Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
1.
Nat Commun ; 15(1): 5377, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918389

RESUMO

Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma de Planta , Poliploidia , Genoma de Planta/genética , Variação Estrutural do Genoma/genética , Mutação
2.
Methods Mol Biol ; 2825: 39-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913302

RESUMO

Based on classical karyotyping, structural genome variations (SVs) have generally been considered to be either "simple" (with one or two breakpoints) or "complex" (with more than two breakpoints). Studying the breakpoints of SVs at nucleotide resolution revealed additional, subtle structural variations, such that even "simple" SVs turned out to be "complex." Genome-wide sequencing methods, such as fosmid and paired-end mapping, short-read and long-read whole genome sequencing, and single-molecule optical mapping, also indicated that the number of SVs per individual was considerably larger than expected from karyotyping and high-resolution chromosomal array-based studies. Interestingly, SVs were detected in studies of cohorts of individuals without clinical phenotypes. The common denominator of all SVs appears to be a failure to accurately repair DNA double-strand breaks (DSBs) or to halt cell cycle progression if DSBs persist. This review discusses the various DSB response mechanisms during the mitotic cell cycle and during meiosis and their regulation. Emphasis is given to the molecular mechanisms involved in the formation of translocations, deletions, duplications, and inversions during or shortly after meiosis I. Recently, CRISPR-Cas9 studies have provided unexpected insights into the formation of translocations and chromothripsis by both breakage-fusion-bridge and micronucleus-dependent mechanisms.


Assuntos
Quebras de DNA de Cadeia Dupla , Variação Estrutural do Genoma , Humanos , Meiose/genética , Cariotipagem/métodos , Sistemas CRISPR-Cas , Animais
3.
Proc Natl Acad Sci U S A ; 121(27): e2322291121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913905

RESUMO

Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.


Assuntos
Altitude , Animais , Ovinos/genética , Tibet , Variação Estrutural do Genoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica , Genoma , Aclimatação/genética
4.
Genome Biol ; 25(1): 148, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845023

RESUMO

BACKGROUND: Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS: We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS: Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.


Assuntos
Cabras , Animais , Cabras/genética , Ovinos/genética , Evolução Molecular , Variação Estrutural do Genoma , Locos de Características Quantitativas , Genoma , Variação Genética , Domesticação , Fenótipo , Seleção Genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética
5.
Genome Biol ; 25(1): 155, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872200

RESUMO

Advances in sequencing technology have facilitated population-scale long-read structural variant (SV) detection. Arguably, one of the main challenges in population-scale analysis is developing effective computational pipelines. Here, we present a new filter-based pipeline for population-scale long-read SV detection. It better captures SV signals at an early stage than conventional assembly-based or alignment-based pipelines. Assessments in this work suggest that the filter-based pipeline helps better resolve intra-read rearrangements. Moreover, it is also more computationally efficient than conventional pipelines and thus may facilitate population-scale long-read applications.


Assuntos
Software , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA/métodos , Algoritmos , Variação Estrutural do Genoma
6.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38869149

RESUMO

Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the prevalence and impact of different categories of SVs. We conducted a comparative analysis of long-read assembled reference genomes of closely related Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon, along with recent high-quality genome assemblies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon, respectively. Focusing on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural divergences, 2,623 structural polymorphisms, and 928 shared structural polymorphisms. We assessed the functional significance of fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, revealing a complex history of natural selection. Shared structural polymorphisms displayed enrichment of potentially adaptive genes. Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between populations.


Assuntos
Eucalyptus , Genoma de Planta , Isolamento Reprodutivo , Eucalyptus/genética , Variação Estrutural do Genoma , Polimorfismo Genético , Evolução Molecular , Adaptação Fisiológica/genética , Especiação Genética , Sequenciamento Completo do Genoma/métodos , Genótipo
7.
Mol Cancer ; 23(1): 126, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862995

