Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
Medicina (B Aires) ; 84(5): 959-970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39399936

RESUMO

Varicella-zoster virus infections have increased globally, with complications such as postherpetic neuralgia and neurological sequelae. The recombinant vaccine against herpes zoster is proposed as a preventive strategy. This systematic review evaluates its effectiveness and safety in healthy and high-risk populations. A systematic review of randomized controlled trials comparing the effectiveness and safety of the vaccine was conducted. The search was carried out in Epistemonikos. Two researchers independently assessed the eligibility of the studies and the risk of bias was evaluated using the Cochrane Risk of Bias 2 tool. A meta-analysis of homogeneous results was conducted, and the certainty of the evidence was evaluated using GRADE. A minimally contextualized approach was adopted using predetermined thresholds. Nine randomized controlled trials were selected. The vaccine demonstrated a significant reduction in the incidence of herpes zoster in high-risk populations (risk difference of 140 fewer per 1000) with high certainty. However, in healthy populations, the effect was trivial (28 fewer per 1000). No significant differences were observed in postherpetic neuralgia in any of the populations analyzed. Adverse events increased in both populations, though no discrepancies in serious adverse events were noted. In high-risk populations, where the incidence of herpes zoster and its complications is higher, the vaccine demonstrated effectiveness in lowering the incidence of the disease, though not in that of postherpetic neuralgia. Conversely, in healthy populations, the impact of the vaccine was trivial. Individualized and informed recommendations are crucial when considering this vaccine.


Las infecciones por el virus de la varicela-zóster han aumentado globalmente, con complicaciones como neuralgia postherpética y secuelas neurológicas. La vacuna recombinante contra el herpes zóster se propone como estrategia preventiva. Esta revisión sistemática evalúa su efectividad y seguridad en poblaciones sanas y de alto riesgo. Se realizó una revisión sistemática de ensayos controlados aleatorios que comparaban la efectividad y seguridad de la vacuna. La búsqueda se efectuó en Epistemonikos. Dos investigadores evaluaron independientemente la elegibilidad de los estudios y se evaluó el riesgo de sesgo con la herramienta Cochrane Risk of Bias 2. Se realizó un metanálisis de resultados homogéneos y se evaluó la certeza de la evidencia mediante GRADE. Se adoptó un enfoque mínimamente contextualizado utilizando umbrales predeterminados. Se seleccionaron 9 ensayos controlados aleatorios. La vacuna demostró una reducción significativa en la incidencia de herpes zóster en poblaciones de alto riesgo (diferencia de riesgo de 140 menos por 1000) con alta certeza. Sin embargo, en poblaciones sanas, el efecto fue trivial (28 menos por 1000). No se observaron diferencias significativas en la incidencia de neuralgia postherpética en ninguna de las poblaciones. En cuanto a la seguridad, se registró un aumento de eventos adversos en ambas poblaciones, aunque no se presentaron diferencias en los eventos adversos graves. En poblaciones de alto riesgo, donde la incidencia de herpes zóster y sus complicaciones es más alta, la vacuna demostró eficacia en la reducción de la incidencia de la enfermedad, aunque no en la de la neuralgia postherpética. Por otro lado, en población sana, el impacto de la vacuna fue trivial. Es crucial adoptar un enfoque individualizado e informado al recomendar esta vacuna.


Assuntos
Vacina contra Herpes Zoster , Herpes Zoster , Eficácia de Vacinas , Humanos , Herpes Zoster/complicações , Herpes Zoster/epidemiologia , Herpes Zoster/prevenção & controle , Vacina contra Herpes Zoster/efeitos adversos , Vacina contra Herpes Zoster/administração & dosagem , Incidência , Neuralgia Pós-Herpética/epidemiologia , Neuralgia Pós-Herpética/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Eficácia de Vacinas/estatística & dados numéricos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos
2.
Mem Inst Oswaldo Cruz ; 119: e240094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258623

