Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.162
Filtrar
1.
Sci Rep ; 14(1): 10588, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719919

RESUMO

Solitary wave solutions are of great interest to bio-mathematicians and other scientists because they provide a basic description of nonlinear phenomena with many practical applications. They provide a strong foundation for the development of novel biological and medical models and therapies because of their remarkable behavior and persistence. They have the potential to improve our comprehension of intricate biological systems and help us create novel therapeutic approaches, which is something that researchers are actively investigating. In this study, solitary wave solutions of the nonlinear Murray equation will be discovered using a modified extended direct algebraic method. These solutions represent a uniform variation in blood vessel shape and diameter that can be used to stimulate blood flow in patients with cardiovascular disease. These solutions are newly in the literature, and give researchers an important tool for grasping complex biological systems. To see how the solitary wave solutions behave, graphs are displayed using Matlab.


Assuntos
Dinâmica não Linear , Humanos , Modelos Cardiovasculares , Vasos Sanguíneos/fisiologia , Velocidade do Fluxo Sanguíneo , Algoritmos
2.
Curr Top Dev Biol ; 159: 344-370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729681

RESUMO

The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.


Assuntos
Remodelação Vascular , Humanos , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/embriologia , Neovascularização Fisiológica , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Diferenciação Celular , Desenvolvimento Embrionário , Endotélio Vascular/citologia
4.
Environ Health Perspect ; 132(5): 57001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701112

RESUMO

BACKGROUND: Disruptions in vascular formation attributable to chemical insults is a pivotal risk factor or potential etiology of developmental defects and various disease settings. Among the thousands of chemicals threatening human health, the highly concerning groups prevalent in the environment and detected in biological monitoring in the general population ought to be prioritized because of their high exposure risks. However, the impacts of a large number of environmental chemicals on vasculature are far from understood. The angioarchitecture complexity and technical limitations make it challenging to analyze the entire vasculature efficiently and identify subtle changes through a high-throughput in vivo assay. OBJECTIVES: We aimed to develop an automated morphometric approach for the vascular profile and assess the vascular morphology of health-concerning environmental chemicals. METHODS: High-resolution images of the entire vasculature in Tg(fli1a:eGFP) zebrafish were collected using a high-content imaging platform. We established a deep learning-based quantitative framework, ECA-ResXUnet, combined with MATLAB to segment the vascular networks and extract features. Vessel scores based on the rates of morphological changes were calculated to rank vascular toxicity. Potential biomarkers were identified by vessel-endothelium-gene-disease integrative analysis. RESULTS: Whole-trunk blood vessels and the cerebral vasculature in larvae exposed to 150 representative chemicals were automatically segmented as comparable to human-level accuracy, with sensitivity and specificity of 95.56% and 95.81%, respectively. Chemical treatments led to heterogeneous vascular patterns manifested by 31 architecture indexes, and the common cardinal vein (CCV) was the most affected vessel. The antipsychotic medicine haloperidol, flame retardant 2,2-bis(chloromethyl)trimethylenebis[bis(2-chloroethyl) phosphate], and tert-butylphenyl diphenyl phosphate ranked as the top three in vessel scores. Pesticides accounted for the largest group, with a vessel score of ≥1, characterized by a remarkable inhibition of subintestinal venous plexus and delayed development of CCV. Multiple-concentration evaluation of nine per- and polyfluoroalkyl substances (PFAS) indicated a low-concentration effect on vascular impairment and a positive association between carbon chain length and benchmark concentration. Target vessel-directed single-cell RNA sequencing of fli1a+ cells from larvae treated with λ-cyhalothrin, perfluorohexanesulfonic acid, or benzylbutyl phthalate, along with vessel-endothelium-gene-disease integrative analysis, uncovered potential associations with vascular disorders and identified biomarker candidates. DISCUSSION: This study provides a novel paradigm for phenotype-driven screenings of vascular-disrupting chemicals by converging morphological and transcriptomic profiles at a high-resolution level, serving as a powerful tool for large-scale toxicity tests. Our approach and the high-quality morphometric data facilitate the precise evaluation of vascular effects caused by environmental chemicals. https://doi.org/10.1289/EHP13214.