RESUMO

BACKGROUND: In an extensive genomic analysis of lung adenocarcinomas (LUADs), driver mutations have been recognized as potential targets for molecular therapy. However, there remain cases where target genes are not identified. Super-enhancers and structural variants are frequently identified in several hundred loci per case. Despite this, most cancer research has approached the analysis of these data sets separately, without merging and comparing the data, and there are no examples of integrated analysis in LUAD. METHODS: We performed an integrated analysis of super-enhancers and structural variants in a cohort of 174 LUAD cases that lacked clinically actionable genetic alterations. To achieve this, we conducted both WGS and H3K27Ac ChIP-seq analyses using samples with driver gene mutations and those without, allowing for a comprehensive investigation of the potential roles of super-enhancer in LUAD cases. RESULTS: We demonstrate that most genes situated in these overlapped regions were associated with known and previously unknown driver genes and aberrant expression resulting from the formation of super-enhancers accompanied by genomic structural abnormalities. Hi-C and long-read sequencing data further corroborated this insight. When we employed CRISPR-Cas9 to induce structural abnormalities that mimicked cases with outlier ERBB2 gene expression, we observed an elevation in ERBB2 expression. These abnormalities are associated with a higher risk of recurrence after surgery, irrespective of the presence or absence of driver mutations. CONCLUSIONS: Our findings suggest that aberrant gene expression linked to structural polymorphisms can significantly impact personalized cancer treatment by facilitating the identification of driver mutations and prognostic factors, contributing to a more comprehensive understanding of LUAD pathogenesis.


Assuntos
Adenocarcinoma de Pulmão , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Receptor ErbB-2 , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Mutação , Biomarcadores Tumorais/genética , Feminino , Masculino , Variação Estrutural do Genoma , Genômica/métodos , Pessoa de Meia-Idade , Prognóstico , Idoso
8.
Genome Biol ; 25(1): 116, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715020

RESUMO

BACKGROUND: Structural variations (SVs) have significant impacts on complex phenotypes by rearranging large amounts of DNA sequence. RESULTS: We present a comprehensive SV catalog based on the whole-genome sequence of 1060 pigs (Sus scrofa) representing 101 breeds, covering 9.6% of the pig genome. This catalog includes 42,487 deletions, 37,913 mobile element insertions, 3308 duplications, 1664 inversions, and 45,184 break ends. Estimates of breed ancestry and hybridization using genotyped SVs align well with those from single nucleotide polymorphisms. Geographically stratified deletions are observed, along with known duplications of the KIT gene, responsible for white coat color in European pigs. Additionally, we identify a recent SINE element insertion in MYO5A transcripts of European pigs, potentially influencing alternative splicing patterns and coat color alterations. Furthermore, a Yorkshire-specific copy number gain within ABCG2 is found, impacting chromatin interactions and gene expression across multiple tissues over a stretch of genomic region of ~200 kb. Preliminary investigations into SV's impact on gene expression and traits using the Pig Genotype-Tissue Expression (PigGTEx) data reveal SV associations with regulatory variants and gene-trait pairs. For instance, a 51-bp deletion is linked to the lead eQTL of the lipid metabolism regulating gene FADS3, whose expression in embryo may affect loin muscle area, as revealed by our transcriptome-wide association studies. CONCLUSIONS: This SV catalog serves as a valuable resource for studying diversity, evolutionary history, and functional shaping of the pig genome by processes like domestication, trait-based breeding, and adaptive evolution.


Assuntos
Genoma , Variação Estrutural do Genoma , Animais , Sus scrofa/genética , Polimorfismo de Nucleotídeo Único , Suínos/genética , Mapeamento Cromossômico
9.
J Clin Invest ; 134(13)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38758740

RESUMO

The diversity of structural variants (SVs) in melanoma and how they impact oncogenesis are incompletely known. We performed harmonized analysis of SVs across melanoma histologic and genomic subtypes, and we identified distinct global properties between subtypes. These included the frequency and size of SVs and SV classes, their relation to chromothripsis events, and the impact on cancer-related genes of SVs that alter topologically associated domain (TAD) boundaries. Following our prior identification of double-stranded break repair deficiency in a subset of triple-wild-type cutaneous melanoma, we identified MRE11 and NBN loss-of-function SVs in melanomas with this mutational signature. Experimental knockouts of MRE11 and NBN, followed by olaparib cell viability assays in melanoma cells, indicated that dysregulation of each of these genes may cause sensitivity to PARP inhibitors in cutaneous melanomas. Broadly, harmonized analysis of melanoma SVs revealed distinct global genomic properties and molecular drivers, which may have biological and therapeutic impact.