RESUMO

BACKGROUND: In response to the coronavirus disease 2019 (Covid-19) pandemic, Brazil authorised the Astra Zeneca/Fiocruz vaccine in January 2021. As the Delta variant emerged in May 2021, interval between vaccine doses was adjusted. By September 2021, the Brazilian National Immunisation Program recommended a booster dose for individuals over 70, and later expanded the recommendation to all adults. OBJECTIVES: Assess the equivalence of IgG antibody response against the Covid-19 S protein before and approximately 28 days after the third dose of a Covid-19 recombinant vaccine. Two groups received initial two doses with intervals of eight and 12 weeks. METHODS: This is a phase IV clinical study, uncontrolled, non-randomised. The study proposes calculating the ratio of geometric means titres (GMT) 28 days after the third dose, with a target ratio of confidence interval (CI) between 0.77 and 1.3. FINDINGS: In the primary endpoint, there was no equivalence between the eight- and 12-week intervals with a slight variation favouring the eight-week group. Post-third dose, both groups showed increases titres at 28 days, three months, six months and 12 months. Both groups responded similarly to Delta and Omicron BA.1, with a more significant increase for Delta. MAIN CONCLUSIONS: The study showed strong and consistent immune response in all age groups receiving the Covid-19 recombinant vaccine. Third dose elicited an increase in GMT by at least three times aligned with Ministry of Health strategies emphasising Bio-Manguinhos crucial role in pandemic control in the country.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Esquemas de Imunização , Imunização Secundária , Imunogenicidade da Vacina , Imunoglobulina G , SARS-CoV-2 , Vacinas Sintéticas , Humanos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , COVID-19/imunologia , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Imunoglobulina G/sangue , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Adulto Jovem , Idoso , Brasil , Adolescente , Fatores de Tempo
3.
Vaccine ; 42(23): 126203, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39178767

RESUMO

SARS-CoV-2 is the causative virus of COVID-19, which has been responsible for millions of deaths worldwide since its discovery. After its emergence, several variants have been identified that challenge the efficacy of the available vaccines. Previously, we generated and evaluated a vaccine based on a recombinant Bacillus Calmette-Guérin (rBCG) expressing the nucleoprotein (N) of SARS-CoV-2 (rBCG-N-SARS-CoV-2). This protein is a highly immunogenic antigen and well conserved among variants. Here, we tested the administration of this vaccine with recombinant N and viral Spike proteins (S), or Receptor Binding Domain (RBD-Omicron variant), plus a booster with the recombinant proteins only, as a novel and effective strategy to protect against SARS-CoV-2 variants. METHODS: BALB/c mice were immunized with rBCG-N-SARS-CoV-2 and recombinant SARS-CoV-2 proteins in Alum adjuvant, followed by a booster with recombinant proteins to assess the safety and virus-specific cellular and humoral immune responses against SARS-CoV-2 antigens. RESULTS: Immunization with rBCG-N-SARS-CoV-2 + recombinant proteins as a vaccine was safe and promoted the activation of CD4+ and CD8+ T cells that recognize SARS-CoV-2 N, S, and RBD antigens. These cells were able to secrete cytokines with an antiviral profile. This immunization strategy also induced robust titers of specific antibodies against N, S, and RBD and neutralizing antibodies of SARS-CoV-2. CONCLUSIONS: Co-administration of the rBCG-N-SARS-CoV-2 vaccine with recombinant SARS-CoV-2 proteins could be an effective alternative to control particular SARS-CoV-2 variants. Due to its safety and capacity to induce virus-specific immune responses, we believe the rBCG-N-SARS-CoV-2 + Proteins vaccine could be an attractive candidate to protect against this virus, especially in newborns.


Assuntos
Anticorpos Antivirais , Vacina BCG , Vacinas contra COVID-19 , COVID-19 , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Vacina BCG/genética , Feminino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Imunização Secundária , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Imunidade Humoral , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Linfócitos T CD8-Positivos/imunologia , Fosfoproteínas/imunologia , Fosfoproteínas/genética , Adjuvantes Imunológicos/administração & dosagem , Imunidade Celular
4.
Anaerobe ; 89: 102895, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122140

RESUMO

INTRODUCTION: Producing commercial bacterins/toxoids against Clostridium spp. is laborious and hazardous. Conversely, developing prototype vaccines using purified recombinant toxoids, though safe and effective, is both laborious and costly for application in production animals. OBJECTIVE: Considering that inactivated recombinant Escherichiacoli (bacterin) is a simple, cost-effective, and to be safe solution, we evaluated, for the first time, a pentavalent formulation of recombinant bacterins containing the alpha, beta, and epsilon toxins of Clostridiumperfringens and C and D neurotoxins of Clostridiumbotulinum in sheep. METHODS: Subcutaneously, 18 Texel sheep received two doses (200 µg of each antigen) of recombinant bacterin (n = 7) or purified recombinant antigens (n = 6) on days 0 and 28, while the control group (n = 5) did not receive an immunization. Sera samples from days 0 (before the 1st dose), 28 (before the 2nd dose), and 56, 84, and 112 were used for measuring IgG (indirect ELISA) and neutralizing antibodies (mouse serum neutralization). RESULTS: Both formulations induced significant levels of IgG against all five toxins (p < 0.05) up to day 112, with peaks at days 28 and 56 post-immunization. The expected booster effect occurred only for the botulinum toxins. The neutralizing antibody titers were satisfactory against ETX (≥2 IU/ml for both formulations) and BoNT-D [5 IU/ml (bacterin) and 10 IU/ml (purified)]. CONCLUSION: While adjustments are required, the recombinant bacterin platform holds great potential for polyvalent vaccines due to its straightforward, safe, and cost-effective production, establishing it as a user-friendly technology for the veterinary immunobiological industry.