Assuntos
Peixe-Zebra , Animais , Poluentes Ambientais/toxicidade , Vasos Sanguíneos/efeitos dos fármacos
5.
Med Eng Phys ; 127: 104166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692765

RESUMO

A profound investigation of the interaction mechanics between blood vessels and guidewires is necessary to achieve safe intervention. An interactive force model between guidewires and blood vessels is established based on cardiovascular fluid dynamics theory and contact mechanics, considering two intervention phases (straight intervention and contact intervention at a corner named "J-vessel"). The contributing factors of the force model, including intervention conditions, guidewire characteristics, and intravascular environment, are analyzed. A series of experiments were performed to validate the availability of the interactive force model and explore the effects of influential factors on intervention force. The intervention force data were collected using a 2-DOF mechanical testing system instrumented with a force sensor. The guidewire diameter and material were found to significantly impact the intervention force. Additionally, the intervention force was influenced by factors such as blood viscosity, blood vessel wall thickness, blood flow velocity, as well as the interventional velocity and interventional mode. The experiment of the intervention in a coronary artery physical vascular model confirms the practicality validation of the predicted force model and can provide an optimized interventional strategy for vascular interventional surgery. The enhanced intervention strategy has resulted in a considerable reduction of approximately 21.97 % in the force exerted on blood vessels, effectively minimizing the potential for complications associated with the interventional surgery.


Assuntos
Fenômenos Mecânicos , Vasos Sanguíneos/fisiologia , Modelos Cardiovasculares , Hidrodinâmica , Humanos , Fenômenos Biomecânicos , Modelos Biológicos , Vasos Coronários/fisiologia
6.
Int J Biol Macromol ; 267(Pt 1): 131369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580026

RESUMO

Chitosan acts as a versatile carrier in polymeric nanoparticle (NP) for diverse drug administration routes. Delivery of antioxidants, such as quercetin (Qu) showcases potent antioxidant and anti-inflammatory properties for reduction of various cardiovascular diseases, but low water solubility limits uptake. To address this, we developed a novel layer-by-layer zein/gamma-polyglutamic acid (γPGA)/low-molecular-weight chitosan (LC)/fucoidan NP for encapsulating Qu and targeting inflamed vessel endothelial cells. We used zein (Z) and γPGA (r) to encapsulate Qu (Qu-Zr NP) exhibited notably higher encapsulation efficiency compared to zein alone. Qu-Zr NP coated with LC (Qu-ZrLC2 NP) shows a lower particle size (193.2 ± 2.9 nm), and a higher zeta potential value (35.2 ± 0.4 mV) by zeta potential and transmission electron microscopy analysis. After coating Qu-ZrLC2 NP with fucoidan, Qu-ZrLC2Fa NP presented particle size (225.16 ± 0.92 nm), zeta potential (-25.66 ± 0.51 mV) and maintained antioxidant activity. Further analysis revealed that Qu-ZrLC2Fa NP were targeted and taken up by HUVEC cells and EA.hy926 endothelial cells. Notably, we observed Qu-ZrLC2Fa NP targeting zebrafish vessels and isoproterenol-induced inflamed vessels of rat. Our layer-by-layer formulated zein/γPGA/LC/fucoidan NP show promise as a targeted delivery system for water-insoluble drugs. Qu-ZrLC2Fa NP exhibit potential as an anti-inflammatory therapeutic for blood vessels.


Assuntos
Antioxidantes , Quitosana , Nanopartículas , Ácido Poliglutâmico , Ácido Poliglutâmico/análogos & derivados , Polissacarídeos , Quercetina , Peixe-Zebra , Zeína , Quercetina/farmacologia , Quercetina/química , Quitosana/química , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Zeína/química , Nanopartículas/química , Ratos , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Inflamação/tratamento farmacológico , Inflamação/patologia , Peso Molecular , Portadores de Fármacos/química , Tamanho da Partícula , Vasos Sanguíneos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Masculino , Nanopartículas em Multicamadas
7.
Biomed Mater ; 19(3)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636492