Assuntos
Melanoma , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Humanos , Linhagem Celular Tumoral , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Carcinogênese/genética , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ftalazinas/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Variação Estrutural do Genoma/genética , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
10.
Theor Appl Genet ; 137(6): 144, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809285

RESUMO

KEY MESSAGE: A wild melon reference genome elucidates the genomic basis of fruit acidity domestication. Structural variants (SVs) have been reported to impose major effects on agronomic traits, representing a significant contributor to crop domestication. However, the landscape of SVs between wild and cultivated melons is elusive and how SVs have contributed to melon domestication remains largely unexplored. Here, we report a 379-Mb chromosome-scale genome of a wild progenitor melon accession "P84", with a contig N50 of 14.9 Mb. Genome comparison identifies 10,589 SVs between P84 and four cultivated melons with 6937 not characterized in previously analysis of 25 melon genome sequences. Furthermore, the population-scale genotyping of these SVs was determined in 1175 accessions, and 18 GWAS signals including fruit acidity, fruit length, fruit weight, fruit color and sex determination were detected. Based on these genotyped SVs, we identified 3317 highly diverged SVs between wild and cultivated melons, which could be the potential SVs associated with domestication-related traits. Furthermore, we identify novel SVs affecting fruit acidity and proposed the diverged evolutionary trajectories of CmPH, a key regulator of melon fruit acidity, during domestication and selection of different populations. These results will offer valuable resources for genomic studies and genetic improvement in melon.


Assuntos
Cucurbitaceae , Domesticação , Frutas , Genoma de Planta , Cucurbitaceae/genética , Cucurbitaceae/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Fenótipo , Genótipo , Locos de Características Quantitativas , Variação Estrutural do Genoma , Genes de Plantas
11.
Psychiatry Res ; 337: 115929, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718554

RESUMO

Multiple types of variations have been postulated to confer risk of schizophrenia and bipolar disorder, but majority of present GWAS solely focused on SNPs or small indels, and the impacts of structural variations (SVs) remain less understood. Nevertheless, accumulating evidence suggest that SVs may explain the association signals in certain GWAS hits. Here, we conducted pairwise linkage disequilibrium (LD) analyses of SNPs and SVs in populations from 1000 Genomes Project. Among the 299 psychiatric GWAS loci, 1213 SVs showed an LD of r2 > 0.1 with GWAS risk SNPs, and 66 of them were in moderate to strong LD (r2 > 0.6) with at least one GWAS risk SNP. Nine SVs were subject to further explorative analyses, including eQTL analysis in DLPFC, luciferase reporter gene assays, CRISPR/Cas9-mediated genome deletion and RT-qPCR. These assays highlighted several functional SVs showing regulatory effects on transcriptional activities, and some risk genes (e.g., BORCS7, GNL3) affected by the SVs were also annotated. Finally, mice overexpressing Borcs7 in the mPFC exhibited schizophrenia-like behaviors, such as abnormal prepulse inhibition and social dysfunction. These data suggest that SNPs association signals at GWAS loci might be driven by SVs, highlighting the necessities of considering such variants in future.


Assuntos
Transtorno Bipolar , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Esquizofrenia , Esquizofrenia/genética , Transtorno Bipolar/genética , Humanos , Animais , Camundongos , Desequilíbrio de Ligação , Predisposição Genética para Doença , Masculino , Variação Estrutural do Genoma/genética , Locos de Características Quantitativas , Camundongos Endogâmicos C57BL
12.
Sci Rep ; 14(1): 11239, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755281