Assuntos
Anticorpos Antibacterianos , Anticorpos Neutralizantes , Vacinas Bacterianas , Botulismo , Enterotoxemia , Animais , Botulismo/prevenção & controle , Botulismo/veterinária , Botulismo/imunologia , Ovinos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Anticorpos Antibacterianos/sangue , Enterotoxemia/prevenção & controle , Enterotoxemia/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/microbiologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Imunoglobulina G/sangue , Escherichia coli/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Feminino
5.
Anaerobe ; 89: 102896, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127403

RESUMO

INTRODUCTION: Clostridioides difficile is the main cause of antibiotic-associated diarrhea in humans and is a major enteropathogen in several animal species. In newborn piglets, colonic lesions caused by C. difficile A and B toxins (TcdA and TcdB, respectively) cause diarrhea and significant production losses. OBJECTIVE: The present study aimed to develop two recombinant vaccines from immunogenic C-terminal fragments of TcdA and TcdB and evaluate the immune response in rabbits and in breeding sows. Two vaccines were produced: bivalent (rAB), consisting of recombinant fragments of TcdA and TcdB, and chimeric (rQAB), corresponding to the synthesis of the same fragments in a single protein. Groups of rabbits were inoculated with 10 or 50 µg of proteins adjuvanted with aluminum or 0.85 % sterile saline in a final volume of 1 mL/dose. Anti-TcdA and anti-TcdB IgG antibodies were detected in rabbits and sows immunized with both rAB and rQAB vaccines by ELISA. The vaccinated sows were inoculated intramuscularly with 20 µg/dose using a prime-boost approach. RESULTS: Different antibody titers (p ≤ 0.05) were observed among the vaccinated groups of sows (rAB and rQAB) and control. Additionally, newborn piglets from vaccinated sows were also positive for anti-TcdA and anti-TcdB IgGs, in contrast to control piglets (p ≤ 0.05). Immunization of sows with the rQAB vaccine conferred higher anti-TcdA and anti-TcdB responses in piglets, suggesting the superiority of this compound over rAB. CONCLUSION: The synthesized recombinant proteins were capable of inducing antibody titers against C. difficile toxins A and B in sows, and were passively transferred to piglets through colostrum.


Assuntos
Animais Recém-Nascidos , Anticorpos Antibacterianos , Toxinas Bacterianas , Vacinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Doenças dos Suínos , Vacinas Sintéticas , Animais , Feminino , Suínos , Coelhos , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Gravidez , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Clostridioides difficile/imunologia , Clostridioides difficile/genética , Anticorpos Antibacterianos/sangue , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/genética , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Enterotoxinas/imunologia , Enterotoxinas/genética
6.
Immunology ; 173(3): 481-496, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39161170

RESUMO

Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.


Assuntos
Infecções Respiratórias , Vacinas de mRNA , Humanos , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/virologia , Infecções Respiratórias/imunologia , Desenvolvimento de Vacinas , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Vacinas contra COVID-19/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia
7.
Int J Mol Sci ; 25(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39201420

RESUMO

Multivalent live-attenuated or inactivated vaccines are often used to control the bovine viral diarrhea disease (BVD). Still, they retain inherent disadvantages and do not provide the expected protection. This study developed a new vaccine prototype, including the external segment of the E2 viral protein from five different subgenotypes selected after a massive screening. The E2 proteins of every subgenotype (1aE2, 1bE2, 1cE2, 1dE2, and 1eE2) were produced in mammalian cells and purified by IMAC. An equimolar mixture of E2 proteins formulated in an oil-in-water adjuvant made up the vaccine candidate, inducing a high humoral response at 50, 100, and 150 µg doses in sheep. A similar immune response was observed in bovines at 50 µg. The cellular response showed a significant increase in the transcript levels of relevant Th1 cytokines, while those corresponding to the Th2 cytokine IL-4 and the negative control were similar. High levels of neutralizing antibodies against the subgenotype BVDV1a demonstrated the effectiveness of our vaccine candidate, similar to that observed in the sera of animals vaccinated with the commercial vaccine. These results suggest that our vaccine prototype could become an effective recombinant vaccine against the BVD.