RESUMO

Three-dimensional (3D) printing has emerged as a transformative technology for tissue engineering, enabling the production of structures that closely emulate the intricate architecture and mechanical properties of native biological tissues. However, the fabrication of complex microstructures with high accuracy using biocompatible, degradable thermoplastic elastomers poses significant technical obstacles. This is primarily due to the inherent soft-matter nature of such materials, which complicates real-time control of micro-squeezing, resulting in low fidelity or even failure. In this study, we employ Poly (L-lactide-co-ϵ-caprolactone) (PLCL) as a model material and introduce a novel framework for high-precision 3D printing based on the material plasticization process. This approach significantly enhances the dynamic responsiveness of the start-stop transition during printing, thereby reducing harmful errors by up to 93%. Leveraging this enhanced material, we have efficiently fabricated arrays of multi-branched vascular scaffolds that exhibit exceptional morphological fidelity and possess elastic moduli that faithfully approximate the physiological modulus spectrum of native blood vessels, ranging from 2.5 to 45 MPa. The methodology we propose for the compatibilization and modification of elastomeric materials addresses the challenge of real-time precision control, representing a significant advancement in the domain of melt polymer 3D printing. This innovation holds considerable promise for the creation of detailed multi-branch vascular scaffolds and other sophisticated organotypic structures critical to advancing tissue engineering and regenerative medicine.


Assuntos
Materiais Biocompatíveis , Elastômeros , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Elastômeros/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Poliésteres/química , Materiais Biocompatíveis/química , Módulo de Elasticidade , Teste de Materiais , Humanos , Estresse Mecânico , Vasos Sanguíneos , Prótese Vascular
8.
Int J Numer Method Biomed Eng ; 40(5): e3811, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38468441

RESUMO

The dialysis catheter indwelling in human bodies has a high risk of inducing thrombus and stenosis. Biomechanical research showed that such physiological complications are triggered by the wall shear stress of the vascular vessel. This study aimed to assess the impact of CVC implantation on central venous haemodynamics and the potential alterations in the haemodynamic environment related to thrombus development. The SVC structure was built from the images from computed tomography. The blood flow was calculated using the Carreau model, and the fluid domain was determined by CFD. The vascular wall and the CVC were computed using FEA. The elastic interaction between the vessel wall and the flow field was considered using FSI simulation. With consideration of the effect of coupling, it was shown that the catheter vibrated in the vascular systems due to the periodic variation of blood pressure, with an amplitude of up to 10% of the vessel width. Spiral flow was observed along the catheter after CVC indwelling, and recirculation flow appeared near the catheter tip. High OSI and WSS regions occurred at the catheter tip and the vascular junction. The arterial lumen tip had a larger effect on the WSS and OSI values on the vascular wall. Considering FSI simulation, the movement of the catheter inside the blood flow was simulated in the deformable vessel. After CVC indwelling, spiral flow and recirculation flow were observed near the regions with high WSS and OSI values.


Assuntos
Modelos Cardiovasculares , Diálise Renal , Humanos , Hemodinâmica/fisiologia , Elasticidade , Estresse Mecânico , Simulação por Computador , Velocidade do Fluxo Sanguíneo/fisiologia , Vasos Sanguíneos/fisiologia
9.
Nature ; 627(8005): 839-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509363

RESUMO

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Estresse Fisiológico , Animais , Feminino , Masculino , Camundongos , Envelhecimento/fisiologia , Infecções Bacterianas/patologia , Infecções Bacterianas/fisiopatologia , Vasos Sanguíneos/citologia , Linhagem da Célula , Eritropoese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemorragia/patologia , Hemorragia/fisiopatologia , Linfopoese , Megacariócitos/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Mielopoese , Crânio/irrigação sanguínea , Crânio/patologia , Crânio/fisiopatologia , Esterno/irrigação sanguínea , Esterno/citologia , Esterno/metabolismo , Estresse Fisiológico/fisiologia , Tíbia/irrigação sanguínea , Tíbia/citologia , Tíbia/metabolismo
10.
Pharmacol Res ; 203: 107140, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513826

RESUMO

The understanding of the function of perivascular adipose tissue (PVAT) in vascular aging has significantly changed due to the increasing amount of information regarding its biology. Adipose tissue surrounding blood vessels is increasingly recognized as a key regulator of vascular disorders. It has significant endocrine and paracrine effects on the vasculature and is mediated by the production of a variety of bioactive chemicals. It also participates in a number of pathological regulatory processes, including oxidative stress, immunological inflammation, lipid metabolism, vasoconstriction, and dilation. Mechanisms of homeostasis and interactions between cells at the local level tightly regulate the function and secretory repertoire of PVAT, which can become dysregulated during vascular aging. The PVAT secretion group changes from being reducing inflammation and lowering cholesterol to increasing inflammation and increasing cholesterol in response to systemic or local inflammation and insulin resistance. In addition, the interaction between the PVAT and the vasculature is reciprocal, and the biological processes of PVAT are directly influenced by the pertinent indicators of vascular aging. The architectural and biological traits of PVAT, the molecular mechanism of crosstalk between PVAT and vascular aging, and the clinical correlation of vascular age-related disorders are all summarized in this review. In addition, this paper aims to elucidate and evaluate the potential benefits of therapeutically targeting PVAT in the context of mitigating vascular aging. Furthermore, it will discuss the latest advancements in technology used for targeting PVAT.