RESUMO

While short-read sequencing currently dominates genetic research and diagnostics, it frequently falls short of capturing certain structural variants (SVs), which are often implicated in the etiology of neurodevelopmental disorders (NDDs). Optical genome mapping (OGM) is an innovative technique capable of capturing SVs that are undetectable or challenging-to-detect via short-read methods. This study aimed to investigate NDDs using OGM, specifically focusing on cases that remained unsolved after standard exome sequencing. OGM was performed in 47 families using ultra-high molecular weight DNA. Single-molecule maps were assembled de novo, followed by SV and copy number variant calling. We identified 7 variants of interest, of which 5 (10.6%) were classified as likely pathogenic or pathogenic, located in BCL11A, OPHN1, PHF8, SON, and NFIA. We also identified an inversion disrupting NAALADL2, a gene which previously was found to harbor complex rearrangements in two NDD cases. Variants in known NDD genes or candidate variants of interest missed by exome sequencing mainly consisted of larger insertions (> 1kbp), inversions, and deletions/duplications of a low number of exons (1-4 exons). In conclusion, in addition to improving molecular diagnosis in NDDs, this technique may also reveal novel NDD genes which may harbor complex SVs often missed by standard sequencing techniques.


Assuntos
Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Feminino , Masculino , Mapeamento Cromossômico/métodos , Sequenciamento do Exoma/métodos , Criança , Variação Estrutural do Genoma , Pré-Escolar
13.
Mol Ecol ; 33(11): e17364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651830

RESUMO

Despite receiving significant recent attention, the relevance of structural variation (SV) in driving phenotypic diversity remains understudied, although recent advances in long-read sequencing, bioinformatics and pangenomic approaches have enhanced SV detection. We review the role of SVs in shaping phenotypes in avian model systems, and identify some general patterns in SV type, length and their associated traits. We found that most of the avian SVs so far identified are short indels in chickens, which are frequently associated with changes in body weight and plumage colouration. Overall, we found that relatively short SVs are more frequently detected, likely due to a combination of their prevalence compared to large SVs, and a detection bias, stemming primarily from the widespread use of short-read sequencing and associated analytical methods. SVs most commonly involve non-coding regions, especially introns, and when patterns of inheritance were reported, SVs associated primarily with dominant discrete traits. We summarise several examples of phenotypic convergence across different species, mediated by different SVs in the same or different genes and different types of changes in the same gene that can lead to various phenotypes. Complex rearrangements and supergenes, which can simultaneously affect and link several genes, tend to have pleiotropic phenotypic effects. Additionally, SVs commonly co-occur with single-nucleotide polymorphisms, highlighting the need to consider all types of genetic changes to understand the basis of phenotypic traits. We end by summarising expectations for when long-read technologies become commonly implemented in non-model birds, likely leading to an increase in SV discovery and characterisation. The growing interest in this subject suggests an increase in our understanding of the phenotypic effects of SVs in upcoming years.


Assuntos
Galinhas , Fenótipo , Animais , Galinhas/genética , Aves/genética , Variação Estrutural do Genoma , Mutação INDEL
14.
Cell ; 187(6): 1547-1562.e13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428424

RESUMO

We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or ∼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.


Assuntos
Genoma , Primatas , Animais , Humanos , Sequência de Bases , Primatas/classificação , Primatas/genética , Evolução Biológica , Análise de Sequência de DNA , Variação Estrutural do Genoma
15.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38546739

RESUMO

Structural rearrangements, such as inversions, translocations, duplications, and large insertions and deletions, are large-scale genomic variants that can play an important role in shaping phenotypic variation and in genome adaptation and evolution. We used chromosomal-level assemblies from eight Fusarium graminearum isolates to study structural variants and their role in fungal evolution. We generated the assemblies of four of these genomes after Oxford Nanopore sequencing. A total of 87 inversions, 159 translocations, 245 duplications, 58,489 insertions, and 34,102 deletions were detected. Regions of high recombination rate are associated with structural rearrangements, and a significant proportion of inversions, translocations, and duplications overlap with the repeat content of the genome, suggesting recombination and repeat elements are major factors in the origin of structural rearrangements in F. graminearum. Large insertions and deletions introduce presence-absence polymorphisms for many genes, including secondary metabolite biosynthesis cluster genes and predicted effectors genes. Translocation events were found to be shuffling predicted effector-rich regions of the genomes and are likely contributing to the gain and loss of effectors facilitated by recombination. Breakpoints of some structural rearrangements fall within coding sequences and are likely altering the protein products. Structural rearrangements in F. graminearum thus have an important role to play in shaping pathogen-host interactions and broader evolution through genome reorganization, the introduction of presence-absence polymorphisms, and changing protein products and gene regulation.


