10 (H10N3 and H10N8) AIVs. This AIV belongs to the avian Eurasian-lineage and exhibits low pathogenicity. Serial lung-to-lung passages of CK81213 in mice was performed to study the amino acid substitutions potentially related to the adaptation of H1 AIVs in mammals. And the mouse-adapted H1N3 virus showed greater virulence than wild-type H1N3 AIV in mice and the genomic analysis revealed a total of two amino acid substitutions in the PB2 (E627K) and HA (L67V) proteins. Additionally, the results of the animal study indicate that CK81213 could infect mice without prior adaption and become highly pathogenic to mice after continuous passage. Our findings show that routine surveillance of H1 AIVs is important for the prediction of influenza epidemics.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Substituição de Aminoácidos/genética , Animais , Galinhas/genética , Vírus da Influenza A Subtipo H7N3/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Mamíferos , Camundongos , Camundongos Endogâmicos BALB C , Vírus Reordenados , Virulência/genética
13.
Viruses ; 14(3)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336961

RESUMO

Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2-10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.


Assuntos
Influenza Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Variação Genética , Vírus da Influenza A Subtipo H7N3/genética , Perus , Virulência/genética
14.
Transbound Emerg Dis ; 69(4): e605-e620, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34989481

RESUMO

From April 2018 to October 2019, we continued active surveillance for influenza viruses in Bangladeshi live poultry markets (LPMs) and in Tanguar Haor, a wetland region of Bangladesh where domestic ducks have frequent contact with migratory birds. The predominant virus subtypes circulating in the LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses of the H5N1-R1 genotype, like those found in previous years. Viruses of the H5N1-R2 genotype, which were previously reported as co-circulating with H5N1-R1 genotype viruses in LPM, were not detected. In addition to H9N2 viruses, which were primarily found in chicken and quail, H2N2, H3N8 and H11N3 LPAI viruses were detected in LPMs, exclusively in ducks. Viruses in domestic ducks and/or wild birds in Tanguar Haor were more diverse, with H1N1, H4N6, H7N1, H7N3, H7N4, H7N6, H8N4, H10N3, H10N4 and H11N3 detected. Phylogenetic analyses of these LPAI viruses suggested that some were new to Bangladesh (H2N2, H7N6, H8N4, H10N3 and H10N4), likely introduced by migratory birds of the Central Asian flyway. Our results show a complex dynamic of viral evolution and diversity in Bangladesh based on factors such as host populations and geography. The LPM environment was characterised by maintenance of viruses with demonstrated zoonotic potential and H5N1 genotype turnover. The wetland environment was characterised by greater viral gene pool diversity but a lower overall influenza virus detection rate. The genetic similarity of H11N3 viruses in both environments demonstrates that LPM and wetlands are connected despite their having distinct influenza ecologies.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H7N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Bangladesh/epidemiologia , Galinhas , Patos , Humanos , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H7N3 , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Áreas Alagadas
15.
Viruses ; 13(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34835080

RESUMO

Zoonotic infection with avian influenza viruses (AIVs) of subtype H7, such as H7N9 and H7N4, has raised concerns worldwide. During the winter of 2020-2021, five novel H7 low pathogenic AIVs (LPAIVs) containing different neuraminidase (NA) subtypes, including two H7N3, an H7N8, and two H7N9, were detected in wild bird feces in South Korea. Complete genome sequencing and phylogenetic analysis showed that the novel H7Nx AIVs were reassortants containing two gene segments (hemagglutinin (HA) and matrix) that were related to the zoonotic Jiangsu-Cambodian H7 viruses causing zoonotic infection and six gene segments originating from LPAIVs circulating in migratory birds in Eurasia. A genomic constellation analysis demonstrated that all H7 isolates contained a mix of gene segments from different viruses, indicating that multiple reassortment occurred. The well-known mammalian adaptive substitution (E627K and D701N) in PB2 was not detected in any of these isolates. The detection of multiple reassortant H7Nx AIVs in wild birds highlights the need for intensive surveillance in both wild birds and poultry in Eurasia.