Assuntos
Anticorpos Antivirais , Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas , Vacinas Virais , Animais , Bovinos , Vacinas Virais/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas Sintéticas/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Ovinos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Citocinas/metabolismo , Vírus da Diarreia Viral Bovina/imunologia , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Vírus da Diarreia Viral Bovina Tipo 1/genética
8.
Vaccine ; 42(23): 126055, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38880691

RESUMO

Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A). We observed that boosting with MVA85A did not improve total IgG or specific isotypes in serum induced by one or two doses of 6611 formulated with incomplete Freund's adjuvant (IFA). However, when 6611 was formulated with ISA201 adjuvant, MVA85A boost enhanced the production of IFNγ, Th1/Th17 cytokines (IL-2, TNF, IL-17A) and IL-6, IL-4 and IL-10. Also, this group showed the highest levels of IgG2b and IgG3 isotypes, both important for better protection against Map infection in the murine model. Finally, the heterologous scheme elicited the highest levels of protection after Map challenge (lowest CFU count and liver lesion score). In conclusion, our results encourage further evaluation of 6611 strain + ISA201 prime and MVA85A boost in bovines.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antibacterianos , Citocinas , Modelos Animais de Doenças , Imunização Secundária , Imunoglobulina G , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Mycobacterium avium subsp. paratuberculosis/imunologia , Imunização Secundária/métodos , Camundongos , Paratuberculose/prevenção & controle , Paratuberculose/imunologia , Imunoglobulina G/sangue , Citocinas/metabolismo , Feminino , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Camundongos Endogâmicos BALB C , Vaccinia virus/imunologia , Vaccinia virus/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Imunidade Celular/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/imunologia
9.
J Equine Vet Sci ; 140: 105135, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914241

RESUMO

Probiotic microorganisms can stimulate an immune response and increase the efficiency of vaccines. For example, Bacillus toyonensis is a nonpathogenic, Gram-positive bacterium that has been used as a probiotic in animal supplementation. It induces immunomodulatory effects and increases the vaccine response in several species. This study aimed to evaluate the effect of B. toyonensis supplementation on the modulation of the immune response in horses vaccinated with recombinant Clostridium tetani toxin. Twenty horses were vaccinated twice, with an interval of 21 days between doses, and equally divided into two groups: the first group was supplemented orally for 42 days with feed containing viable spores of B. toyonensis (1 × 108) mixed with molasses (40 ml), starting 7 days before the first vaccination; the second (control) group received only feed mixed with molasses, starting 7 days before the first vaccination. Serum samples were collected to evaluate the humoral immune response using an in-house indirect enzyme-linked immunosorbent assay (ELISA), and peripheral blood mononuclear cells (PBMCs) were collected to evaluate cytokine transcription (qPCR). For the specific IgG-anti-rTENT titer, the supplemented group had ELISA values that were four times higher than those of the control group (p < 0.05). The supplemented group also showed higher ELISA values for the IgGa and IgGT sub-isotypes compared to the control group. In PBMCs stimulated with B. toyonensis, relative cytokine transcription of the supplemented group showed 15-, 8-, 7-, and 6-fold increases for IL1, TNFα, IL10 and IL4, respectively. When stimulated with a vaccine antigen, the supplemented group showed 1.6-, 1.8-, and 0.5-fold increases in IL1, TNFα, and IL4, respectively, compared to the control group. Horses supplemented with B. toyonensis had a significantly improved vaccine immune response compared to those in the control group, which suggests a promising approach for improving vaccine efficacy with probiotics.