Assuntos
Tecido Adiposo , Envelhecimento , Vasos Sanguíneos , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Animais , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Vasos Sanguíneos/fisiologia , Vasos Sanguíneos/metabolismo , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia
11.
Biofabrication ; 16(2)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277671

RESUMO

Tissue engineering has emerged as a strategy for producing functional tissues and organs to treat diseases and injuries. Many chronic conditions directly or indirectly affect normal blood vessel functioning, necessary for material exchange and transport through the body and within tissue-engineered constructs. The interest in vascular tissue engineering is due to two reasons: (1) functional grafts can be used to replace diseased blood vessels, and (2) engineering effective vasculature within other engineered tissues enables connection with the host's circulatory system, supporting their survival. Among various practices, (bio)printing has emerged as a powerful tool to engineer biomimetic constructs. This has been made possible with precise control of cell deposition and matrix environment along with the advancements in biomaterials. (Bio)printing has been used for both engineering stand-alone vascular grafts as well as vasculature within engineered tissues for regenerative applications. In this review article, we discuss various conditions associated with blood vessels, the need for artificial blood vessels, the anatomy and physiology of different blood vessels, available 3D (bio)printing techniques to fabricate tissue-engineered vascular grafts and vasculature in scaffolds, and the comparison among the different techniques. We conclude our review with a brief discussion about future opportunities in the area of blood vessel tissue engineering.


Assuntos
Bioimpressão , Neovascularização Fisiológica , Neovascularização Fisiológica/fisiologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis , Alicerces Teciduais , Artérias , Impressão Tridimensional , Bioimpressão/métodos , Vasos Sanguíneos/fisiologia
12.
Bioessays ; 46(3): e2300091, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38135890

RESUMO

The sophisticated function of the central nervous system (CNS) is largely supported by proper interactions between neural cells and blood vessels. Accumulating evidence has demonstrated that neurons and glial cells support the formation of blood vessels, which in turn, act as migratory scaffolds for these cell types. Neural progenitors are also involved in the regulation of blood vessel formation. This mutual interaction between neural cells and blood vessels is elegantly controlled by several chemokines, growth factors, extracellular matrix, and adhesion molecules such as integrins. Recent research has revealed that newly migrating cell types along blood vessels repel other preexisting migrating cell types, causing them to detach from the blood vessels. In this review, we discuss vascular formation and cell migration, particularly during development. Moreover, we discuss how the crosstalk between blood vessels and neurons and glial cells could be related to neurodevelopmental disorders.


Assuntos
Sistema Nervoso Central , Neurônios , Neurônios/metabolismo , Sistema Nervoso Central/fisiologia , Movimento Celular/fisiologia , Integrinas/metabolismo , Vasos Sanguíneos/fisiologia
13.
Dev Dyn ; 253(5): 519-541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112237

RESUMO

BACKGROUND: Mural cells are an essential perivascular cell population that associate with blood vessels and contribute to vascular stabilization and tone. In the embryonic zebrafish vasculature, pdgfrb and tagln are commonly used as markers for identifying pericytes and vascular smooth muscle cells. However, the overlapping and distinct expression patterns of these markers in tandem have not been fully described. RESULTS: Here, we used the Tg(pdgfrb:Gal4FF; UAS:RFP) and Tg(tagln:NLS-EGFP) transgenic lines to identify single- and double-positive perivascular cell populations on the cranial, axial, and intersegmental vessels between 1 and 5 days postfertilization. From this comparative analysis, we discovered two novel regions of tagln-positive cell populations that have the potential to function as mural cell precursors. Specifically, we found that the hypochord-a reportedly transient structure-contributes to tagln-positive cells along the dorsal aorta. We also identified a unique mural cell progenitor population that resides along the midline between the neural tube and notochord and contributes to intersegmental vessel mural cell coverage. CONCLUSION: Together, our findings highlight the variability and versatility of tracking both pdgfrb and tagln expression in mural cells of the developing zebrafish embryo and reveal unexpected embryonic cell populations that express pdgfrb and tagln.