Assuntos
Fusarium , Genoma Fúngico , Fusarium/genética , Variação Estrutural do Genoma , Evolução Molecular , Recombinação Genética , Genômica/métodos , Translocação Genética , Cromossomos Fúngicos/genética , Variação Genética
16.
Blood Adv ; 8(9): 2138-2147, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38429084

RESUMO

ABSTRACT: Epstein-Barr virus (EBV)-positive (EBV+) nodal T- and natural killer (NK)-cell lymphoma is a peripheral T-cell lymphoma (EBV+ nPTCL) that presents as a primary nodal disease with T-cell phenotype and EBV-harboring tumor cells. To date, the genetic aspect of EBV+ nPTCL has not been fully investigated. In this study, whole-exome and/or whole-genome sequencing was performed on 22 cases of EBV+ nPTCL. TET2 (68%) and DNMT3A (32%) were observed to be the most frequently mutated genes whose presence was associated with poor overall survival (P = .004). The RHOA p.Gly17Val mutation was identified in 2 patients who had TET2 and/or DNMT3A mutations. In 4 patients with TET2/DNMT3A alterations, blood cell-rich tissues (the bone marrow [BM] or spleen) were available as paired normal samples. Of 4 cases, 3 had at least 1 identical TET2/DNMT3A mutation in the BM or spleen. Additionally, the whole part of the EBV genome was sequenced and structural variations (SVs) were found frequent among the EBV genomes (63%). The most frequently identified type of SV was deletion. In 1 patient, 4 pieces of human chromosome 9, including programmed death-ligand 1 gene (PD-L1) were identified to be tandemly incorporated into the EBV genome. The 3' untranslated region of PD-L1 was truncated, causing a high-level of PD-L1 protein expression. Overall, the frequent TET2 and DNMT3A mutations in EBV+ nPTCL seem to be closely associated with clonal hematopoiesis and, together with the EBV genome deletions, may contribute to the pathogenesis of this intractable lymphoma.


Assuntos
Infecções por Vírus Epstein-Barr , Genoma Viral , Mutação , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/genética , Adulto , Herpesvirus Humano 4/genética , DNA Metiltransferase 3A , Linfoma Extranodal de Células T-NK/genética , Linfoma Extranodal de Células T-NK/virologia , Variação Estrutural do Genoma , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/virologia , Dioxigenases
17.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38444093

RESUMO

MOTIVATION: Structural variants (SVs) play a causal role in numerous diseases but can be difficult to detect and accurately genotype (determine zygosity) with short-read genome sequencing data (SRS). Improving SV genotyping accuracy in SRS data, particularly for the many SVs first detected with long-read sequencing, will improve our understanding of genetic variation. RESULTS: NPSV-deep is a deep learning-based approach for genotyping previously reported insertion and deletion SVs that recasts this task as an image similarity problem. NPSV-deep predicts the SV genotype based on the similarity between pileup images generated from the actual SRS data and matching SRS simulations. We show that NPSV-deep consistently matches or improves upon the state-of-the-art for SV genotyping accuracy across different SV call sets, samples and variant types, including a 25% reduction in genotyping errors for the Genome-in-a-Bottle (GIAB) high-confidence SVs. NPSV-deep is not limited to the SVs as described; it improves deletion genotyping concordance a further 1.5 percentage points for GIAB SVs (92%) by automatically correcting imprecise/incorrectly described SVs. AVAILABILITY AND IMPLEMENTATION: Python/C++ source code and pre-trained models freely available at https://github.com/mlinderm/npsv2.