Assuntos
Vírus da Influenza A Subtipo H7N3/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/virologia , Animais , Animais Selvagens/virologia , Aves/genética , Aves/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N3/isolamento & purificação , Vírus da Influenza A Subtipo H7N3/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Filogenia , República da Coreia/epidemiologia
16.
Viruses ; 13(9)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578433

RESUMO

An outbreak caused by H7N3 low pathogenicity avian influenza virus (LPAIV) occurred in commercial turkey farms in the states of North Carolina (NC) and South Carolina (SC), United States in March of 2020. Subsequently, H7N3 high pathogenicity avian influenza virus (HPAIV) was detected on a turkey farm in SC. The infectivity, transmissibility, and pathogenicity of the H7N3 HPAIV and two LPAIV isolates, including one with a deletion in the neuraminidase (NA) protein stalk, were studied in turkeys and chickens. High infectivity [<2 log10 50% bird infectious dose (BID50)] and transmission to birds exposed by direct contact were observed with the HPAIV in turkeys. In contrast, the HPAIV dose to infect chickens was higher than for turkeys (3.7 log10 BID50), and no transmission was observed. Similarly, higher infectivity (<2-2.5 log10 BID50) and transmissibility were observed with the H7N3 LPAIVs in turkeys compared to chickens, which required higher virus doses to become infected (5.4-5.7 log10 BID50). The LPAIV with the NA stalk deletion was more infectious in turkeys but did not have enhanced infectivity in chickens. These results show clear differences in the pathobiology of AIVs in turkeys and chickens and corroborate the high susceptibility of turkeys to both LPAIV and HPAIV infections.


Assuntos
Galinhas/virologia , Vírus da Influenza A Subtipo H7N3/patogenicidade , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Perus/virologia , Animais , Surtos de Doenças/veterinária , Genoma Viral , Vírus da Influenza A Subtipo H7N3/genética , Vírus da Influenza A Subtipo H7N3/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , North Carolina/epidemiologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/transmissão , South Carolina/epidemiologia , Carga Viral , Virulência , Eliminação de Partículas Virais
17.
Vopr Virusol ; 66(3): 189-197, 2021 Jul 09.
Artigo em Russo | MEDLINE | ID: mdl-34251156

RESUMO

INTRODUCTION: Variants of influenza virus A/H7 have the same high pandemic potential as A/H5. However, the information about the antigenic structure of H7 hemagglutinin (НА) is considerably inferior in quantitative terms to similar data for H5 НА.The aims of the study were development and characterization of the monoclonal antibodies (MAbs) panel for HA subtype H7 of the influenza A virus. MATERIAL AND METHODS: Viruses were accumulated in 10-day-old chicken embryos. Purification and concentration of the virus, determination of protein concentration, preparation of MAbs and ascitic fluids, hemagglutination and hemagglutination inhibition (HI) tests, assessment of antibodies' activity in indirect enzyme-linked immunosorbent assay (ELISA), as well as determination of MAbs isotypes and neutralization reaction (NR) were carried out by standard methods. RESULTS: The obtained MAbs to А/mallard/Netherlands/12/2000 (H7N3) strain were studied in HI test with a set of strains of different years of isolation belonging to different evolutionary groups. MAbs had a reduced reactivity compared to the immunogen-virus for all the studied strains. Cross-interaction of MAbs 9E11 and 9G12 in HI test with influenza A/H15 virus has been observed. DISCUSSION: Influenza A agent with H7 HA variant could serve as a potential cause of a future pandemic. Development of the MAbs panel for subtype H7 HA is an urgent task for both veterinary medicine and public health. CONCLUSION: The obtained MAbs can be used not only for epitope mapping of the H7 HA molecule (currently insufficiently studied) and as reagents for diagnostic assays, but also for determining common («universal¼) epitopes in HA of different strains of this subtype.


Assuntos
Anticorpos Monoclonais , Hemaglutininas , Vírus da Influenza A Subtipo H7N3 , Animais , Anticorpos Antivirais , Embrião de Galinha , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Influenza Humana
18.
Ceska Slov Farm ; 70(1): 18-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237949