Assuntos
Animais Geneticamente Modificados , Pericitos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Desenvolvimento Embrionário/fisiologia
14.
J Virol ; 97(11): e0048023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877715

RESUMO

IMPORTANCE: Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.


Assuntos
Membrana Basal , Células Endoteliais , Iridoviridae , Vasos Linfáticos , Membrana Basal/metabolismo , Membrana Basal/virologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Iridoviridae/fisiologia , Vasos Linfáticos/citologia , Proliferação de Células , Movimento Celular , Vasos Sanguíneos/citologia , Interações entre Hospedeiro e Microrganismos
15.
Angiol. (Barcelona) ; 75(5): 290-297, Sept-Oct, 2023. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-226583

RESUMO

Introducción y objetivo: la enfermedad oclusiva de las arterias ilíacas puede ser causa de complicaciones en EVAR. Su frecuencia no es muy alta, pero su mortalidad sí y hay evidencia escasa en cuanto a su repercusión en EVAR complejo. el uso de conductos iliofemorales es una herramienta que existe para combatir este problema. el objetivo de este trabajo es analizar el impacto del uso de conductos iliofemorales en la morbimortalidad neurológica y vascular en FeVaR y BeVaR. Materiales y métodos: recolección retrospectiva de pacientes con aneurismas yuxtarrenales, abdominotorácicos o endoleak ia tratados mediante FEVAR o BEVAR de forma electiva entre 2014 y 2020 en una sola institución (la Clínica La Sagrada Familia, Buenos aires, argentina). Se dividieron en dos grupos: uno, con conductos (grupo a), y otros, sin (grupo B). el grupo a se subdividió entre aquellos con conductos temporales y aquellos con permanentes. Resultados: analizamos 45 pacientes. 23 recibieron conductos (grupo a) y 22, no (grupo B). La edad media fue de 73 años y el diámetro promedio del saco fue de 69,89 mm. La estancia hospitalaria media fue de 4,7 días. el grupo a presentó más pacientes con enfermedad vascular periférica (56,5 % frente a 22,7 %, p = 0,045) y diámetros menores de arterias ilíacas externas. Hubo 8 complicaciones en el perioperatorio (17,8 %; grupo a, n = 1, 4,3 %, frente al grupo B, n = 7, 31,8 %; p = 0,043). Fallecieron 2 pacientes, lo que dejó una mortalidad perioperatoria del 4,4 % (grupo a, 0 %, frente al grupo B, 9,1 %; p = 0,45). Las complicaciones incluyeron isquemia medular, ruptura de la arteria ilíaca e isquemia de miembros inferiores. dentro del grupo a, 12 pacientes (52,2 %) recibieron conductos permanentes y otros 11 (47,8 %), temporales. Conclusiones: los conductos iliofemorales en FEVAR y BEVAR son seguros cuando forman parte de la planificación preoperatoria. Las complicaciones neurológicas y vasculares no son infrecuentes y conllevan una alta mortalidad...(AU)


Introduction and objective: occlusive arterial disease involving the iliac arteries can be cause of complicationsin eVaR. its frequency is not high, but its mortality is and there is scant evidence regarding its repercussion incomplex eVaR. the use of iliofemoral conduits is a tool to overcome this problem. our objective is to analyzethe impact of the use of iliofemoral conduits in the neurological and vascular morbimortality associated withFeVaR and BeVaR. Materials and methods: retrospective recollection of patients who underwent elective FeVaR or BeVaR for jux-tarrenal, thoracoabdominal aneurysms or type ia endoleak between 2014 and 2020 in one institution (Clínica LaSagrada Familia, Buenos aires, argentina). Patients were divided in two groups, one with conduits (group a) andone without (group B). Group a was subdivided between those who received temporary conduits and those withpermanent conduits. Results: we analyzed 45 patients. 23 received conduits (group a) whereas 22 did not (group B). mean age was 73years and mean sac diameter was 69.89 mm. mean hospital stay was 4.7 days. Group a presented more patientswith peripheral vascular disease (56.5 % vs. 22.7 %, p = 0.045) and smaller iliac arteries. there were 8 complicationsin the perioperative period (17.8 %; group a, n = 1, 4.3 %; group B, n = 7, 31.8 %. p = 0.043). 2 patients died, leavinga perioperative mortality of 4.4 % (group a 0 % vs. group B 9.1 %, p = 0.45). Complications included spinal cordischemia, iliac artery rupture and lower limb ischemia. in group a, 12 (52.2 %) patients received permanent conduitsand 11 (47.8 %) temporary conduits. Conclusions: the use of iliofemoral conduits in FeVaR and BeVaR is safe when they are part of the preoperativeplanning. neurological and vascular complications are not infrequent and carry a high mortality. the use of conduitsis effective to reduce its incidence and associated mortality.(AU)