Assuntos
Aprendizado Profundo , Humanos , Genótipo , Genoma Humano , Software , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Variação Estrutural do Genoma
18.
BMC Genomics ; 25(1): 318, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549092

RESUMO

BACKGROUND: Detecting structural variations (SVs) at the population level using next-generation sequencing (NGS) requires substantial computational resources and processing time. Here, we compared the performances of 11 SV callers: Delly, Manta, GridSS, Wham, Sniffles, Lumpy, SvABA, Canvas, CNVnator, MELT, and INSurVeyor. These SV callers have been recently published and have been widely employed for processing massive whole-genome sequencing datasets. We evaluated the accuracy, sequence depth, running time, and memory usage of the SV callers. RESULTS: Notably, several callers exhibited better calling performance for deletions than for duplications, inversions, and insertions. Among the SV callers, Manta identified deletion SVs with better performance and efficient computing resources, and both Manta and MELT demonstrated relatively good precision regarding calling insertions. We confirmed that the copy number variation callers, Canvas and CNVnator, exhibited better performance in identifying long duplications as they employ the read-depth approach. Finally, we also verified the genotypes inferred from each SV caller using a phased long-read assembly dataset, and Manta showed the highest concordance in terms of the deletions and insertions. CONCLUSIONS: Our findings provide a comprehensive understanding of the accuracy and computational efficiency of SV callers, thereby facilitating integrative analysis of SV profiles in diverse large-scale genomic datasets.


Assuntos
Variações do Número de Cópias de DNA , Genômica , Humanos , Sequenciamento Completo do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Genoma Humano , Variação Estrutural do Genoma
19.
Ann Lab Med ; 44(4): 324-334, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38433573

RESUMO

Background: Structural variants (SVs) are currently analyzed using a combination of conventional methods; however, this approach has limitations. Optical genome mapping (OGM), an emerging technology for detecting SVs using a single-molecule strategy, has the potential to replace conventional methods. We compared OGM with conventional diagnostic methods for detecting SVs in various hematologic malignancies. Methods: Residual bone marrow aspirates from 27 patients with hematologic malignancies in whom SVs were observed using conventional methods (chromosomal banding analysis, FISH, an RNA fusion panel, and reverse transcription PCR) were analyzed using OGM. The concordance between the OGM and conventional method results was evaluated. Results: OGM showed concordance in 63% (17/27) and partial concordance in 37% (10/27) of samples. OGM detected 76% (52/68) of the total SVs correctly (concordance rate for each type of SVs: aneuploidies, 83% [15/18]; balanced translocation, 80% [12/15] unbalanced translocation, 54% [7/13] deletions, 81% [13/16]; duplications, 100% [2/2] inversion 100% [1/1]; insertion, 100% [1/1]; marker chromosome, 0% [0/1]; isochromosome, 100% [1/1]). Sixteen discordant results were attributed to the involvement of centromeric/telomeric regions, detection sensitivity, and a low mapping rate and coverage. OGM identified additional SVs, including submicroscopic SVs and novel fusions, in five cases. Conclusions: OGM shows a high level of concordance with conventional diagnostic methods for the detection of SVs and can identify novel variants, suggesting its potential utility in enabling more comprehensive SV analysis in routine diagnostics of hematologic malignancies, although further studies and improvements are required.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Humanos , Inversão Cromossômica , Translocação Genética , Mapeamento Cromossômico
20.
Nat Commun ; 15(1): 960, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307885

RESUMO

Merging structural variations (SVs) at the population level presents a significant challenge, yet it is essential for conducting comprehensive genotypic analyses, especially in the era of pangenomics. Here, we introduce PanPop, a tool that utilizes an advanced sequence-aware SV merging algorithm to efficiently merge SVs of various types. We demonstrate that PanPop can merge and optimize the majority of multiallelic SVs into informative biallelic variants. We show its superior precision and lower rates of missing data compared to alternative software solutions. Our approach not only enables the filtering of SVs by leveraging multiple SV callers for enhanced accuracy but also facilitates the accurate merging of large-scale population SVs. These capabilities of PanPop will help to accelerate future SV-related studies.


Assuntos
Genômica , Software , Humanos , Algoritmos , Variação Estrutural do Genoma , Genótipo , Genoma Humano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...