Assuntos
Bacillus , Doenças dos Cavalos , Probióticos , Animais , Cavalos/imunologia , Bacillus/imunologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/microbiologia , Tétano/prevenção & controle , Tétano/imunologia , Toxoide Tetânico/imunologia , Toxoide Tetânico/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Masculino , Ração Animal , Feminino , Dieta/veterinária , Citocinas/metabolismo
10.
Acta Trop ; 257: 107293, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901525

RESUMO

Neosporosis is the major infectious cause of abortion and reproductive losses in cattle worldwide; however, there are no available vaccines or drugs to control this disease. Recently, a dual (positive and negative) DIVA-like (Differentiation of Infected from Vaccinated Animals) vaccine was evaluated in a pregnant mouse model of neosporosis, showing promising immunogenic and protective results. The current report aimed to study the safety, the dose-dependent immunogenicity and the dual DIVA-like character of a recombinant subunit vaccine composed of the major surface antigen from Neospora caninum (rNcSAG1) and the carrier/adjuvant Heat shock protein 81.2 from Arabidopsis thaliana (rAtHsp81.2) in cattle. Healthy heifers were separated and assigned to experimental groups A-F and subcutaneously immunized with 2 doses of vaccine formulations 30 days apart as follows: A (n = 4): 50 µg rNcSAG1 + 150 µg rAtHsp81.2; B (n = 4): 200 µg rNcSAG1 + 600 µg rAtHsp81.2; C (n = 4): 500 µg rNcSAG1 + 1,500 µg rAtHsp81.2; D (n = 3): 150 µg rAtHsp81.2; E (n = 3):1,500 µg rAtHsp81.2, and F (n = 3) 2 ml of sterile PBS. The immunization of heifers with the different vaccine or adjuvant doses (groups A-E) was demonstrated to be safe and did not modify the mean value of the evaluated serum biomarkers of metabolic function (GOT/ASP, GPT/ALT, UREA, Glucose and total proteins). The kinetics and magnitude of the immune responses were dose-dependent. The higher dose of the vaccine formulation (group C) stimulated a broad and potent humoral and cellular immune response, characterized by an IgG1/IgG2 isotype profile and IFN-γ secretion. In addition, this was the first time that dual DIVA-like character of a vaccine against neosporosis was demonstrated, allowing us to differentiate vaccinated from infected heifers by two different DIVA compliant test approaches. These results encourage us to evaluate its protective efficacy in infected pregnant cattle in the future.


Assuntos
Doenças dos Bovinos , Coccidiose , Neospora , Vacinas Protozoárias , Vacinas Sintéticas , Animais , Bovinos , Coccidiose/prevenção & controle , Coccidiose/veterinária , Coccidiose/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Neospora/imunologia , Feminino , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/administração & dosagem , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Proteínas de Protozoários/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Imunogenicidade da Vacina , Gravidez
11.
Front Immunol ; 15: 1403784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807602

RESUMO

Introduction: Given the limited number of patients in Latin America who have received a booster dose against the COVID-19, it remains crucial to comprehend the effectiveness of different vaccine combinations as boosters in real-world scenarios. This study aimed to assess the real-life efficacy of seven different vaccine schemes against COVID-19, including BNT162b2, ChAdOx1-S, Gam-COVID-Vac, and CoronaVac as primary schemes with either BNT162b2 or ChAdOx1-S as booster vaccines. Methods: In this multicentric longitudinal observational study, participants from Mexico and Argentina were followed for infection and SARS-CoV-2 Spike 1-2 IgG antibodies during their primary vaccination course and for 185 days after the booster dose. Results: A total of 491 patients were included, and the booster dose led to an overall increase in the humoral response for all groups. Patients who received BNT162b2 exhibited the highest antibody levels after the third dose, while those with primary Gam-COVID-Vac maintained a higher level of antibodies after six months. Infection both before vaccination and after the booster dose, and Gam-COVIDVac + BNT162b2 combination correlated with higher antibody titers. Discussion: The sole predictor of infection in the six-month follow-up was a prior COVID-19 infection before the vaccination scheme, which decreased the risk of infection, and all booster vaccine combinations conveyed the same amount of protection.


Assuntos
Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Argentina , COVID-19/prevenção & controle , COVID-19/imunologia , Masculino , Feminino , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , México , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Adulto , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Seguimentos , Idoso , Estudos Longitudinais , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Eficácia de Vacinas , ChAdOx1 nCoV-19/imunologia , Vacinas Sintéticas
13.
Microb Pathog ; 184: 106378, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802158