RESUMO

Since the beginning of the outbreak, a large number of clinical trials have been registered worldwide, and thousands of drugs have been investigated to face new health emergency of highly contagious COVID-19 caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Drug repurposing, i.e., utilizing an approved drug for a different indication, offers a time- and cost-efficient alternative for making new (relevant) therapies available to physicians and patients. Considering given strategy, many approved and investigational antiviral compounds, alone or in various relevant combinations, used in the past to fight Severe Acute Respiratory Syndrome Coronavirus-1, Middle East Respiratory Syndrome Coronavirus, Human Immunodeficiency Virus type 1, or Influenza viruses are being evaluated against the SARS-CoV-2. Triazavirin (TZV), a non-toxic broad--spectrum antiviral compound, is efficient against various strains of the Influenza A virus (Influenza Virus A, Orthomyxoviridae), i.e., swine flu (H1N1, or H3N2), avian influenza (H5N1, H5N2, H9N2, or highly pathogenic H7N3 strain), Influenza B virus (Influenza Virus B, Orthomyxoviridae), Respiratory Syncytial Virus (Orthopneumovirus, Pneumoviridae), Tick-Borne Encephalitis Virus (known as Forest-Spring Encephalitis Virus; Flavivirus, Flaviviridae), West Nile Virus (Flavivirus, Flavaviridae), Rift Valley Fever Virus (Phlebovirus, Bunyaviridae), and Herpes viruses (Simplexviruses, Herpesviridae) as well. In regard to COVID-19, the molecule probably reduced inflammatory reactions, thus limiting the damage to vital organs and reducing the need for therapeutic support, respectively. In addition, in silico computational methods indicated relatively satisfactory binding affinities of the TZV ligand to both structural (E)- and (S)-proteins, non-structural 3-chymotrypsin-like protease (3-CLpro) of SARS-CoV-2 as well as human angiotensin-I converting enzyme-2 (ACE-2). The interactions between TZV and given viral structures or the ACE-2 receptor for SARS-CoV-2 might effectively block both the entry of the pathogen into a host cell and its replication. Promising treatment patterns of COVID-19 positive patients might be also based on a suitable combination of a membrane fusion inhibitor (umifenovir, for example) with viral RNA synthesis and replication inhibitor (TZV).


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Triazinas/uso terapêutico , Animais , Azóis , Humanos , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A Subtipo H7N3 , Vírus da Influenza A Subtipo H9N2 , Triazóis
19.
Viruses ; 13(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067187

RESUMO

Low-pathogenicity avian influenza viruses (LPAIV) introduced by migratory birds circulate in wild birds and can be transmitted to poultry. These viruses can mutate to become highly pathogenic avian influenza viruses causing severe disease and death in poultry. In March 2019, an H7N3 avian influenza virus-A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3)-was isolated from spot-billed ducks in South Korea. This study aimed to evaluate the phylogenetic and mutational analysis of this isolate. Molecular analysis revealed that the genes for HA (hemagglutinin) and NA (neuraminidase) of this strain belonged to the Central Asian lineage, whereas genes for other internal proteins such as polymerase basic protein 1 (PB1), PB2, nucleoprotein, polymerase acidic protein, matrix protein, and non-structural protein belonged to that of the Korean lineage. In addition, a monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, and the non-deletion of the stalk region in the NA gene indicated that this isolate was a typical LPAIV. Nucleotide sequence similarity analysis of HA revealed that the highest homology (99.51%) of this isolate is to that of A/common teal/Shanghai/CM1216/2017 (H7N7), and amino acid sequence of NA (99.48%) was closely related to that of A/teal/Egypt/MB-D-487OP/2016 (H7N3). An in vitro propagation of the A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3) virus showed highest (7.38 Log10 TCID50/mL) virus titer at 60 h post-infection, and in experimental mouse lungs, the virus was detected at six days' post-infection. Our study characterizes genetic mutations, as well as pathogenesis in both in vitro and in vivo model of a new Korea H7N3 viruses in 2019, carrying multiple potential mutations to become highly pathogenic and develop an ability to infect humans; thus, emphasizing the need for routine surveillance of avian influenza viruses in wild birds.


Assuntos
Patos/virologia , Vírus da Influenza A Subtipo H7N3/classificação , Vírus da Influenza A Subtipo H7N3/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Animais Selvagens/virologia , Células Cultivadas , Feminino , Genes Virais , Genoma Viral , Genômica/métodos , História do Século XXI , Especificidade de Hospedeiro , Vírus da Influenza A Subtipo H7N3/isolamento & purificação , Influenza Aviária/história , Camundongos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Vigilância em Saúde Pública , Vírus Reordenados , República da Coreia/epidemiologia , Replicação Viral
20.
Influenza Other Respir Viruses ; 15(6): 701-706, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34109758

RESUMO

Wild aquatic birds are natural reservoirs of low-pathogenicity avian influenza viruses (LPAIVs). Laughing gulls inoculated with four gull-origin LPAIVs (H7N3, H6N4, H3N8, and H2N3) had a predominate respiratory infection. By contrast, mallards inoculated with two mallard-origin LPAIVs (H5N6 and H4N8) became infected and had similar virus titers in oropharyngeal (OP) and cloacal (CL) swabs. The trend toward predominate OP shedding in gulls suggest a greater role of direct bird transmission in maintenance, whereas mallards shedding suggests importance of fecal-oral transmission through water contamination. Additional infectivity and pathogenesis studies are needed to confirm this replication difference for LPAI viruses in gulls.


Assuntos
Charadriiformes , Vírus da Influenza A Subtipo H3N8 , Influenza Aviária , Animais , Patos , Humanos , Vírus da Influenza A Subtipo H7N3 , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...