Assuntos
Humanos , Masculino , Feminino , Idoso , Artéria Ilíaca/cirurgia , Artéria Ilíaca/anatomia & histologia , Aneurisma Aórtico/complicações , Aneurisma Aórtico/cirurgia , Procedimentos Endovasculares , Argentina , Estudos Retrospectivos , Indicadores de Morbimortalidade , Sistema Linfático , Vasos Sanguíneos , Sistema Cardiovascular
16.
Rinsho Ketsueki ; 64(7): 661-664, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37544727

RESUMO

By carrying a systemic circulation, hematopoietic and vascular systems coordinately govern the functional organ connections in the body. Blood vessels play an important role in the development, regeneration, and maintenance of organs by acting as conduits for environmental factors in the blood to tissues and secreting organ-specific cytokines as angiocrine signals. Recently, it has become clear that vascular endothelial cells, which are the main constituent cells of the blood vessels and play a role in homeostasis, are diverse. It has also been established that the cells of stem cell fraction exist in endothelial cells. The vascular endothelial cells in various organs are functionally different. For example, it has been discovered that sinusoidal blood vessels in the liver produce coagulation factor VIII as an organ-specific vascular function. Determining how such tissue-/organ-specific function of the endothelial cells is induced is a topic of interest in the vascular field of study.


Assuntos
Capilares , Células Endoteliais , Hemofilia A , Fígado , Humanos , Fígado/irrigação sanguínea , Fígado/fisiologia , Vasos Sanguíneos , Capilares/fisiologia
17.
Actas dermo-sifiliogr. (Ed. impr.) ; 114(7): 606-612, jul.- ago. 2023. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-223003

RESUMO

En el presente artículo de la serie «Seguridad en procedimientos dermatológicos» se aborda la sección quirúrgica accidental de grandes vasos sanguíneos y estructuras nerviosas. Se aborda, en primer lugar, la localización anatómica y recorrido de las distintas estructuras vasculares y nerviosas de más riesgo. A continuación, se explican las consecuencias de dicha lesión. Por último, se emiten algunas recomendaciones para evitar el daño accidental de las estructuras en dichas áreas de riesgo y se plantean algunas maniobras terapéuticas de reparación ante un eventual daño (AU)


This article in the series «Safety in Dermatologic Procedures» deals with the accidental laceration of major blood vessels and nerve structures during surgery. We first look at the anatomic location and course of the blood vessels and nerve structures that are most at risk of injury and then describe the possible outcomes in each case. We finally offer some recommendations on how to avoid damage to structures in danger zones and how to repair them if they are accidentally compromised (AU)


Assuntos
Humanos , Vasos Sanguíneos/lesões , Traumatismos dos Nervos Periféricos/etiologia , Fatores de Risco
18.
Actas dermo-sifiliogr. (Ed. impr.) ; 114(7): t606-t612, jul.- ago. 2023. tab, ilus
Artigo em Inglês | IBECS | ID: ibc-223004

RESUMO

This article in the series «Safety in Dermatologic Procedures» deals with the accidental laceration of major blood vessels and nerve structures during surgery. We first look at the anatomic location and course of the blood vessels and nerve structures that are most at risk of injury and then describe the possible outcomes in each case. We finally offer some recommendations on how to avoid damage to structures in danger zones and how to repair them if they are accidentally compromised (AU)


En el presente artículo de la serie «Seguridad en procedimientos dermatológicos» se aborda la sección quirúrgica accidental de grandes vasos sanguíneos y estructuras nerviosas. Se aborda, en primer lugar, la localización anatómica y recorrido de las distintas estructuras vasculares y nerviosas de más riesgo. A continuación, se explican las consecuencias de dicha lesión. Por último, se emiten algunas recomendaciones para evitar el daño accidental de las estructuras en dichas áreas de riesgo y se plantean algunas maniobras terapéuticas de reparación ante un eventual daño (AU)


Assuntos
Humanos , Vasos Sanguíneos/lesões , Traumatismos dos Nervos Periféricos/etiologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...