RESUMO

In the last 20 years, various research groups have endeavored to develop recombinant vaccines against leptospirosis to overcome the limitations of commercially available bacterins. Numerous antigens and vaccine formulations have been tested thus far. However, the analysis of cellular response in these vaccine formulations is not commonly conducted, primarily due to the scarcity of supplies and kits for the hamster animal model. Our research group has already tested the Q1 antigen, a chimeric protein combining the immunogenic regions of LipL32, LemA, and LigANI, in recombinant subunit and BCG-vectored vaccines. In both strategies, 100 % of the hamsters were protected against clinical signs of leptospirosis. However, only the recombinant BCG-vectored vaccine provided protection against renal colonization. Thus, the objective of this study is to characterize the cellular immune response in hamsters immunized with different vaccine formulations based on the Q1 antigen through transcriptional analysis of cytokines. The hamsters were allocated into groups and vaccinated as follows: recombinant subunit (rQ1), recombinant BCG (rBCG:Q1), and saline and BCG Pasteur control vaccines. To assess the cellular response induced by the vaccines, we cultured and stimulated splenocytes, followed by RNA extraction from the cells and analysis of cytokines using real-time PCR. The results revealed that the recombinant subunit vaccine elicited a Th2-type response, characterized by the expression of cytokines IL-10, IL-1α, and TNF-α. This pattern closely resembles the cytokines expressed in severe cases of leptospirosis. On the other hand, the rBCG-vectored vaccine induced a Th1-type response with significant up-regulation of IFN-γ. These findings suggest the involvement of the cellular response and the IFN-γ mediated inflammatory response in the sterilizing immunity mediated by rBCG. Therefore, this study may assist future investigations in characterizing the cellular response in hamsters, aiming to elucidate the mechanisms of efficacy and establish potential correlates of protection.


Assuntos
Vacina BCG , Leptospirose , Cricetinae , Animais , Antígenos de Bactérias/genética , Leptospirose/prevenção & controle , Proteínas Recombinantes/genética , Vacinas Sintéticas/genética , Citocinas/metabolismo , Imunidade Celular , Proteínas Recombinantes de Fusão/genética
14.
Viruses ; 15(10)2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896907

RESUMO

mRNA vaccines are a new class of vaccine that can induce potent and specific immune responses against various pathogens. However, the design of mRNA vaccines requires the identification and optimization of suitable antigens, which can be challenging and time consuming. Reverse vaccinology is a computational approach that can accelerate the discovery and development of mRNA vaccines by using genomic and proteomic data of the target pathogen. In this article, we review the advances of reverse vaccinology for mRNA vaccine design against SARS-CoV-2, the causative agent of COVID-19. We describe the steps of reverse vaccinology and compare the in silico tools used by different studies to design mRNA vaccines against SARS-CoV-2. We also discuss the challenges and limitations of reverse vaccinology and suggest future directions for its improvement. We conclude that reverse vaccinology is a promising and powerful approach to designing mRNA vaccines against SARS-CoV-2 and other emerging pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Vacinologia/métodos , Proteômica , Vacinas de mRNA , Vacinas Sintéticas
16.
J Immunol ; 210(12): 1925-1937, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098890

RESUMO

COVID-19 has accounted for more than 6 million deaths worldwide. Bacillus Calmette-Guérin (BCG), the existing tuberculosis vaccine, is known to induce heterologous effects over other infections due to trained immunity and has been proposed to be a potential strategy against SARS-CoV-2 infection. In this report, we constructed a recombinant BCG (rBCG) expressing domains of the SARS-CoV-2 nucleocapsid and spike proteins (termed rBCG-ChD6), recognized as major candidates for vaccine development. We investigated whether rBCG-ChD6 immunization followed by a boost with the recombinant nucleocapsid and spike chimera (rChimera), together with alum, provided protection against SARS-CoV-2 infection in K18-hACE2 mice. A single dose of rBCG-ChD6 boosted with rChimera associated with alum elicited the highest anti-Chimera total IgG and IgG2c Ab titers with neutralizing activity against SARS-CoV-2 Wuhan strain when compared with control groups. Importantly, following SARS-CoV-2 challenge, this vaccination regimen induced IFN-γ and IL-6 production in spleen cells and reduced viral load in the lungs. In addition, no viable virus was detected in mice immunized with rBCG-ChD6 boosted with rChimera, which was associated with decreased lung pathology when compared with BCG WT-rChimera/alum or rChimera/alum control groups. Overall, our study demonstrates the potential of a prime-boost immunization system based on an rBCG expressing a chimeric protein derived from SARS-CoV-2 to protect mice against viral challenge.


Assuntos
COVID-19 , Mycobacterium bovis , Animais , Camundongos , Vacina BCG/genética , Proteínas Recombinantes de Fusão/genética , SARS-CoV-2 , Vacinas Sintéticas , COVID-19/prevenção & controle , Mycobacterium bovis/genética
17.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982294

RESUMO

Bovine babesiosis is caused by the Apicomplexa parasites from the genus Babesia. It is one of the most important tick-borne veterinary diseases worldwide; Babesia bovis being the species associated with the most severe clinical signs of the disease and causing the greatest economic losses. Many limitations related to chemoprophylaxis and the acaricides control of transmitting vectors have led to the adoption of live attenuated vaccine immunisation against B. bovis as an alternative control strategy. However, whilst this strategy has been effective, several drawbacks related to its production have prompted research into alternative methodologies for producing vaccines. Classical approaches for developing anti-B. bovis vaccines are thus discussed in this review and are compared to a recent functional approach to highlight the latter's advantages when designing an effective synthetic vaccine targeting this parasite.


Assuntos
Babesia bovis , Babesia , Doenças dos Bovinos , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Vacinas Atenuadas , Vacinas Sintéticas
18.
Clin Transl Oncol ; 25(7): 2204-2223, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36781600

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy, and there has not been any significant improvement in therapy of AML over the past several decades. The mRNA vaccines have become a promising strategy against multiple cancers, however, its application on AML remains undefined. In this study, we aimed to identify novel antigens for developing mRNA vaccines against AML and explore the immune landscape of AML to select appropriate patients for vaccination. METHODS: Genomic data and gene mutation data were retrieved from TCGA, GEO and cBioPortal, respectively. GEPIA2 was used to analyze differentially expressed genes. The single cell RNA-seq database Tumor Immune Single-cell Hub (TISCH) was used to explore the association between the potential tumor antigens and the infiltrating immune cells in the bone marrow. Consensus clustering analysis was applied to identify distinct immune subtypes. The correlation between the abundance of antigen presenting cells and the expression level of antigens was evaluated using Spearman correlation analysis. The characteristics of the tumor immune microenvironment in each subtype were investigated based on single-sample gene set enrichment analysis. RESULTS: Five potential tumor antigens were identified for mRNA vaccine from the pool of overexpressed and mutated genes, including CDH23, LRP1, MEFV, MYOF and SLC9A9, which were associated with infiltration of antigen-presenting immune cells (APCs). AML patients were stratified into two immune subtypes Cluster1 (C1) and Cluster2 (C2), which were characterized by distinct molecular and clinical features. C1 subtype demonstrated an immune-hot and immunosuppressive phenotype, while the C1 subtype had an immune-cold phenotype. Furthermore, the two immune subtype showed remarkably different expression of immune checkpoints, immunogenic cell death modulators and human leukocyte antigens. CONCLUSION: CDH23, LRP1, MEFV, MYOF and SLC9A9 were potential antigens for developing AML mRNA vaccine, and AML patients in immune subtype 1 were suitable for vaccination.


Assuntos
Antígenos de Neoplasias , Leucemia Mieloide Aguda , Humanos , Antígenos de Neoplasias/genética , Vacinas Sintéticas , Vacinas de mRNA , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Microambiente Tumoral , Pirina
19.
Ciênc. rural (Online) ; 53(4): e20210835, 2023. ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1412145

RESUMO

Vaccination has been used to prevent the losses associated with Bovine alphaherpesvirus 1 (BoHV-1) infection but passively acquired antibodies may compromise vaccine efficacy. Intranasal immunization (IN) of calves with modified live viral BoHV-1 vaccines has proven to overcome the acquired passive antibodies and confer adequate protection. Herein, we evaluated the safety and immunogenicity of a glycoprotein E-deleted Brazilian BoHV-1 strain (BoHV-1gEΔ) for IN immunization of calves. Ten 1-to-2 months-old calves with virus-neutralizing titers (VN) ranging from 2-64 were immunized IN with viable BoHV-1gEΔ (107.1 TCID50) and four remained as unvaccinated controls (VN titers 8-32). After IN immunization, calves presented a transient (2-6 days) mild nasal secretion and shed the vaccine virus in nasal secretions in low titers (<102.6TCID50/mL) for 4-8 days. Interestingly, the vaccinated calves did not show an increase in VN titers after vaccination. Rather, they presented a gradual reduction in serum VN antibodies in the following weeks - similarly to unvaccinated controls. Upon IN challenge with a virulent heterologous BoHV-1 strain at day 55 post-immunization (107.63TCID50), vaccinated calves shed significantly less virus from day 6 post-challenge onwards (p < 0.07) and for a shorter period of time than the controls (p < 0.0024). Importantly, both the duration and intensity of clinical signs were reduced in vaccinated animals. In addition, vaccinated calves showed an abrupt raise in VN titers post-challenge, indicating adequate immunological priming by vaccination. In summary, immunization of calves harboring passive antibodies with BoHV-1gEΔ by the IN route was able to prime the immunity to afford partial virological and clinical protection upon challenge.


A vacinação tem sido usada para prevenir perdas associadas à infecção pelo alfaherpesvírus bovino 1 (BoHV-1), embora anticorpos adquiridos passivamente possam comprometer a eficácia das vacinas. A imunização intranasal (IN) de bezerros com vacinas de BoHV-1 vivas modificadas pode contornar o obstáculo relacionado à presença de anticorpos adquiridos passivamente, conferindo proteção aos animais vacinados. Nesse contexto, avaliou-se a segurança e imunogenicidade de uma cepa brasileira de BoHV-1 com deleção no gene da glicoproteína E (BoHV-1gEΔ) na imunização IN de bezerros. Dez bezerros, de um a dois meses de idade e com títulos neutralizantes (VN) variando de 2-64, foram inoculados IN com BoHV-1gEΔ (107,1TCID50), e quatro permaneceram como controles não vacinados (títulos de VN 8-32). Após a instilação IN, os bezerros apresentaram secreção nasal transitória leve (2-6 dias) e excretaram o vírus vacinal nas secreções nasais em baixos títulos (<102,6TCID50/mL) por 4-8 dias. Interessantemente, os bezerros vacinados não apresentaram aumento nos títulos de anticorpos neutralizantes após a vacinação. Em vez disso, eles apresentaram uma redução gradual nos anticorpos neutralizantes séricos nas semanas seguintes - semelhante aos controles não vacinados. Após o desafio IN com uma cepa BoHV-1 virulenta heteróloga no dia 55 pós-imunização (107,63TCID50), os bezerros vacinados excretaram o vírus em títulos menores a partir do sexto dia pós-desafio (p < 0,07) e por um período de tempo menor do que o observado nos controles (p < 0,0024). É importante notar que tanto a duração quanto a intensidade dos sinais clínicos foram reduzidas nos animais vacinados. Além disso, os bezerros vacinados apresentaram um aumento abrupto nos títulos neutralizantes após o desafio, indicando uma imunização adequada por BoHV-1gEΔ. Em resumo, a imunização IN de bezerros com anticorpos passivos com a cepa BoHV-1gEΔ foi capaz de estimular a imunidade, proporcionando proteção virológica e clínica parciais após o desafio.


Assuntos
Animais , Bovinos , Vacinas Sintéticas , Doenças dos Bovinos/virologia , Imunização/veterinária , Vacinação/veterinária
20.
PLoS One ; 17(10): e0268419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36251630

RESUMO

BACKGROUND: The administration of a third (booster) dose of COVID-19 vaccines in Peru initially employed the BNT162b2 (Pfizer) mRNA vaccine. The national vaccination program started with healthcare workers (HCW) who received BBIBP-CorV (Sinopharm) vaccine as primary regimen and elderly people previously immunized with BNT162b2. This study evaluated the reactogenicity and immunogenicity of the "booster" dose in these two groups in Lima, Peru. METHODS: We conducted a prospective cohort study, recruiting participants from November to December of 2021 in Lima, Peru. We evaluated immunogenicity and reactogenicity in HCW and elderly patients previously vaccinated with either two doses of BBIBP-CorV (heterologous regimen) or BTN162b2 (homologous regimen). Immunogenicity was measured by anti-SARS-CoV-2 IgG antibody levels immediately before boosting dose and 14 days later. IgG geometric means (GM) and medians were obtained, and modeled using ANCOVA and quantile regressions. RESULTS: The GM of IgG levels increased significantly after boosting: from 28.5±5.0 AU/mL up to 486.6±1.2 AU/mL (p<0.001) which corresponds to a 17-fold increase. The heterologous vaccine regimen produced higher GM of post-booster anti-SARS-CoV-2 IgG levels, eliciting a 13% increase in the geometric mean ratio (95%CI: 1.02-1.27) and a median difference of 92.3 AU/ml (95%CI: 24.9-159.7). Both vaccine regimens were safe and well tolerated. Previous COVID-19 infection was also associated with higher pre and post-booster IgG GM levels. CONCLUSION: Although both boosting regimens were highly immunogenic, two doses of BBIBP-CorV boosted with BTN162b2 produced a stronger IgG antibody response than the homologous BNT162b2 regimen in the Peruvian population. Additionally, both regimens were mildly reactogenic and well-tolerated.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Idoso , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Imunização Secundária , Imunogenicidade da Vacina , Imunoglobulina G , Peru , Estudos Prospectivos , Vacinas Sintéticas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA